
Some people say that keeping things
tidy just means you’re too lazy to
search. However filesystems are not
fixed, not necessarily logical or self-
explanatory, and can change over
time. Even for the tidiest of computer
aficionados, it can be helpful and in-
deed essential to use search functions
to find what was once stored, even
into the furthest corners of a deeply
nested storage system. This capacity
is especially important if you want
to search through a large volume of
files, the content of which you are not
familiar. For this kind of use case, it
makes sense to take a closer look at
the search functions on desktop com-
puters and their possibilities.
The event that impelled me to au-
thor this article was the arrival of a
13GB bundle of compressed files, the
contents of which could possibly be
helpful in my research. To find out,
I had to browse through the flood of
data, aided only by standard search
functions. Manual browsing, search-
ing, and quick reading would have
been too prone to error on the one
hand and too time-consuming on the
other. Thoroughly sifting through 554
files – each the size of an average
daily newspaper – with trained eagle
eyes would have used up some of my

remaining lifetime and possibly only
returned mediocre results.
The obvious approach was to test
the suitability of the desktop’s built-
in mechanisms for full-text search.
In the present case, a system with
Ubuntu 20.04 LTS and a Gnome inter-
face formed the basis of the default
installation. As a first basis for the
search, the inconspicuous but quite
powerful Tracker [1] program was
investigated. An Internet search re-
vealed at least two other recent tools
that, according to their brief descrip-
tions, would be suitable for the task
I set: DocFetcher [2] and Recoll [3]
specialize in full-text search and were
built for use on a modern desktop.
On server systems, the combination
of Solr and Lucene [4] is considered
the standard for implementing an in-
dexing system for full-text searching
and making the results accessible by
means of a search engine. The duo
shows how powerful modern search
systems can be. Today’s PCs and
recent laptops offer enough perfor-
mance to index files with this combi-
nation; however, the high overhead is
hardly reasonable for average desktop
users and is clearly over-the-top if
you consider the usual requirements
when working on a PC. Nevertheless,

many common applications for the
desktop are oriented toward the per-
formance characteristics of Solr and
Lucene.
The Regain [5] project was another
product that used Lucene as a search
engine on the desktop. However, it
was discontinued after the release of
version 2.1.0 in 2014.

Tracker

If you want to come to grips with
Tracker, you’ll first have to embark
on a lengthy search of another kind.
Although the software is maintained
within the Gnome project, the docu-
mentation from the two main de-
velopers, Sam Thursfield and Carlos
Garnacho, leaves much to be desired.
In some parts of the docs you will
find outdated information from older
versions, with announcements for
future enhancements that were never
implemented. Interested parties are
largely left to their own devices when
trying to determine Tracker’s current
feature set. The blog [6] maintained
by Sam Thursfield is interesting and
instructive. He offers readers detailed
information about the decisions that
ultimately had to be made during de-
velopment.

Desktop search engines such as Tracker, DocFetcher, and Recoll help track down files by their content, even in
massive datasets. By Harald Jele

Ph
ot

o
by

 L
uc

as
 G

al
lo

ne
 o

n
Un

sp
la

sh

Three full-text desktop search engines

Needle in a
Haystack

30 A D M I N 6 6 W W W. A D M I N - M AGA Z I N E .CO M

TO O L S Desktop Search Engines

Tracker essentially comprises two
parts: a SPARQL database built
around SQLite and what are known
as “tracker miners.” The SPARQL
graph-based query language was de-
fined by the World Wide Web Consor-
tium (W3C) and has been available as
a stable version since March 2013 [7].
The tracker miners, which are imple-
mented as classic daemons, browse
specified file paths and prepare the
data found for indexing.
Tracker was developed from the be-
ginning as an application intended
to go efficiently about its work in the
background wherever possible with-
out causing a stir. The developers
also set store on indexing not slow-
ing down the usual desktop work
to any great extent. Moreover, they
wanted to avoid a power-hungry in-
dexing tool draining laptop batteries
and leaving the user blissfully un-
aware of the reason. Tracker is mod-

tracker‑store.journal. Changes to
the filesystem will have an effect. If
the journal does not change, it also
means that the tracker processes
have completed all pending work
and that all data is covered by the
full-text index.
A search engine should distribute the
time-consuming process of indexing
across many processes, but Tracker
does not do this. Regardless of how
many files need to be processed and
how many CPUs the computer has
available, only two indexing pro-
cesses are active at any given time.
Many of the tasks involved in work-
ing with Tracker can be completed
either from the command line or
with the help of desktop tools. For
example, if you open the default
file manager, you can use its search
function to extend the search to file
content. As Figure 1 shows, you can
switch between File Name and Full
Text while searching and set all kinds
of restrictions.
If you select Full Text, Tracker ap-
plies the search term (“kernel” in
Figure 1) to the contents of selected
files and looks up the term in the full-
text index. For hits, the file manager
displays the associated files, as well

ular, not monolithic, which makes
the application very flexible but also
a bit confusing, in turn extending the
learning curve.
On the Ubuntu desktop, you select
the paths and file types that will end
up in the index in Settings | Search |
Search Locations and choose from the
Places, Bookmarks, and Other tabs. In
the terminal, you then need to stop
and restart the tracker daemon to
apply the changes to the configura-
tion. The associated commands, and
the most important commands for
improved control of the work in prog-
ress, are summarized in Table 1. A
complete overview of the tracker tool
parameters is provided in the tracker
command-line interface (CLI) docu-
mentation [8]. (Note that the most
recent version of the tool is tracker3.)
Tracker keeps its journal in the
logged-in user’s directory under
~/.local/share/tracker/data/

Table 1: Important Tracker Commands

tracker daemon ‑s Start the daemon and its processes.

tracker daemon ‑t Stop the daemon and its processes.

tracker daemon ‑‑watch Show what Tracker is currently processing.

tracker daemon ‑‑set‑log‑verbosity Set the verbosity of the daemon.

tracker status Show the status of the current indexing process.

Figure 1: An example of a Tracker full-text search in the Gnome desktop file manager.

31A D M I N 6 6W W W. A D M I N - M AGA Z I N E .CO M

TO O L SDesktop Search Engines

as a short preview of the context in
which they were found. If you want
to search for two or more terms at
the same time, you won’t find them
with the file manager – not because
Tracker can’t do
that but because
that is simply not
implemented in
the file manager.
Even the Docu-
ments option,
which looks to be
a kind of docu-
ment manager,
does not currently
implement this ca-
pability, nor does
it show you a
preview of the dis-
covered terms or
offer to highlight
the discovered
terms in the docu-
ment. However,
Tracker provides
both pieces of in-
formation.
In the terminal,
a simultaneous
search for two or

more terms works in the expected
way with the corresponding logical
operators (AND/OR/NOT), as seen in Fig-
ure 2. Tracker deliberately does not
go beyond these operators into logical

linking. Thursfield writes in his blog
that average users wouldn’t use other
logical links even if they were avail-
able. Among other things, he refers to
proximity operators such as NEAR from
information retrieval, which probably
only a few experts use in a classic
full-text search. The same applies to
word stemming, which Thursfield dis-
cusses in the blog, but which Tracker
ultimately does not implement.
Tracker fulfills many of the require-
ments for a semantic desktop. When
mapping the terms in the index, the
daemon also stores those text ele-
ments from which keywords origi-
nate, allowing you to specify the text
or metadata element in which the
match must occur.
The database maps this by defin-
ing an ontology. By default, Tracker
uses the variant popularized by the
Nepomuk [9] project funded by the
European Union between 2006 and
2008. The ontology is not hard-coded
in Tracker and can be replaced by
any other ontology, if needed, or
independently extended and modi-
fied. The Tracker Ontology Reference
Manual [10] gives a good overview of
the Nepomuk elements.

Figure 2: The terms AND, OR, and NOT are used for logical linking when searching in Tracker.

Figure 3: Elements of the Nepomuk ontology used by Tracker, as displayed in the terminal.

32 A D M I N 6 6 W W W. A D M I N - M AGA Z I N E .CO M

Desktop Search EnginesTO O L S

color-highlighted locations where the
match was found.
By default, DocFetcher logical ORs
the terms entered in the search bar,
instead of using a logical AND, as
is common with many other search
engines. The AND, OR, and NOT
logical operators are available. If you
are searching for a phrase in which
several terms must occur in the or-
der entered, you need to quote the
search terms.
DocFetcher also has a proximity
search option that works when you
append the proximity operator (a
tilde) to a phrase. For example, enter-
ing “Bludenz Bregenz”~10 causes
the tool to rank texts in which the
two names of these Austrian cities
occur no more than 10 words apart
as matches. If you do not specify a
value, DocFetcher assumes a distance
of zero and searches for the two
juxtaposed terms. Ten words is the
maximum distance the search engine
accepts.
The tool also can handle some very
specialized search options. Boosting
lets you give a higher weighting to
individual search terms. In a field
search, it searches for terms in the

$ sudo apt install default‑jre

$ sudo snap install docfetcher

The monolithic structure of the pro-
gram prevents the use of individual
modules but allows a uniform view of
the implemented search methods and
operation. An up-to-date description,
help pages, tips and tricks, and a user
forum can be found on the project’s
website.
DocFetcher structures its display in
frames (Figure 4) and does without a
classic menu, which seems confusing
at first. However, once you get used
to right-clicking to call up the com-
mands, the workflow is friendly and
focused on the essentials.
In the lower left frame (Search Scope),
you specify the file paths you want
DocFetcher to index. In the Docu-
ment Types frame above, you specify
the file types to be indexed and limit
their file size, if necessary. At top
right, a bar lets you enter search
terms. Below that, DocFetcher lists
the files in which at least one match
occurred for the search term. If you
select one of the lines, a preview of
the corresponding file appears in the
bottom right window, along with the

The command

tracker info <file>

lets you analyze individual files, in
advance of indexing, for their com-
pliance with the deployed ontology
rules. Figure 3 shows part of the cor-
responding output in the terminal.
Tracker needed 7:05 minutes to index
my 554 files with a total size of 13GB
on my setup, which is pretty good
compared with the other two candi-
dates. That said, the three candidates
do not all have the same feature set.

DocFetcher

DocFetcher, also an open source
program for full-text searching on
the desktop, has completely differ-
ent requirements from Tracker. Its
mission is to index predefined file
paths as quickly and efficiently as
possible at the push of a button.
DocFetcher grabs the resources it
needs without retiring unobtrusively
to the background. Luckily, it does
not completely block all other work
on an average PC. However, with the
requirements DocFetcher has during
the install, it plants a significantly
larger footprint on the computer than
Tracker.
DocFetcher is available for Linux,
Windows, and macOS and comes in
two variants: the non-commercial
DocFetcher and DocFetcher Pro (a test
version of which was released in Jan-
uary 2021), which has undergone a
complete overhaul compared with the
non-commercial version. The com-
mercial version is not limited in terms
of function in the test version, but it
is limited in terms of the display. For
example, it only displays five results
of a search instead of all of them; this
is sufficient for an evaluation, say the
developers. On the DocFetcher Pro
website [11], the developers list the
other differences between the com-
mercial and non-commercial versions
in detail.
On my system, I used version 1.1.22
of DocFetcher, which is available as
a Snap package for Ubuntu and re-
quires a Java installation:

Figure 4: The display in DocFetcher. A classic menu is missing; operations are largely
triggered by mouse clicks.

33A D M I N 6 6W W W. A D M I N - M AGA Z I N E .CO M

TO O L SDesktop Search Engines

filename, title, and author fields
in documents with metadata. The
range search lets you find terms
that are within a defined lexico-
graphic range.
Apart from text files, DocFetcher
can include email documents in its
index but not graphics or multime-
dia files, which, along with com-
pressed files, are reserved for the
commercial variant.
If an index has been created but the
associated files have changed in the
meantime, DocFetcher does not auto-
matically re-index them. A separate
daemon detects and logs changes. Its
records can be applied when you are
reorganizing the overall index to pro-
cess only those files and directories
that have changed in the meantime.
Figure 5 shows some of the options
you can control from the menu in the
search area.
Some users might be interested
to learn that a portable version of
DocFetcher is also available, which
makes it possible to take the program
and associated files with you (for
example, on a mobile data carrier)
and run the program on that device.
In the same way, DocFetcher and the

indexed documents can be transferred
from one computer to another with-
out having to re-index the data.
Switching between the non-commer-
cial and the commercial edition of
DocFetcher annoyingly forces you to
re-index your documents completely
because the two versions (currently)
cannot work with the same index
files. When building the index,
special attention should be paid to
files that are not UTF-8 encoded:
DocFetcher does not index them cor-
rectly per se.
It took DocFetcher just under 15 min-
utes to index the 554 PDF files from
the test suite of 13GB.

Recoll

With Recoll, the leader in desktop
search programs enters the fray. The
Ubuntu repository offered version
1.26.3 at the time of writing this ar-
ticle. The Personal Package Archive
(PPA) maintained by the developers
had the latest version at that time,
v1.30.1. A Snap package was not
available. I tested the version from
the PPA, which is installed with the
commands:

$ sudo add‑apt‑repository U

 ppa:recoll‑backports/recoll‑1.15‑on

$ sudo apt‑get update

$ sudo apt‑get install recoll

Versions of Recoll are available for
Linux, a number of Unix variants,
Android, Windows, macOS, and even
OS/ 2. Its high performance as a ver-
satile desktop tool comes from the
use of the Xapian [12] search engine,
which does the real heavy lifting in
the background. Xapian’s feature list
is endless, and Recoll implements
most of it.
Essentially, the connection to the
search engine is implemented by a
variety of Python scripts. Xapian,
and thus Recoll, is designed predomi-
nantly for full-text searching. Index-
ing non-text files takes a bit of a back
seat, although Xapian also includes
the metadata of multimedia and
graphics files in the index.
Like DocFetcher, Recoll assumes
that text is UTF-8 encoded by de-
fault and trips up over files that
deviate from the norm. That said,
Recoll’s mandatory filter files are
equipped to handle a large range of
encoding types.
When first launched, Recoll asks
whether you want to set up the di-
rectories with the content you want
to index right away or postpone
this step until a later time. If you
choose to index immediately, Recoll
confronts you with several options
(Figure 6). You will want to focus
mainly on word stemming (reduc-
tion to the root lexeme) and choose
the languages to be used. Also, go
to the Unac exceptions field and
define the characters that Recoll
should take into account when in-
dexing. Recoll will ignore all others,
such as special characters, as well
as combinations of basic Latin let-
ters and diacriticals.
The best strategy is to automate Rec-
oll’s index runs in a cron job so that
new or changed data is indexed on a
regular basis. No daemon monitors
the filesystems for changes. Unlike
the other two services, Recoll got
to work immediately, with five in-
dexing jobs quickly completed. On

Figure 5: DocFetcher’s index can be reorganized quickly with the help of a daemon that
detects and logs changes.

34 A D M I N 6 6 W W W. A D M I N - M AGA Z I N E .CO M

Desktop Search EnginesTO O L S

to use several search engines at the
same time that work in similar ways
but differ in the details.
Under Linux, Recoll can be integrated
as the default desktop search en-
gine if so desired. The Gnome Recoll
Search Provider plugin takes effect for
all search actions and returns the re-
sults from the Recoll index. This addi-
tion can make life far easier for users
who manage large volumes of text on
the desktop and constantly need to
search for specific terms.
Additionally, Recoll lets you maintain
“facets,” with which you can create
meaningful subsets of particularly
large match lists. Facets can mean the
media type (text, image, video, email,
etc.), the file creation time, or the
last change date. Before you get too
excited, though, faceting is limited to
these predefined criteria.

Conclusions

An alternative full-text search tool
on the Linux desktop quickly returns
dividends if you work frequently
with very large directories and a
large number of files. The capabili-
ties of the search engines presented
here (Table 2) are usually fit for
the purpose but not always easily

good matches
for the query.
More than just
the search and
index parameters
can be custom-
ized in-depth in
Recoll. The user
settings bring
even more op-
tions that let you
control how the
interface and
match lists are
displayed or that
create links to
external index
files.
The query lan-
guage display
window (Fig-
ure 8), which

always pops up when the cursor
comes to a stop in the input line
while you are working on a search
query, proves to be particularly help-
ful. Recoll tells you which shortcut
operators can be used and gives
you examples of how to use each of
them. Although this tutorial might
not be necessary for Boolean op-
erators, it definitely helps for other
operators, especially if you happen

my setup, the 554 PDF files were
indexed and searchable after just un-
der 2:30 minutes – quite a significant
difference compared with the almost
15 minutes that DocFetcher needed
for the same task.
After completing the index run,
Recoll reports whether it was able
to index all data or had to omit
certain files (e.g., because of miss-
ing utilities). If you retroactively
install the miss-
ing programs, the
skipped files can
then be indexed.
Recoll impresses
with an exem-
plary display of
the search results.
Figure 7 displays
the match list,
which provides a
minimal preview
of some match lo-
cations. Clicking
on the Snippets
link shows you
all match loca-
tions in a docu-
ment. Thanks to
these options,
you can very
quickly access
the results that
are particularly

Figure 6: Initial settings for indexing in Recoll.

Figure 7: Recoll provides a short display of the results (Snippets) and match locations in the document.

35A D M I N 6 6W W W. A D M I N - M AGA Z I N E .CO M

TO O L SDesktop Search Engines

accessible or user
friendly. This is
especially true for
the otherwise pow-
erful Gnome stan-
dard tool, Tracker,
whose feature set
is not fully utilized
by any of the as-
sociated desktop
applications.
The test shows that
both DocFetcher
and Recoll cut a
fine figure on the
Gnome desktop
and meet upscale
requirements. Both
also have unique
selling points that
could tempt some
users. In the case
of DocFetcher, this
might be the mobile version, and in
the case of Recoll, the complex index-
ing and faceting options.
Although search engines in the past
often came with complex search
masks and languages, today they
are usually content to show a simple
input line and a very low-key query
language. This trend is also propa-

gating onto the desktop. Earlier ap-
proaches are now more likely to give
way to a sensible sorting of (large)
results sets, as well as the possibility
of subsequently breaking these sets
down into increasingly smaller sets
by applying smart faceting choices,
to ultimately generate useful match
results without wasting time. n

Info

[1] Tracker: [https:// gnome. pages. gitlab.

 gnome. org/ tracker/]

[2] DocFetcher: [https:// sourceforge. net/

 projects/ docfetcher/]

[3] Recoll: [https:// www. lesbonscomptes.

 com/ recoll/]

[4] Solr: [https:// solr. apache. org]

[5] Regain: [http:// regain. sourceforge. net]

[6] “Tracker 3.0: Where do we go

from here?” by Sam Thurs‑

field: [https:// samthursfield.

 wordpress. com/ 2020/ 11/ 05/

 tracker‑3‑0‑where‑do‑we‑go‑from‑here/]

[7] SPARQL 1.1 Overview: [https:// www. w3.

 org/ TR/ sparql11‑overview/]

[8] Tracker CLI documentation:

[https:// gnome. pages. gitlab. gnome. org/

 tracker/ docs/ commandline/]

[9] Nepomuk:

[https:// nepomuk. semanticdesktop. org]

[10] Tracker Ontology Reference Manual:

[https:// developer‑old. gnome. org/

 ontology/ stable/]

[11] DocFetcher Pro:

[https:// docfetcherpro. com/ features/]

[12] Xapian: [https:// xapian. org]

Author

Harald Jele is a staff member at the University

of Klagenfurt in Austria. In 1993 he came across

Linux by a happy coincidence, and he has been

using it on servers and desktops ever since.

Figure 8: Help for the query language in Recoll shows numerous useful hints.

Table 2: Search Engine Features

Feature Tracker DocFetcher Recoll

Character encoding detection + – –

Search term highlighting + + +

Boolean join operators + + +

Proximity operators – + +

Multilingual word stemming – – +

Faceting search results – – +

Indexing multimedia files + – +

Bindings/ open APIs + – +

Weighting of search terms – + +

Phrase search – + +

Synonym searching – – +

Mobile version – + –

Indexing SQL databases – – +

Desktop integration + – +

Support for multiple operating systems – + +

Wildcard (placeholder) searching – + +

Autocompleting search queries – – +

Time (min) to index 554 PDFs (13GB) 7:05 14:40 2:30

No. of indexing processes 2 1 5

36 A D M I N 6 6 W W W. A D M I N - M AGA Z I N E .CO M

Desktop Search EnginesTO O L S

