Selecting the right search term in query-based
systems for deduplication

Die Wahl des Suchbegriffs in anfragebasierten Systemen zur Erkennung

bibliographischer Dubletten

Sélection de mot de recherche dans les systemes basés sur des requétes en vue de

détecter les doublons bibliographiques

Harald Jele

Essentially three approaches could be identified when choosing a proper search term to

detect bibliographic duplicates. Stop words are excluded in all of them, then (1) just the

first term of an entry will be selected or (2) that term is selected, which produces the

smallest number of hits or finally (3) that term will be used, which has a certain number of

hits below a defined threshold.

These three procedures are compared with each other here. The results derive from series

of measurements done with bibliographic data from the Austrian Central Catalog.

Bei der Wahl eines giinstigen Suchbegriffs zur Erkennung bibliographischer Dubletten sind

im Wesentlichen drei Ansétze erkennbar. Stoppworter werden in allen dreien

ausgeschlossen, anschlieBend wird (1) der erste Begriff eines Eintrags gewiéihlt, der
aufgefunden wird oder es wird (2) jener gewéhlt, der die kleinste Treffermenge hervorruft

oder letztlich (3) findet der Begriff Verwendung, dessen Treffermenge unter einem

definierten Schwellwert liegt.

Diese drei Vorgehensweisen werden hier miteinander verglichen. Die Ergebnisse stammen

aus Messreihen, die mit Titeldaten aus dem Osterreichischen Bibliothekenverbund

durchgefiihrt wurden.

On a pu identifier essentiellement 3 approches dans la procédure de selection d’un terme

susceptible de détecter les doublons bibliographiques. Ces trois approches excluent les mots

vides (stopwords), ensuite (1) on selectionne le premier terme d’une entrée ou bien (2) on
choisit celui pour lequel on obtient le plus petit nombre de résultats ou bien finalement (3)

on prend le terme pour lequel le nombre de résultats se situe sous un seuil défini. Ces trois

procédures sont ici comparés les unes aux autres.

Les résultats sont issus de séries de mesures effectuées sur une base de données

bibliographiques du catalogue de la Bibliotheque nationale autrichienne.

1 Preface

If one tries to classify this article based on current li-
terature, he or she may quickly be tempted to dismiss
the discussed methods as not contemporary any more.
With this brief preface, which provides some references
on relevant literature, it will be shown, that such a fast
judgment is certainly not valid.

When detecting bibliographic duplicates it is intented
in particular not to compare too many entries becau-
se the final calculation of large numbers of duplicates
is rather time consuming. Much more effective, of cour-
se, is any approach that keeps the amount of titles to
be tested very small. On the other hand it has to be
concerned, however, that a smaller amount of selected
titles increases the probability of not recognizing some
duplicates. Thus, in any case of restricting the somehow
limited “search space”, within which the verification of

LIBRES ISSN 1058-6768 Volume 28, Issue 2, September 2018 http://libres.curtin.edu.au 1

duplicates take place, efficiency and reliability with their
necessary requirements are diametrically opposed.

The approach to proceed on the basis of keywords is
one that meets the reality of working with bibliogra-
phic databases. This reality is quite often characterized
by the fact that bibliographic entries (from very diffe-
rent databases), which are locally not available, have to
be integrated into a local system. Thereby, the remo-
te databases are addressed via interfaces (like Z39.50)
and APIs (= Application Programming Interfaces like
REST (=Representational State Transfer) or SOAP
(=Simple Object Access Protocol)).

Therefore, the selected approach must be one, that can
be used in such environments in a functional and effec-
tive way (see Schneider 1999). Such is the method of
automatically loading the titles to be checked by means
of a proper selected keyword.

As an alternative to a keyword-based approach cur-
rent literature presents mainly methods such as SNM
(=Sorted Neighborhood Method) (Herndndez & Stol-
fo 1995 and Yan u.a. 2007) or the “Blocking Method”
(Draisbach & Naumann 2009). Thereby small strings
are extracted from the data (e.g. substrings from the
author- and title-information), joined together to a new
string and sorted alphanumerically. The so formed and
sorted keys (“Sorting keys”) are used in a further way
to search for similar entries in their neighborhood using
so-called “search windows” with a certain size (num-
ber of entries to be considered). The algorithms applied
for searching in a certain width are called “Windowing”
(Hernandez & Stolfo 1995 as well as Herndndez & Stol-
fo 1998) and “Blocking” (Ananthakrishna etal. 2002,
Baxter et al. 2003 and Bilenko et al. 2006).

It is only possible to access the sorting keys if they are
available in the remote database, or if they are created
locally from the total amount of bibliographic entries,
which is rarely the case in practice. Furthermore, exter-
nal production of sorting keys is impractical and inef-
ficient because the requested databases usually do not
contain static information but rather have a steadily in-
creasing number of titles that must be considered. The
method to create and keep the whole sorting keys for the
duration of the processes in the main memory, which is
proposed in Draisbach and Naumann (cf. 2009, p.2),
disregards the fact that even an average bibliographic
database keeps an amount of title entries which is almost
too big for such an approach. The keys must therefore
be stored in the database files. These methods, although
they are judged as state-of-the-art, can’t be considered
for a practical application nowadays, when data is acces-
sed remotely. In case of a local merge process in batch
mode, however, they might be quite relevant.

Other approaches which are frequently discussed in cur-
rent literature are based on hashing methods. For text-

based applications particularly implementations of inde-
xing using “Locality-sensitive hashing” (LSH) seem to
be promising, although there are no relevant results pu-
blished for indexing bibliographic data. The basis of a
LSH-implementation is typically formed by a combinati-
on (addition) of simple kept hashes. Each collision of two
or more values is seen as a similarity between the affec-
ted records. Under the most favorable conditions hash
values are formed in a way that there are no singular
values, if it can be assumed that the total amount inclu-
des duplicates (Paulevéa etal. 2010 and Stein & Pott-
hast 2006). The relevance of such an approach has to be
seen under the same conditions as the already mentio-
ned approach using sorting keys: In practical use, such
an approach can always be successful, if it is implemen-
ted in a local (and not in a remote) system. Otherwise,
in each of the remote bibliographic databases these hash
values have to be formed and kept accessible.

2 Introduction

In the field of bibliographic title deduplication query-
based systems are characterized by the specific circum-
stance that a second query is automatically produced
due to the result list of a first one. The purpose which is
intended in the second query is to discover all duplicate
title information of a database to those titles that are
included in the result list of the first query.

The actual (first) query, respectively, the resulting title
set, could be done on the one hand by a particular user
of an online system. On the other hand, these can be
made when merging different databases by a sequential
processing of bibliographic data in batch mode.

When the result set is achieved by a user, the goal of
such an approach may be a duplicate-free title display
as well as an enhanced display of additional holding in-
formation which is not included in the first result set,
but derives from the second. This might be essential for
further user actions in a local library system like orde-
ring titles and for interlibrary loan.

Another application of such an approach can be the ca-
taloging of works in a library system. In this case, pos-
sible duplicates will be reported to the cataloger while
retrieving or saving a title record. We won’t follow this
use here because of it’s specific implications. Schneider
(1999) can be seen as an example of a practical app-
lication for deduplication in the process of cataloging.
He developed the system “ZACK” which is still quite
widely used in Germany.

In Figure 1, the further process, which will be discussed
here, is illustrated schematically: A user produces due to
its query ¢I a result list {m1} which should be displayed
free of duplicates. The list of titles {m1} can therefore be
either deduplicated by an adequate detection method or

LIBRES ISSN 1058-6768 Volume 23, Issue 2, September 2013 http://libres.curtin.edu.au 2

m1 m3

q1 q2

Figure 1: Scheme of the query system

can be furthermore expanded by those copies that are
stored in the database with the amount of {m2} but were
not recognized by query ¢1. Thereby, any record of the
result list {m1} is checked by ¢2 against {m2} without
any user intervention and a set {m3} is formed, which
is enriched with the copies (i.e. the items and holdings
information) of the duplicate titles from {m2}. Such a
scenario can be implemented — as already mentioned —
in an online catalog which offers local ordering functi-
ons to registered users or includes non mediated (fully
automated) interlibrary loan orders.

In most cases, such an approach for the automated com-
parison of several bibliographic databases, is implemen-
ted by a batch process. Doing so, the bibliographic in-
formation of the smaller data amount {m1} will be pro-
cessed sequentially and compared with the titles from
the larger amount {m2}. Every single title from {m1}
must be analyzed and, subsequently, those terms, that
can be used for creating appropriate queries ¢2 against
the whole title information {m2} must be extracted. The
result list {m3} of query ¢2 is used instead of the former
{m2} for the successional check for duplicates.

In both approaches (in the online and in batch mode),
the major challenge is the selection of an appropriate
search term for the second query ¢2.

3 Usual procedures

To form the request, not all entries of a structured bi-
bliographic data record are used. Usually, only the cate-
gories (tags) for the author information, the corporate
names and the categories that contain the whole title
information will be considered. A record without any
information in at least one of these tags is ignored for
the next steps. In case that content is available in one of
these categories, they will be checked for their further
practicability. In the first place, terms or entries, that
are marked as stop words, are not usable for a query.

Three approaches can be found in the relevant literature
as well as in the accessible routines for selecting the right
query term:

1. the first term, which is not a stop word is used as the
query term,

2. that term, which is not a stop word and has the smal-
lest number of hits, is used as the query term,

3. the first term, which is not a stop word and has a
certain number of hits below a defined threshold, is
used as the query term.

These three approaches to determine a proper request
term will be compared, and their advantages and dis-
advantages will be identified. The evaluation of the
aspects, which has to be considered, mainly takes place
by measuring the substantial values, that have been rai-
sed on concrete and real, existing bibliographic records,
as they can be found in an average-sized Austrian uni-
versity library. With this fact, namely, that no “artifi-
cial” or special selected data is used for measuring, the
relevance of the results should be illustrated in a better
way than more theoretical values could do.

All results refer to bibliographic data of monographs
(books). Basically these are also applicable to bibliogra-
phic data of articles within journals or anthologies.

4 Testing method

The entire bibliographic data of the University Library
of Klagenfurt, which is stored as digital records in MAB 2
format and can be accessed online, are approximately
700.000 title records. They were completely exported
from the catalog.

Subsequently, those titles that represent not monogra-
phic works (this includes those, that have been publis-
hed within a series or several volumes) were merged to-
gether in the way, that the information on author, cor-
porate names and title were taken from the higher-level
records to the lower ones. This has been performed on-
ly in the case, that no such information were available
in the concerned categories of the “child records” (from
the lower level). The merging procedure should ensure,
that a minimum of bibliographic records are concerned
by the fact, that they must be ignored due to a lack of
entries.

Afterwords, the entries of the parent records were remo-
ved from {m1} and {m2} in the case that the content of
their categories could be inserted into the child record.
The number of categories, that were used for the further
check on duplicates, are those mentioned in Jele (2009):
to form the person’s name, the contents from the MAB 2
tags 100, 100b, 100c, 100f and 359 were taken; for the
corporate names the tags 200, 200b and 200c; for the
edition tag 403; for the place of publication 410 and
410a; for the publisher the tags 412 and 412a; for the
year of publication 425a, 425b and 425c; for the pagi-

LIBRES ISSN 1058-6768 Volume 23, Issue 2, September 2013 http://libres.curtin.edu.au 3

user
query/
batch run

abort =
read
content
available?
N
Y further
choose term catagory
available?

further
term avail-
able?

is term a
stop word?

Figure 2: The logic of term discovery in a flowchart. The
horizontal line indicates the transition to the following rou-
tines.

nation 433, 433a and 433b and for the ISBN the tags
540a, 540b and 540.

The result of the merged title records was loaded into
a MySQL database on a simple standard desktop compu-
ter. Ubuntu Linux in version 11.04 was the used ope-
rating system. All database queries and deduplication
methods have been implemented in the programming
language Perl. The analysis of the results was perfor-
med using the free statistical software R and the added
package ggplot2 (see also Wickham (2009)). For the
handling and visualization of large datasets, the recom-
mendations in Unwin, Theus & Hofmann (2006) were
considered.

To keep in mind is the fact, that all the figures given here
should not be interpreted as absolute values, but only in
their relation. The features and the capability of com-
mercial desktop computers change substantially every
few months. Therefore it can be assumed, that a short
time after the publication of this paper, already signi-
ficantly better results can be achieved with the current
hardware (that means essentially a quite shorter compu-
tation time). Nevertheless, the relationship between the
printed results should remain valid, even under changing
circumstances.

The following measurements were taken with all three
approaches:

e the duration time, required for the determination of
the potential duplicates,

e the duration time, that elapses until the appropriate
query term is found,

e the amount of result data records, caused by the nee-
ded requests,

e the number of categories (tags) with content, which
were provided in each title record,

e and the number of categories, which had to be ana-
lyzed to identify the appropriate query term.

The generated amount of bibliographic records has been
tested against itself. This means, corresponding to the
above illustration [T, that {m1} is equal to {m2}.

Figure 2] shows the preliminary analysis of a bibliogra-
phic data record by a flow chart:

After having verified, that a query result was fetched
by the current request (an amount {m1} is present), the
first record from the result set will be read. In additi-
on, this record will be analyzed according to its content
in the appropriate categories, which are listed above. If
any content is available, the first term of the first cate-
gory, that has entries (i.e. personal or corporate names
and title entries from the bibliographic record), will be
taken. As long as the first term is not a stop word, it is
used for further processing. It depends on the currently
chosen approach, whether this term is used for the fur-
ther query or not. In case, that the particular term is a
stop word, successively the next term will be taken and
checked in the same way.

Is there finally not a single term present, that was qua-
lified upon this logic, the record will be ignored and the
next record will be read and analyzed.

In all cases the fields where used in this order:
1. person’s name,

2. corporate name and

3. title field.

4.1 The first approach

The decision to use the first term, which is not a stop
word, from the considered categories as a query term
for the second request provides the advantages, that this
approach

e is easy and fast to implement, because no very com-
plex or in particular difficult tests have to be done on
the single records

e and it usually leads to a fast response of the system.

LIBRES ISSN 1058-6768 Volume 23, Issue 2, September 20183 hitp://libres.curtin.edu.au 4

l _

choose term |«

further
catagory
available?

further
term avail-
able?

is term a
stop word?

choose
term for

query
‘ L

run query

v

calculate
duplicates

measuring: t, QF, hits

Figure 3: Flow chart from the first approach: The first term,
which is not a stop word, is used as the query term.

For checking a small amount of data (< 10.000 data re-
cords) as well as in environments, where no large quanti-
ties are to be deduplicated and no very large result sets
are expected, this approach is certainly an appropriate
one.

To note is the fact, that a database query is usually much
more time consuming than the calculation of duplicates
afterwards. Therefore it can be assumed, if little time
is put into finding an appropriate request term, in the
normal case, a very short response time can be observed
in such a system.

Under the specific circumstances, which were already
mentioned above, namely, if the bibliographic data base
on the amount of an average Austrian university libra-
ry, the major disadvantage in the implementation and
launch of this approach appears quickly:

e the amount of resulting datasets can be occasionally
very high, because each term can be used for the re-
quest, as long as the term is not a stop word, and it
seems to the average, that many terms exist, which
quickly lead to more than 1.000 hits.

For a system, that handles the display of results of onli-
ne queries, this circumstance may be less relevant than
for the deduplication of bibliographic records in a batch
process: The expectable high amount of the resulting
records must (afterwords) still be analyzed for the cal-
culation of title duplicates. That is, that at the end of
such an operation a particularly large amount of data is
to be expected. Processing and analyzing the result as
a following step can be extensive by itself.

Figure B shows the logic of this very simple kept ap-
proach in a flow chart: Once the first term, which is not

Zeitbedar (5)

‘Ergebisdatensalz Ergobnisdatensalz

Figure 4: Approach 1: Measuring the time duration per re-
cord to identify the query term in a batch process.

The request is made by the first term, which is not a stop
word. To the left, the representation of the values is printed
in a scatter plot, right in a line chart.

Legend: x-axis = number of result sets, y-axis = time dura-
tion.

a stop word, is found, it will be used as a query term,
and the request will be executed. In the figure also the
two checkpoints within the logic, which were used for the
measurement in detail (i. e.: the duration per record; the
results are shown in Figure M), are noted.

Subsequently, the above mentioned advantages and di-
sadvantages were to review. For the measurement, a
subset of 10.000 bibliographic data records were ex-
tracted and checked against the total amount.

The resulting total time was 6.245,762s
(~1h 45min). This time duration already includes
the calculation of the duplicates. The number of result
records was 1.049.057.

Figure [shows the process of the time required per out-
put record. The scatter plot (on the left side in Figu-
re[) clearly shows that the measured values are not dis-
tributed continuously between the maximum and mini-
mum characteristics. Rather, a significant accumulation
of three values can be observed: 0s, 0.35s and 0.8s.
These values derive from the fact, that the query term
is formed from the entries, that appear in one of three
categories.

Can the term be formed out of the person’s name (= the
first category, which is used), it will be used for the re-
quest. In this case the measurement reaches a value ve-
ry close to zero seconds. In addition, if the first term
of the person’s name, according to the shown logic in
Figure [3] is used for a request (this is usually the sur-
name), the resulting time duration is close to the mea-
surement precision (this with “high resolution” to three
decimal). Otherwise, the resulting value is typically lo-
cated around 0.03s.

Do the contents of the categories for the person’s na-
me not lead to any proper query term, the entries of
the corporate’s name are checked. This additional rerun
does not causes, according to the appropriate measure-
ment, a continuous increase in the time duration. Alt-
hough the record has been fully stored in memory, and

LIBRES ISSN 1058-6768 Volume 23, Issue 2, September 2013 http://libres.curtin.edu.au)

Ergoiscatonsa

Ergebnisdatensatz

Figure 5: Approach 1: The number of result records genera-
ted per request.

{m1} = 10.000, {m2} = 400.000. QF = Number of cate-
gories (tags) with useful content, available to form the query
term (max = 3, min = 1).

Legend: x-axis = number of result sets, y-axis = number of
hits, Anz. QF = number of query fields.

no new database query must be executed, the effort in
time increases rather erratically. Rerunning the whole
logical sequence to determine the query term, the cer-
tain values appear, which are shown in Figure [as an
accumulation of the results by the value of 0.35s.

The same effect, namely, the non continuous increase
in the time required, is achieved, even if the procedure
can’t form any query term from the entries for corporate
names. It is then to acquire the term from the contents of
the corresponding title information. The effort, connec-
ted with this very last program step, finally causes a
doubling of 0.35s (~0.4s) to 0.8s.

In this context, the analysis of the time consumation per
bibliographic record can be interesting, when the records
are processed in a batch run: Requests that have be done
once or more times by using the same query terms will be
kept in the cache of the database. This fact causes that,
later on, the same query can be dealt with significantly
shorter response times. This circumstance is shown in
Figure @ but can only be identified by overlaying the
individual values by an appropriate smoothing function.

This means for each series of measurements, which are
compared to each other, that prior to the start of each
iteration the database cache (in this case the query ca-
che) has to be cleared. Otherwise, subsequent measu-
rements would benefit from previous and lead to false
results. The distortion of the results, based on the total
flow, is hereby relatively low. In case that the same se-
quential batch run is repeated, the second run requires
6.149,775s over 6.245,762s from the first run. The
difference is about 2min at a cycle time of 1h 45min
by processing 10.000 records. When processing the to-
tal amount of approximately 400.000 title records, the
difference between the first and the second run is signifi-
cantly lower, because the maximum of the available and
finally deployable query cache can not be increased to a
infinite value, belonging to the same hardware.

Zeitvedard (s)

Anzahl der Ergebnisdatensatze

Anzah der Datensatze Anzahl dor Datensétze

Figure 6: Approach 1: The number of resulting data sets, as
well as the time needed for deduplication, depending on the
number of records to be checked.

The values shown correspond to those from Table [l
Legend: x-axis = number of records, y-axis (left) = num-
ber of resulting data sets, y-axis (right) = time needed for
deduplication.

Besides measuring the time duration for each record,
that passes the process to determine a proper query
term, counting the number of result records is relevant.
Already mentioned was the fact, that the implementa-
tion of the first approach, using the first term for the
request which is not a stop word, occasionally genera-
tes a large amount of resulting data sets, which subse-
quently have to be checked on possible duplicates. The
advantage, that this method very quickly leads to the
appropriate query term, in such a case would turn into
the disadvantage of a higher time consuming calculati-
on, when detecting the bibliographic duplicates.

The already mentioned total number of result sets
(1.049.057), which are generated by the sequential pro-
cess, indicates this fact. Since this fact (of a possibly
high number of result records), seen as an individual ca-
se (per single record and not in an overall process), did
not become obvious in the practical application in an
online system, it was investigated here in detail.

Figure Bl shows the individual values in a scatter plot on
the left. Regarding to the number of categories, that are
available to form the query term, the measuring points
were shown in different colors: blue for the presence of
three, green for two and red for just one category.

This figure clearly shows, that the presence of three ca-
tegories is also advantageous when the query term can
be formed out of the very first entry, which is not a stop
word. However, are there only two or is there even on-
ly one category present, this circumstance, based on the
single request, leads to a much larger number of hits (re-
sult sets). This can only be recognized by overlaying the
individual values by a appropriate smoothing function.
Figure Bl shows on the right side only those values which
lead to requests with a result < 2.000. This figure shows
also the circumstance, that the vast majority of requests
leads to results which are significantly smaller than 500.
This may be considered as a first indication for a useful
value (< 500) when introducing a threshold.

LIBRES ISSN 1058-6768 Volume 23, Issue 2, September 20183 hitp://libres.curtin.edu.au 6

Zeitbedarf (s)

L LR
.

A I
Anzahl der léeren Felder

Figure 7: Approach 1: The time required for determining the
query term per record, regarding the number of empty cate-
gories in the bibliographic record.

{m1} = 10.000, {m2} = 400.000. QF = Number of cate-
gories (tags) with useful content, available to form the query
term (max = 3, min = 1).

Legend: x-axis = number of empty fields, y-axis = time re-
quired, Anz. QF = number of query fields.

It has already been shown in the analysis of Figure [4]
that the number of those categories, which can be used
to identify the query term, is a considerable degree for
the time duration that is needed. The fact, that the
time needed does not have a continuous but rather a
discrete increase, shows also, that the number of terms,
which are included in one category, has a far less effect
on finding the request term, then the fact how many
categories must be evaluated.

Figure [[shows the relationship between the time requi-
red for producing the request term per record and the
number of empty categories in the belonging title re-
cords. By analyzing the illustration, it can be seen, that
from ten categories which are maximal available in the
merged bibliographic data sets, up to eight entries can
be without any content. For the evaluation the number
of useful categories (shown in Figure [[1 by the factor QF
(Queryfields)) is actually of interest.

Nevertheless, here is also shown, that the effort to find a
usable category for determining the query term is direct-
ly related to the number of categories which are empty.
The analysis of the results, that were given in the pre-
vious figures do not suggest this fact yet. From the al-
ready shown figures, only the relationship between time
consumation and the existing number of actually usable
categories can be concluded. When processing the bi-
bliographic data it has to be considered, that the fact of

Bibl. Records Result Sets Time (s)

500 47881 335.450
1000 103754 418.308
5000 581753 2845.639

10000 1049057 6245.762
25000 2407018 14873.324
50000 4617445 28967.480

Table 1: Approach 1: The number of result data sets, as well
as the time needed for deduplication in dependence on the
number of records to be checked.

empty categories belong mainly to those, that actually
would be needed for the next steps.

To estimate the number of resulting data sets as a func-
tion of the number of bibiliographic records a series of
measurements has been formed on this approach which
values are shown in Table[Il The regarding results show
a linear relationship between the amount of bibliogra-
phic records to be checked in {m1} and the resulting
amount in {m3}: Doubling the amount {m1} produces a
doubling of the result sets of {m3}. The same situation
applies to the resulting time duration, which is finally
required for deduplication. Here, too, the double amount
of {m1} leads to a doubling of the time spent. This re-
lationship is shown in Figure

In summary, the measurements to the first approach
clearly show, that a higher number of available and usa-
ble categories leads to a lower value of needed time to
determine the query term. This fact is quite expectable.
Though, it was rather unexpected, that the effort per
record takes a size, which can be determined in advan-
ce of deduplication, because it directly depends on the
number of existing categories.

The highest density of results is achieved on the basis of
query terms, that have a number of hits, which is smaller
than 500. By introducing thresholds (see approach 3),
this value may already be seen as a useful reference.
The disadvantage of the high amount of result records
is clearly demonstrated; although, this fact can only be
shown in the following comparison with the results from
the second and third approach.

4.2 The second approach

In the case of processing a sequential batchjob to detect
bibliographic duplicates — contrary to the deduplicati-
on of result records in online systems — large result sets
are always to be expected, even when matching smaller
quantities (< 10.000 records). The optimal approach to
minimize the result is to use that query term for the re-
quest, which is not a stop word, and which number of
hits per single record is the smallest.

One of the major disadvantages of this approach is that
the query term can only be determined by a much mo-
re elaborated check: All terms which are not stop words

LIBRES ISSN 1058-6768 Volume 23, Issue 2, September 2013 http://libres.curtin.edu.au 7

Y further
catagory

available?
further
term avail-

able?

choose term

measuring:
t, QF, hits Y
Y
further f N
: Y is term a
ter;T) Iae‘f?all-
N
Y further
catagory
available?

N
‘ take smallest hit ‘

- !

calculate
duplicates

Figure 8: Flow chart from the second approach: That term
is used as the query term, which is not a stop word and the
number of hits is the smallest.

must be taken from every single record, out of 1 -3 cate-
gories, and for every term the particular amount of hits
must be counted. Afterwords, the term with the smal-
lest number of hits must be taken and the request has
to be done.

Under the already mentioned conditions, namely that a
subset of 10.000 bibliographic records (as {m1}) was ex-
tracted of the total amount from 400.000 datasets and
checked for duplicates within the whole amount {m3},
a total duration of 26.815,551s (~7h 27min) could
be measured. Thereby 210.661 resulting records were
produced. This implies about a fourfold increase in the
amount of time duration and simultaneously a fifth of
the amount of result sets compared with the first ap-
proach. Therefore, the minimization of results in any
case has to be discussed, when the whole process ap-
pears to slow down in such a significant matter. In all
cases, in which large amounts of data need to be checked
for bibliographic duplicates, this method can be seen as
a reasonable one, because the following analysis of the
results are easier to realize and less complex.

Figure { illustrates the logic to find the proper query
term in a flow chart: All terms are successively extrac-
ted from the appropriate categories (tags) and will be
further checked on stop words. Then the current number
of hits is counted (in case they are used as a query term).
Finally that term is chosen for the request, which is not

Zeitbedart (s)

S L L L

Ergebnisdatensatz

YalgEaEeEe e
Figure 9: Approach 2: Measuring the time duration per re-
cord for determining the query term in a batch process.
The request is made by that term which is not a stop word
and produces the smallest number of hits. On the left side
the illustration of the values in a scatter plot, right as a line
graph.

Legend: x-axis = resulting data set, y-axis = time duration.

a stop word, and which produces the smallest number
of hits by the request. For each record this logic must
be run, often for a hugh quantity of terms (namely all,
extracted from the categories, which are used to form
the query term). Furthermore, each run includes two
database queries (checking for stop words and counting
hits). Therefore it has to be expected that the appea-
rance of large amounts of terms within a bibliographic
record leads to a considerable need of time duration.

When looking at the individual results, which are shown
in Figure @ one can note, that the range from 0 to 5s
is the most densely occupied and that “not only a few”
individual results are located above this range. It can be
seen as a conclusion of the batch run, that from analy-
zing the individual results the overall result can not be
predicted (as it is in the first approach). The number
of values, above shown in Figure [0 above 5s is quite
remarkable. Finally, the approach to use the term with
the smallest number of hits for a query leads to (only)
a fourfold increase in the time required.

It has to be decided in each individual case, whether this
method can be used for an appropriate integration into
an online system. The specific fact should be considered
in a particular way, that online systems, currently based
on the technology of search engines, are optimized to
react with the shortest possible response times. Under
these circumstances it may therefore seem even strange
to again extent the optimized response time with this
approach, which optimizes the minimum of achievable
result sets.

Contrary to the results of approach 1, the representati-
on of hits per result record in approach 2 shows, that
the number of hits can be significantly minimized. The
highest density of hits in Figure [l (corresponding to the
approach 1) is located between the values 0 and 500, but
with approach 2 the highest density is settled in a much
lower range, between 0 and 50. Figure shows, that

LIBRES ISSN 1058-6768 Volume 23, Issue 2, September 20183 hitp://libres.curtin.edu.au 8

Anz. QF

—0

=

Trefteranzahl

50000 100000
Ergebnisdatensatz

Figure 10: Approach 2: The number of result records gene-
rated per request.

{m1} = 10.000, {m2} = 400.000. QF = Number of cate-
gories (tags) with useful content, available to form the query
term (max = 3, min = 1).

Legend: x-axis = number of result sets, y-axis = number of
hits, Anz. QF = number of query fields.

for the case in which 2 or all 3 categories contain usable
entries, the number of result sets per query is very low
(sometimes < 10). The overall result clearly expresses
this fact: The total number of result sets shrinks to one
fifth compared with the first approach.

Figure [[0 shows for the individual case the (expectable)
fact, that the presence of fewer entries for determining
the request term with asmaller amounts of hits also leads
to the fact that fewer terms are present. Contrary to the
results achieved with quantities of <50 result records,
in the case of only one usable catagory (for forming the
request term), obviously values that are common in Fi-
gure vary around the number of 250. This can be
discovered by overlaying the individual results in the
scatter plot by an appropriate smoothing function.

The fact, that a small number of usable categories leads
to higher numbers of hits per request, is also evident as
the circumstance, that this further leads to an increased
amount of time. Figure [[1] shows the relationship bet-
ween the number of empty data fields, present in the
individual data records, and the time required to deter-
mine the query term as a function of the number of non
usable categories. The analysis of the relevant informa-
tion in the scatter plot is supported by a color coding: A
higher number of empty fields also results a (expectable)
lower number of usable categories and finally leads to a
smaller amount of time to determine the query term.
Described conversely, a larger amount of usable catego-

. % sean = e

. Anz. QF

Zeitbedarf (s)

-

S —eT EMEm MmcE

o Tem i ——

T T S TN W S5 80 8 W

BB TS ES e PR AL
AR U B 1 eemem e . s
- e =
- ———— .

2% w
aecemm

1 1 |
o 5 - a

Anzahl der I_eeren Felder

Figure 11: Approach 2: The time required for determining
the query term per record, regarding the number of empty
categories in the bibliographic record.

{m1} = 10.000, {m2} = 400.000. QF = Number of cate-
gories (tags) with useful content, available to form the query
term (max = 3, min = 1).

Legend: x-axis = number of empty fields, y-axis = time re-
quired, Anz. QF = number of query fields.

ries produces a higher amount of time needed, but it
leads finally, as previously described, to a significantly
reduced number of result data sets. This fact means for
the individual case, that distinctably smaller result sets
can only be achieved by much higher time consuming.
When considering the whole process, this does not have
such a big effect, because a much smaller number of hits
causes also a remarkable reduction in the time required
to calculate and evaluate the bibliographic duplicates.

In summary, the second approach illustrates, that the
time duration for a single data record can be rather
considerable, so this approach will probably apply in a
batch run only if the number of result records must be
very small for further reasons.

The decision, whether this approach can also be used
in an online system, depends on the total, “felt” time,
which is added to the normal behavior of the system,
optimized for a very quick response. In individual cases,
the approach 2 can be perceived as a far more distur-
bing. The overall behavior to a potential user can only
be assessed through specific observation.

4.3 The third approach

The advantages and disadvantages, that arise from the
two previously described approaches, can be benefici-
al supplemented by a quasi-compromise to a third ap-

LIBRES ISSN 1058-6768 Volume 23, Issue 2, September 2013 http://libres.curtin.edu.au 9

choose term

further
term avail-
able?

measuring:
t, QF, hits

further
term avail-
able?

choose -
take term with
t‘?{&'érff,” ‘ smallest hits ‘
£ _» #
calculate
duplicates

Figure 12: Flow chart from the third approach: That term
is used as a query term which is not a stop word and its
number of hits is below a defined threshold.

proach: The advantage to find an appropriate query
term very quickly, without considering in any case all
potential entries (=time optimization), can be combi-
ned with the advantage, that not every term comes into
selection, which keeps the number of resulting data sets
rather small (= optimization of the amount). By intro-
ducing a threshold for the maximum number of results
per query term, the first term with a number of results
below this threshold is used for the proper query term —
without checking the other, or even all, terms. Such an
approach provides a relatively fast response time (close
to that from approach 1) and, at the same time, a rela-
tively small total number of hits (in the best case very
close to that of approach 2).

Therefore, in approach 3, the first term, which has a
certain number of hits below the defined threshold (and
which is not a stop word) is used as the query term for
the deduplication afterwards.

The high density of result values in the range from 0 to
500, which can be seen in FigureBl had already guessed
a potential threshold value, which may be somewhere
below 500. For example, 100 is stated as an effective
threshold i. a. in Lohrum (1999, p.3). The given reason
is, that this amount of result sets can be checked quickly
for bibliographic duplicates, and larger numbers of hits
would be much more time consuming to process. Regar-
ding to the recent results, it can be shown through the
different measurements and the interpretation of their
representation in Figure[d] that a possibly necessary, ad-
ditional database query to determine the request term

Treshold Time Amount
2 26815.551 210661
25 9022.699 238164
50 7696.171 262276
100 6620.200 305345
200 6020.932 376623
300 5723.736 466029
400 5653.442 509084
500 5880.583 692117
600 5924.068 720809
700 5921.980 790049
800 5953.812 825637
900 6183.725 952801
1000 6217.125 958996

Table 2: Approach 3: Size of the threshold, measured time
and total number of hits.

is much more time consuming than the deduplication of
a larger result set.

Dealing with the third approach it is to be tested, if a
particularly effective threshold can be determined em-
pirically and to show, what other implications can be
observed when introducing this method.

Figure [I2] shows the logic used, when the routines are
seeking for the query term: From the first available ca-
tegory, the first term, that is not a stop word, is used,
and the number of hits will be counted in a request. If
the amount is less than the threshold, the term in use is
the proper query term and the achieved result set con-
tains the bibliographic data, which will be deduplicated
by the following process. Is the number of hits above the
threshold or equal to it, the programmed logic looks for
a further term.

Finally, is there no appropriate query term with a cer-
tain number of hits below the threshold, the term with
the smallest amount of result sets is used for the further
request. The lower the threshold is defined, the more of-
ten this will take place. That is, with a minimization of
the threshold value, the results of this procedure beco-
me more congruent to those of the second approach and
increasing the value brings the results closer to those of
the first approach.

To gain an overview of the behavior of such a pro-
cess, thirteen different thresholds in the range of 2
to 1.000 were defined. Subsequently, the amount of
10.000 bibliographic records were checked against the
total amount of 400.000 in a batch run for duplicates.
In each run the entire duration was measured. The ana-
lysis for the measurement of the individual results (that
means: the certain number of hits per single query term,
the time required for the determination of the request
term and the number of available, qualified categories)
did not produce any new information additional to tho-
se of approach 1 and 2. Here, the achieved values are
not documented here in detail and separately for each
threshold.

LIBRES ISSN 1058-6768 Volume 23, Issue 2, September 20183 hitp://libres.curtin.edu.au 10

Table Rlshows the measured values for the time required
and the total numbers of hits, which were identified with
the used threshold values in the range from 2 to 1.000.

Figure [[3] illustrates this relationship by a graph:

Is the threshold value defined below the size of 200, the
amount of needed time to find the request term prima-
rily rises continuously (see Figure [[3]left). When falling
below the value of 100, time and effort on complexity
rise very steeply (almost exponentially).

Will the threshold be increased gradually from the in-
itial value (here: 200) in single steps of 100, at first a
slight decrease in the amount of time needed appears,
which rises slowly again from the threshold of 400.

This specific behavior is motivated by the fact, that mi-
nimizing the threshold means, that ultimately all of the
terms from the qualified categories have to be checked
to see, if they result in a request with a number of hits,
which is below the defined threshold. The time requi-
red for this check appears to be significantly larger than
those savings, which occurs when very small numbers of
result sets must be deduplicated. The slightly and con-
tinuous increase in the time required above a threshold
value of 400 is due to the fact that, starting from this va-
lue, the time required for determining the request term
is stagnating, but at the same time the amount of result
sets, which must be deduplicated, continuously increa-
ses (see Figure [[3 right).

This behavior is congruent with the assumption in their
effects, which was derived from the scatter plot of Fi-
gure B} Even since the first term, which can be used
for a request, leads in the vast majority of bibliographic
records to a smaller number of hits than 500, hardly bi-
bliographic records can be found, which produce a cer-
tain number of hits “above” the threshold of 400 with
another term, which must be checked.

Figure (right) shows the almost linear relationship
between the size of the threshold and the amount of re-
sult records. In case that the amount of result data sets
keeps in further consequence (if this amount will be op-
timized for example) a major role, a value between 100
and 200 may be well regarded as practical. This can
be further relevant in case of deduplicating large data
amounts in a batch run. Than the fact is to be conside-
red, that only the increase of the threshold from 100 to
200 already leads to an enlargement in the total num-
ber of hits by 24 %, although the involved time duration
remains approximately the same.

On the other hand, in case of an deduplication of query
results in an online system, a faster response time can
be reached with a threshold of 400, when it can be as-
sumed, that deduplication by computing (calculating)
power is much faster than any further, possibly neces-
sary database queries for determining the better query
term with less results.

Zeitbedar (s)
Anzahl dor Ergebnisdatensitzo

4

Schwellwert - : Schwelwert

Figure 13: Approach 3: The total time required for iden-
tifying bibliographic duplicates depending on the threshold
(=left illustration).

The number of produced result data sets, depending on the
threshold for identifying bibliographic duplicates (= right il-
lustration). {m1} = 10.000, {m2} = 400.000.

Legend: x-axis = threshold, y-axis (left) = time required,
y-axis (right) = number of result records.

5 Summary

The pros and cons of each approach, cited in the text,
could be essentially confirmed.

In the first approach the advantage appears obviously,
that the choice to accept the first term, which is not a
stop word, for the query term may represent a method,
that is necessarily qualified for an integration into an on-
line system. Particularly, this approach is appropriate, if
the relevant online system has been optimized for short
response times. On the other hand, for deduplication in
a batch process, the disadvantage of this approach ap-
pears clearly: The large amount of result sets, which are
caused by the query term, produces a significant effort
in the further process to evaluate the duplicates.

For the batch process, approach 2 is always appropria-
te, when there is no big time pressure on the procedure
to achieve the results, and if the amount of bibliogra-
phic records, which has to be deduplicated, is not very
large. By identifying that request term, which achieves
the least amount of hits, a much larger time duration
occurs (about a fourfold increase compared to the first
approach), but at the same time the number of hits is
reduced to one-fifth. For an integration into an online
system, the implementation of this approach may lead
to an unwanted slowdown of the overall system.

The third approach, which can be seen as a compromise
between the two previously mentioned, may be intere-
sting as well for a batch process as for an integration into
an online system. When choosing an adequate threshold,
it has to be considered, that either short response times
(by a larger threshold) or low numbers of resulting da-
ta sets (with a smaller threshold) can be achieved. In
this case, the fact, which is shown in Figure [I3] on the
left, might be interesting: By increasing the threshold
gradually, a slight decrease in the time required can be

LIBRES ISSN 1058-6768 Volume 23, Issue 2, September 2013 http://libres.curtin.edu.au 11

observed between the values of 200 and 400 and then
an equally light, but very steady rise appears.

This is due to the fact, that in typical environments of
bibliographic data, such as those which is used here, the
vast majority of terms, that can be used for a request,
cause significantly less than 400 results (see Figure [).
From this treshold value, the effort, to identify the que-
ry term through multiple requests, can be omitted: The
query term, discovered in the first or at least the se-
cond attempt, already fulfills the requirements and can
be used.

For the use in the discussed approaches and measure-
ments, 200 has shown as an appropriate value for both,
the integration into an online system and for the batch
process.

Decreasing the threshold to < 100, has shown, that the
actual benefit, to achieve lower numbers of result sets,
became unimportant and was rather detrimental, be-
cause the time required to detect a query term rapidly
rised.

After all, there are some open questions. For example it
is still not veryfied whether it is better to start with the
person’s name, the title field or the corporate name.

6 References

Ananthakrishna, Rohit; Chaudhuri, Surajit & Ganti,
Venkatesh (2002): Eliminating fuzzy duplicates in da-
ta warehouses. In: Proceedings of the 28th internatio-
nal conference on Very Large Data Bases. VLDB 02,
p. 586 -597.

Baxter, Rohan; Christen, Peter & Churches, Tim
(2003): A Comparison of Fast Blocking Methods for
Record Linkage. In: SIGKDD Workshop on Data
Cleaning, Record Linkage and Object Consolidation,
Washington DC.

Bilenko, Mikhail; Kamath, Beena & Mooney, Raymond
(2006): Adaptive Blocking: Learning to Scale Up Re-
cord Linkage. In: Sixth International Conference on
Data Mining. ICDM 06, p.87-96.

Online:
http://dx.doi.org/10.1109/ICDM.2006.13

Draisbach, Uwe & Naumann, Felix (2009): A compa-
rison and generalization of blocking and windowing
algorithms for duplicate dedection. In: Proceedings of
the International Workshop on Quality in Databases,
p-51-56.

Online:
http://www.hpi.uni-potsdam.de/fileadmin/hpi/
FG_Naumann/publications/2009/QDB09_crc.pdf

Draisbach, Uwe & Naumann, Felix (2010): DuDe: The
Duplicate Detection Toolkit. In: 8th International
Workshop on Quality in Databases. QDB’10. Singa-
pore.

Online:
http://www.v1db2010.org/proceedings/files/
v1db_2010_workshop/QDB_2010/
Paper5_Draisbach_Naumann.pdf

Herndndez, Mauricio & Stolfo, Salvatore (1995): The
merge/purge problem for large databases. In: SIG-
MOD ’95 Proceedings of the 1995 ACM SIGMOD
international conference on Management of data,
p.127-138.

Online:
http://dx.doi.org/10.1145/568271.223807

Herndndez, Mauricio & Stolfo, Salvatore (1998): Real-
world Data is Dirty: Data Cleansing and The Mer-
ge/Purge Problem. In: Data Mining and Knowledge
Discovery. Vol. 2 (Issue 1), p.9-37.

Online:
http://dx.doi.org/10.1023/A:1009761603038

Jele, Harald (2009): Erkennung bibliographischer Du-
bletten mittels Trigrammen: Messungen zur Per-
formanz. In: BIT-Online (Issue3, 2009), p.265-272
(=Part 1) and BIT-Online (Issue 4, 2009), p. 385 - 390
(=Part 2).

Pre-Print online:
http://wwwu.uni-klu.ac.at/hjele/
publikationen/ngramme/2009_ngramme _main.pdf

Lohrum, Stefan; Schneider, Wolfram & Willenborg, Jo-
sef (1999): De-duplication in KOBV. Konrad-Zuse-
Zentrum fiir Informationstechnik Berlin. Preprint SC
99-05 (June 1999).

Online:
http://opusé.kobv.de/opusd4-zib/files/393/
SC-99-05. pdf

Paulevéa, Loic; Jégoub, Hervé & Amsalegc, Laurent
(2010): Locality sensitive hashing: A comparison of
hash function types and querying mechanisms. In:
Pattern Recognition Letters (Vol. 31, Iss. 11), p. 1348-
1358.

Online:
http://dx.doi.org/10.1016/
j.patrec.2010.04.004

Schneider, Wolfram (1999): Ein verteiltes Bibliotheks-
Informationssystem auf Basis des 7Z39.50 Protokolls.
Diploma Thesis, Technische Universitit Berlin.
Online:
http://wolfram.schneider.org/lv/diplom/
diplom.pdf

Stein, Benno & Potthast, Martin (2006): Hashing-
basierte Indizierung: Anwendungsszenarien, Theorie
und Methoden. In: Workshop Special Interest Group
Information Retrieval (FGIR 06) (= Hildesheimer In-
formatikberichte), p. 159 - 166.

Online:
http://nbn-resolving.de/
urn:nbn:de:gbv:hil2-opus-672

LIBRES ISSN 1058-6768 Volume 23, Issue 2, September 20183 hitp://libres.curtin.edu.au 12

Unwin, Antony; Theus, Martin & Hofmann, Heike
(2006): Graphics of Large Datasets. Visualizing a Mil-
lion. Springer, New York

Wickham, Hadley (2009): ggplot2. Elegant Graphics for
Data Analysis. Springer, Dordrecht.

Partly online:
http://books.google.com/books?isbn=
9780387981420

Yan, Su; Lee, Dongwon; Kan Min-Yen & Giles, Lee
(2007): Adaptive sorted neighborhood methods for
efficient record linkage. In: Proceedings of the 7th
ACM/IEEE-CS joint conference on Digital libraries.
JCDL’07, p. 185-194.

Online:
http://dx.doi.org/10.1145/1255175.1255213

Dr. Harald Jele
works at University of Klagenfurt

Address:

Robert Musil-Institut
Bahnhofstrafie 50 _

9020 Klagenfurt, Osterreich
E-Mail:harald.jele@uni-klu.ac.at

LIBRES ISSN 1058-6768 Volume 23, Issue 2, September 2013 http://libres.curtin.edu.au 13

	
	 Preface
	 Introduction
	 Usual procedures
	 Testing method
	 The first approach
	 The second approach
	 The third approach

	 Summary
	 References

