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Abstract

We provide sufficient conditions for vector-valued Fredholm integral operators and
their commonly used spatial discretizations to be positive in terms of an order rela-
tion induced by a corresponding order cone. It turns out that reasonable Nyström
methods preserve positivity. Among the projection methods, persistence is obtained
for the simplest ones based on polynomial, piecewise linear or specific cubic inter-
polation (collocation), as well as for piecewise constant basis functions in a Bubnov-
Galerkin approach. However, for semi-discretizations using quadratic splines or sinc-
collocation we demonstrate that positivity is violated. Our results are illustrated in
terms of eigenvalues and eigenfunctions for Krein-Rutman operators.
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1 Introduction

Fredholm integral operators arise in various applications ranging from a clas-
sical fixed-point formulation of linear elliptic boundary value problems [1]
to Fréchet derivatives of models in theoretical ecology [14, pp. 23ff]. Often
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their Green’s function resp. kernel is positive. This is understood that such a
matrix-valued function preserves an order relation induced by an order cone.
For instance, dispersal kernels used in theoretical ecology preserve an order
relation in order to capture predator-prey or symbiotic relationships between
different species, or differential operators satisfy a maximum principle which
transfers to positivity of their inverses via the Green’s function. Moreover, for
example [7] provide sufficient conditions that Hammerstein operators can be
transformed into an order-preserving form.

Dealing with positive operators yields several features. For instance, positivity
allows an application of the Krein-Rutman theorem [5, p. 226, Thm. 19.2] or
[21, p. 290, Thm. 7.C] with profound consequences to the bifurcation behavior
of related nonlinear problems. Furthermore, [2] gives results on the distribution
of secondary eigenvalues.

The texture of this paper is as follows: After introducing our notation, Sect. 2
provides sufficient conditions on kernels such that the associated Fredholm op-
erators on the continuous or integrable functions are positive over domains of
finite measure. In essence these properties carry over from the kernels having
values in Rd to the integral operators mapping into a space of Rd-valued func-
tions. Persistence issues under full spatial discretization of Nyström type are
tackled in Sect. 3. Here, it suffices to assume positive quadrature weights for
the sake of positivity. This property is satisfied for a large class of integration
methods [4,11] and, besides guaranteeing well-posedness and computational
stability [9,10], provides another reason for the use of positive weights in nu-
merical quadrature. This convenient prospect changes in Sect. 4 when address-
ing semi-discretizations of projection type. Here the situation is more subtle
and the class of positivity-preserving schemes appears to be rather small.
Among the collocation methods we indeed observe that polynomial and piece-
wise linear collocation preserves positivity, while popular other methods (e.g.
quadratic splines, sinc methods) do not. Among the Bubnov-Galerkin meth-
ods, at least piecewise constant approximation works. Nevertheless, based on
positivity-preserving interpolation methods [17,18,20] it appears to be possible
to construct projection operators, which are positive at least on subsets of the
state space. Pointing towards applications, Sect. 5 discusses order-preserving
properties of typical dispersal kernels and illustrates our results by means of a
failure in the Krein-Rutman theorem when using quadrature schemes having
negative weights. Moreover, we compare numerical errors for various projec-
tion methods when approximating the dominant eigenvalue of a positive oper-
ator. For the reader’s convenience, an appendix collects basic results on cones
in Banach spaces and positive operators, an explicit formula for the inverse
of tridiagonal matrices and lists the quadrature rules in Nyström methods
throughout the text.

Notation: We abbreviate R+ := [0,∞) for the nonnegative reals, δij ∈ {0, 1}
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is the Kronecker symbol and the Euclidean inner product in Rd is given by

〈〈x, y〉〉 :=
d∑
j=1

xjyj for all x, y ∈ Rd.

Norms on finite-dimensional spaces are denoted by |·| and unless otherwise
stated we use the Euclidean norm. Given a matrix T ∈ Rd×d we write Tij ∈ R
for the jth element in the ith row and Id ∈ Rd×d is the identity matrix.
Throughout, Y+ ⊂ Rd denotes an order cone inducing the relations 6, < and
� (cf. (A.1) and App. A for related terminology); Y ′+ is the dual cone.

On metric spaces (X, d), U◦ denotes the interior, U the closure of a set U ⊆ X,
and Br(x) := {y ∈ X : d(y, x) < r} the open ball of radius r > 0 and x ∈ X.

With Banach spaces X, Y we write L(X, Y ) for the linear space of bounded
linear maps T : X → Y , L(X) := L(X,X), as well as N(T ) := T−1({0}) for
the kernel of T .

2 Fredholm integral operators

This section provides sufficient conditions for Fredholm (integral) operators

Ku :=
∫

Ω
K(·, y)u(y) dµ(y) (F )

to preserve order relations. In essence, we demonstrate that related positivity
properties of the kernels K : Ω2 → L(Rd) carry over to integral operators K.

For this purpose and referring to later applications it is ambient to work with
an abstract measure-theoretical integral in (F ). Thereto, assume (Ω,A, µ) is
a measure space satisfying µ(Ω) < ∞. The resulting abstract µ-integral of a
µ-measurable function u : Ω→ Rd is denoted by

∫
Ω u(y) dµ(y) and satisfies

〈〈
∫

Ω
u(y) dµ(y), y′〉〉 =

∫
Ω
〈〈u(y), y′〉〉 dµ(y) for all y′ ∈ Rd. (2.1)

A relevant case in applications [14] is the κ-dimensional Lebesgue measure
µ = λκ on Ω ⊂ Rκ yielding the Lebesgue integral

∫
Ω u(y) dy :=

∫
Ω u(y) dλκ(y)

for functions u : Ω→ Rd. Moreover, numerical numerical analysis relies on

Remark 2.1 (quadrature methods as abstract integrals) Suppose that
Ω′ ⊂ Rκ is countable and η ∈ Ω′ with associated reals wη ≥ 0. Then

µ(Ω′) :=
∑
η∈Ω′

wη
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is a measure on the family of countable subsets of Rκ. Note that
∑
η∈Ω′ wη <∞

gives µ(Ω′) < ∞ and the µ-integral is
∫

Ω′ u(y) dµ(y) =
∑
η∈Ω′ wηu(η). This

setting includes the case, where Ω′ is a finite set Ωn = {ηj : 0 6 j 6 qn} of
nodes ηj with associated weights wη = wj of a numerical quadrature rule [3,9],
where (qn)n∈N is a strictly increasing sequence of positive integers. Here,

µ(Ωn) =
qn∑
j=0

wj,
∫

Ωn
u(y) dµ(y) =

qn∑
j=0

wju(ηj)

for all functions u : Ωn → Rd. Concrete examples are listed in App. C.

2.1 Fredholm operators on C(Ω)d

In this subsection, we restrict to measure spaces (Ω,A, µ) with a compact
metric space Ω, a σ-algebra A (containing the Borel sets) and a finite measure
µ, i.e. µ(Ω) <∞.

The set C(Ω)d of continuous functions u : Ω → Rd is a real Banach space
when equipped with the maximum norm ‖u‖∞ := maxx∈Ω |u(x)|. Moreover,

C(Ω)d+ :=
{
u ∈ C(Ω)d : u(x) ∈ Y+ for all x ∈ Ω

}
abbreviates the set of continuous functions having values in a cone Y+ ⊂ Rd.

Lemma 2.2 The set C(Ω)d+ is a cone. If Y+ is solid, then C(Ω)d+ is solid and
total.

PROOF. The closedness and convexity of Y+ extend to C(Ω)d+ and a point-
wise consideration yields R+C(Ω)d+ ⊆ C(Ω)d+ and C(Ω)d+ ∩ (−C(Ω)d+) = {0}.
Thus, C(Ω)d+ is a cone. If Y+ ⊂ Rd is solid, then there exist y0 ∈ Y+ and ε > 0
so that Bε(y0) ⊂ Y+. Hence, u0(x) :≡ y0 on Ω is an interior point of C(Ω)d+
and (C(Ω)d+)◦ 6= ∅ follows. 2

Having identified C(Ω)d+ as (solid) cone, we introduce the relations (cf. (A.1))

u � ū :⇔ ū− u ∈ C(Ω)d+,

u ≺ ū :⇔ ū− u ∈ C(Ω)d+ \ {0} ,
u ≺≺ ū :⇔ ū− u ∈ (C(Ω)d+)◦ for all u, ū ∈ C(Ω)d,

allowing the subsequent characterization:

Lemma 2.3 The following holds for u, ū ∈ C(Ω)d:
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(a) u � ū ⇔ u(x) 6 ū(x) for all x ∈ Ω ⇔ 〈〈u(x), y′〉〉 6 〈〈ū(x), y′〉〉 for all
x ∈ Ω and y′ ∈ Y ′+.

(b) u ≺ ū⇔ u(x) 6 ū(x) for all x ∈ Ω and u(x0) < ū(x0) for some x0 ∈ Ω.
(c) If Y+ is solid, then u ≺≺ ū ⇔ u(x) � ū(x) for all x ∈ Ω ⇔ 〈〈u(x), y′〉〉 <
〈〈ū(x), y′〉〉 for all x ∈ Ω, y′ ∈ Y ′+ \ {0}.

PROOF. (a) follows immediately by definition and from Lemma A.1(a).
(b) results from the definition.
(c) Due to linearity it suffices to establish the claim for the pair (0, u) rather
than the functions (u, ū). We have to show two directions:
(⇐) Assume that 0 < 〈〈u(x), y′〉〉 for all x ∈ Ω, y′ ∈ Y ′+ \ {0} holds. Therefore,
Lemma A.1(b) ensures that for any x ∈ Ω there exists an εx > 0 guaranteeing
the inclusion Bεx(u(x)) ⊂ Y+. We prove that

∃ε > 0 : ∀x ∈ Ω : Bε(u(x)) ⊂ Y+. (2.2)

Assuming the contrary there exist sequences (xn)n∈N in Ω and (zn)n∈N in Rd

with
|zn − u(xn))| 6 1

n
, zn /∈ Y+ for all n ∈ N. (2.3)

From compactness of Ω and continuity of u there exists a subsequence (xkn)n∈N
with limit x∗ ∈ Ω such that limn→∞ zkn = u(x∗) is satisfied. Consequently,
zkn ∈ Bεx∗ (u(x∗)) ⊂ Y+ holds for sufficiently large n ∈ N, contradicting (2.3).
Hence, (2.2) holds and implies that Bε(u) ⊂ C(Ω)d+ and 0 ≺≺ u.
(⇒) For 0 ≺≺ u there exists an ε > 0 so that v(x) ∈ Y+ for all v ∈ Bε(u)
and x ∈ Ω. Let x ∈ Ω and z0 ∈ Bε(u(x)) ⊆ Rd. If v̄(ξ) := u(ξ) + z0 − u(x),
ξ ∈ Ω, then v̄ ∈ Bε(u) and thus v̄(ξ) ∈ Y+ for all ξ ∈ Ω. For ξ = x we see that
z0 ∈ Y+ and Bε(u(x)) ⊂ Y+ for each x ∈ Ω. Hence, u(x) ∈ Y ◦+ for all x ∈ Ω.
From Lemma A.1(b) we have 0 < 〈〈u(x), y′〉〉 for all x ∈ Ω, y′ ∈ Y ′+ \ {0}. 2

Example 2.4 If a set {e1, . . . , ed} ⊂ Rd is linearly independent, then

Y+ =

{
d∑
i=1

αiei : α1, . . . , αd ≥ 0

}
⊂ Rd

is a solid, thus total cone with interior Y ◦+ =
{∑d

i=1 αiei : α1, . . . , αd > 0
}

.

With {e′1, . . . , e′d} ⊂ Rd chosen according to 〈〈ei, e′j〉〉 = δij for 1 6 i, j 6 d, then

Y ′+ =


d∑
j=1

βje
′
j : β1, . . . , βd ≥ 0

 ⊂ Rd

is the dual cone to Y+. Given u, ū ∈ C(Ω)d the following holds:

u � ū ⇔ 〈〈u(x), e′j〉〉 6 〈〈ū(x), e′j〉〉 for all x ∈ Ω, 1 6 j 6 d,

u ≺ ū ⇔ 〈〈u(x), e′j〉〉 6 〈〈ū(x), e′j〉〉 for all x ∈ Ω, 1 6 j 6 d
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and u(x0) < ū(x0) for some x0 ∈ Ω,

u ≺≺ ū ⇔ 〈〈u(x), e′j〉〉 < 〈〈ū(x), e′j〉〉 for all x ∈ Ω, 1 6 j 6 d.

Example 2.5 (orthants) Let Y+ be an orthant of Rd spanned by the linearly
independent vectors ei = ςi(δij)

d
j=1 with ςi = ±1. For e′j := ςj(δij)

d
i=1 one

obtains characterizations based on the component functions

u � ū ⇔ ςiui(x) 6 ςiūi(x) for all x ∈ Ω, 1 6 i 6 d,

u ≺ ū ⇔ ςiui(x) 6 ςiūi(x) for all x ∈ Ω, 1 6 i 6 d and there

exist x0 ∈ Ω, 1 6 i0 6 d with ui0(x0) 6= ūi0(x0),

u ≺≺ ū ⇔ ςiui(x) < ςiūi(x) for all x ∈ Ω, 1 6 i 6 d.

A convenient setting for linear integral operators provides the following

Hypothesis 2.6 Assume that K : Ω× Ω→ L(Rd) fulfills:

(L) K(x, ·) : Ω→ L(Rd) is µ-measurable for all x ∈ Ω with

sup
x∈Ω

∫
Ω
|K(x, y)| dµ(y) <∞

and limx→x0
∫
Ω |K(x, y)−K(x0, y)| dµ(y) = 0 for all x0 ∈ Ω.

These assumptions yield that Fredholm operators K given in (F ) readily fulfill
the inclusion K ∈ L(C(Ω)d) (see [15, p. 167, Prop. 3.4]). In case the limit
relation in (L) holds uniformly in x0 ∈ Ω, then K is even compact; however
this is not immediately relevant for our further analysis.

Theorem 2.7 (positivity of K on C(Ω)d) Let Hypothesis (L) hold. If a ker-
nel K(x, y) ∈ L(Rd) is Y+-positive for all x ∈ Ω and µ-a.a. y ∈ Ω, then a
Fredholm operator K ∈ L(C(Ω)d) is C(Ω)d+-positive. These assumptions addi-
tionally yield:

(a) If nonempty, open subsets of Ω have positive measure, there exists a x̄ ∈ Ω
so that K(x̄, ·) is continuous on Ω and K(x̄, y) is Y+-injective for µ-a.a.
y ∈ Ω, then K strictly C(Ω)d+-positive.

(b) If nonempty, open subsets of Ω have positive measure, Y+ is solid and
K(x, y) is strongly Y+-positive for all x ∈ Ω and µ-a.a. y ∈ Ω, then K is
strongly C(Ω)d+-positive.

(c) If µ(Ω) > 0, Y+ is solid and K(x, y)Y ◦+ ⊆ Y ◦+ for all x ∈ Ω and µ-a.a.
y ∈ Ω, then K(C(Ω)d+)◦ ⊆ (C(Ω)d+)◦.

PROOF. Let x ∈ Ω, y′ ∈ Y ′+ and 0 ≺ u. By Lemma 2.3(a) the positivity of

6



K is an immediate consequence of

〈〈(Ku)(x), y′〉〉 (2.1)
=

∫
Ω
〈〈K(x, y)u(y), y′〉〉 dµ(y) ≥ 0.

Thus, for the remaining proof K is positive.
(a) Let 0 ≺ u. There exists a y0 ∈ Ω such that maxx∈Ω |u(x)| = |u(y0)| > 0
and thus ui0(y0) 6= 0 for some index i0 ∈ {1, . . . , d}. First, if ui0(y0) > 0, then

Ω0 := {y ∈ Ω : ui0(y) > 1
2
ui0(y0)} = u−1

i0
((1

2
ui0(y0),∞)) 6= ∅

and the continuity of ui0 yields that Ω0 is open; thus, µ(Ω0) > 0 by assumption.
Thanks to Y+-injectivity, K(x̄, y)u(y) ∈ Y+ \ {0} holds for µ-a.a. y ∈ Ω0 and
Lemma A.1(a) ensures that there exists a functional y′y ∈ Y ′+ \ {0} satisfying
〈〈K(x̄, y)u(y), y′y〉〉 > 0. Due to the continuity of K(x̄, ·), for µ-a.a. y ∈ Ω0 there
exists εy > 0 such that

〈〈K(x̄, η)u(η), y′y〉〉 > 0 for η ∈ Bεy(y).

Since {Bεy(y) : µ-a.a. y ∈ Ω0} is an open cover of the compact closure Ω1,
where Ω1 is an open set and Ω1 ⊂ Ω0 the Borel-Lebesgue Theorem yields a
finite subcover {Bεi(yi) : 1 6 i 6 n} of Ω1. Moreover µ(Ω1) > 0. If we define
ỹ′ :=

∑n
i=1 y

′
yi
∈ Y ′+ 6= 0, then 〈〈K(x̄, y)u(y), ỹ′〉〉 > 0 for µ-a.a. y ∈ Ω1 and

〈〈(Ku)(x̄), ỹ′〉〉 (F )
= 〈〈

∫
Ω
K(x̄, y)u(y) dµ(y), ỹ′〉〉 ≥

∫
Ω1

〈〈K(x̄, y)u(y), ỹ′〉〉 dµ(y) > 0

holds. This implies that (Ku)(x̄) 6= 0 and therefore Ku 6= 0 holds. Second, in
the dual case ui0(y0) < 0 we use the open set {y ∈ Ω : ui0(y) < 1

2
ui0(y0)}

instead of Ω0 and again obtain Ku 6= 0. In conclusion, K is strictly positive.
(b) Let 0 ≺ u, y′ ∈ Y ′+ \ {0}, x ∈ Ω. Note that Ω0 = {y ∈ Ω : u(y) 6= 0}
is open subset of Ω and µ(Ω0) > 0. Since K(x, y) is strongly positive for
µ-a.a. y ∈ Ω0, we get 0 � K(x, y)u(y) and hence Lemma A.1(b) implies
0 < 〈〈K(x, y)u(y), y′〉〉 =: φ(y) for µ-a.a. y ∈ Ω0. Now at least one of the
preimages Ωl := φ−1((1

l
,∞)), l ∈ N, has positive measure, since Ω0 =

⋃
l∈N Ωl

is of positive measure. In case µ(Ωl) > 0 we obtain

0 <
µ(Ωl)

l
6
∫

Ωl

φ(y) dµ(y) 6
∫

Ω0

φ(y) dµ(y)

and consequently

〈〈(Ku)(x), y′〉〉 (F )
=
∫

Ω
φ(y) dµ(y) ≥

∫
Ω0

φ(y) dµ(y) ≥
∫

Ωl

φ(y) dµ(y) > 0.

Because y ∈ Y ′+ \{0} and x ∈ Ω were arbitrary, Lemma A.1(b) readily implies
0 � (Ku)(x) for any x ∈ Ω and therefore K is strongly C(Ω)d+-positive by
Lemma 2.3(c).
(c) Let u ∈ (C(Ω)d+)◦. Then Lemma 2.3(c) yields 0 � K(x, y)u(y) for µ-a.a.
y ∈ Ω and x ∈ Ω and the claim results as in (b). 2
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2.2 Fredholm operators on Lp(Ω)

Let p ∈ [1,∞) and assume µ(Ω) > 0 throughout. The set Lp(Ω)d of p-inte-
grable functions u : Ω→ Rd defines a real Banach space with

‖u‖p :=
(∫

Ω
|u(y)|p dµ(y)

)1/p

as norm. Let us furthermore write

Lp(Ω)d+ :=
{
u ∈ Lp(Ω)d : u(x) ∈ Y+ for µ-a.a. x ∈ Ω

}
for the set of p-integrable functions with values in Y+.

Lemma 2.8 The set Lp(Ω)d+ is a cone. If Y+ ⊆ Rd is an orthant, then Lp(Ω)d+
is total.

Note that even in case Y+ = R+ the cone Lp(Ω)+ is not solid (cf. [1, Ex. 1.11]).
Yet, for Y+ = R+ it is reproducing (i.e. X = Y+ − Y+) and hence total.

PROOF. Closedness and convexity of Y+ extend to Lp(Ω)d+ and a pointwise
consideration yields R+L

p(Ω)d+ ⊆ Lp(Ω)d+ and Lp(Ω)d+∩(−Lp(Ω)d+) = {0}. So,
Lp(Ω)d+ is a cone. If Y+ ⊆ Rd is an orthant, then Lp(Ω)d+ is reproducing and
consequently total. 2

Having identified the set Lp(Ω)d+ as a cone, we introduce the relations (cf. (A.1))

u � ū :⇔ ū− u ∈ Lp(Ω)d+,

u ≺ ū :⇔ ū− u ∈ Lp(Ω)d+ \ {0} ,

allowing the subsequent characterization:

Lemma 2.9 The following holds for u, ū ∈ Lp(Ω)d:

(a) u � ū ⇔ u(x) 6 ū(x) for µ-a.a. x ∈ Ω ⇔ 〈〈u(x), y′〉〉 6 〈〈ū(x), y′〉〉 for
µ-a.a. x ∈ Ω and all y′ ∈ Y ′+.

(b) u ≺ ū⇔ u(x) 6 ū(x) µ-a.a. in Ω and µ({x ∈ Ω : u(x) 6= ū(x)}) > 0.

PROOF. (a) follows immediately from Lemma A.1(a) and by definition.
(b) results from the definition. 2

Lemma 2.10 (strict monotonicity of the integral) Let u, ū ∈ Lp(Ω)d+ w.r.t.
an orthant Y+ ⊂ Rd. If u ≺ ū, then

∫
Ω u(y) dµ(y) <

∫
Ω ū(y) dµ(y).
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PROOF. It suffices to show that u ∈ Lp(Ω)d+ \{0} implies
∫

Ω u(y) dµ(y) 6= 0.
Let Y+ be spanned by the vectors ei = ςi(δij)

d
j=1 with ςi = ±1. Since u 6= 0,

there exists an index j and a set Ω0 ⊆ Ω of positive measure with 0 < ςjuj(x)

for x ∈ Ω0. The sets Ωl :=
{
x ∈ Ω0 : 1

l
6 ςjuj(x)

}
for l ∈ N fulfill Ω0 =

⋃
l∈N Ωl

and Ωl ⊆ Ωl+1. Thus, the assumption
∫

Ω0
u(y) dµ(y) = 0 leads to

0 =
∫

Ω0

ςjuj(y) dµ(y) ≥
∫

Ωl

ςjuj(y) dµ(y) = 1
l
µ(Ωl)

and consequently µ(Ωl) = 0 for all l ∈ N. Given this, the continuity of measures
implies the contradiction µ(Ω0) = 0. 2

Now we proceed to linear integral operators on the square-integrable functions:

Hypothesis 2.11 Assume that K : Ω× Ω→ L(Rd) fulfills:

(L2) K : Ω× Ω→ L(Rd) is µ⊗ µ-measurable with∫
Ω

∫
Ω
|K(x, y)|2 dµ(y) dµ(x) <∞.

Then the Fredholm operator K ∈ L(L2(Ω)d) defined via (F ) is well-defined
and also compact (cf. [9, p. 47, Thm. 3.2.7]).

Theorem 2.12 (positivity of K on L2(Ω)d) Let Hypothesis (L2) hold. If a
kernel K(x, y) ∈ L(Rd) is Y+-positive for µ-a.a. x, y ∈ Ω, then a Fredholm
operator K ∈ L(L2(Ω)) is L2(Ω)d+-positive. If moreover, Y+ ⊂ Rd is an orthant
and K(x, y) is strictly L2(Ω)+-positive for µ-a.a. x, y ∈ Ω, then K is strictly
L2(Ω)d+-positive.

PROOF. Proving positivity of K is formally identical to the argument in
the proof of Thm. 2.7. One merely replaces the reference to Lemma 2.3(a) by
Lemma 2.9(a). The statement on strict positivity results from Lemma 2.10. 2

3 Nyström methods

In numerics or simulations of Fredholm operators, the involved integrals can
be evaluated only approximately. One achieves this by applying discretization
methods from the numerical analysis of integral equations. The most natural
and popular discretizations of integral operators are based on Nyström meth-
ods (see [3, pp. 100ff] or [9, pp. 128ff]), where one replaces the integrals by
integration (quadrature, cubature) rules.
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In this section, we suppose that Ω ⊂ Rκ is compact with Lebesgue measure
λκ(Ω) > 0. For a continuous function u : Ω→ Rd, consider the representation

∫
Ω
u(y) dy =

qn∑
j=0

wju(ηj) + En(u) (Qn)

with a sequence (qn)n∈N in N, nodes from a finite set Ωn := {η0, . . . , ηqn} ⊆ Ω
and weights wj ∈ R such that the error term satisfies limn→∞En(u) = 0. Such
schemes are called convergent and we refer to App. C for concrete examples.

We say that an integration rule (Qn) fulfills the net condition, if

∀ε > 0 : ∃n0 ∈ N : Ω ⊆
qn⋃
j=0

Bε(ηj) for all n ≥ n0(ε). (3.1)

This assumption is indeed frequently met:

Example 3.1 (net condition) Condition (3.1) is satisfied, if the distance
between neighboring nodes in Ωn can be made arbitrarily small as n → ∞.
Therefore, essentially all relevant classes of quadrature formulas (Qn) fulfill
the net condition: Providing the nodes ηnj only over the interval Ω = [−1, 1] for

simplicity, then Clenshaw-Curtis (ηnj = cos( j−1
n−1

π), [4, p. 86]), Gauß-Legendre
(ηnj are the zeros of the Legendre polynomials Pn, [12, Thm. 5.1]) or Gauß-
Lobatto (ηnj are the zeros of the derivatives P ′n) types do work. In each case, one

has the limit limn→∞ supqn−1
j=0 (ηnj+1− ηnj ) = 0. Of course, composite quadrature

rules (see e.g. [4, pp. 70ff]) fulfill the net condition throughout. Finally, product
cubature rules obtained from the above quadratures (see [4, pp. 354ff]) satisfy
(3.1) as well.

We impose the following

Hypothesis 3.2 Assume that a kernel K : Ω× Ω→ L(Rd) fulfills:

(NL) K(·, y) : Ω→ L(Rd) is continuous for all y ∈ Ω.

Note that (NL) is sufficient for Hypothesis (L) and (L2) keeping our previous
results applicable. Referring to Rem. 2.1, this leads to the (spatially) discrete
Fredholm operator

Knu :=
qn∑
j=0

wjK(·, ηj)u(ηj). (3.2)

There are two natural choices for the domain of Kn, namely a spatially con-
tinuous one C(Ω)d and the spatially discrete function space

C(Ωn)d =
{
u : Ωn → Rd

}
;
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both are equipped with the max-norm ‖·‖∞. In each case, (NL) suffices to
obtain that Kn is well-defined and continuous.

Remark 3.3 (Kn on the domain C(Ωn)d) Let an integration rule (Qn) have
nonnegative weights. In the setting of Rem. 2.1, the above Thm. 2.7 applies
for the measure µ from Rem. 2.1 and shows that positivity of Kn ∈ L(C(Ωn)d)
or Kn ∈ L(C(Ωn)d, C(Ω)d) holds literally with the assumption “µ-a.a. y ∈ Ω”
replaced by “all y ∈ Ωn”.

On the domain C(Ω)d one cannot expect a discrete Fredholm operator Kn to
be strictly or strongly positive. This is due to the fact that C(Ω)d+\{0} contains
functions u vanishing everywhere except from being positive on arbitrarily
small domains disjoint from Ωn. Hence, they are not captured by the Nyström
grid Ωn, that is, u|Ωn = 0 although u 6= 0. Consequently, one has Knu = 0.

This requires ambient modifications of our above results captured in Rem. 3.3.

Theorem 3.4 (positivity of Kn on C(Ω)d) Let Hypothesis (NL) hold.

(a) If (Qn), n ∈ N, have nonnegative weights and K(x, η) is Y+-positive for
all x ∈ Ω, η ∈ Ωn, then Kn ∈ L(C(Ω)d) is C(Ω)d+-positive.

(b) If (Qn), n ∈ N, have positive weights, Y+ is solid and K(x, η)Y ◦+ ⊆ Y ◦+
for all x ∈ Ω, η ∈ Ωn, then Kn(C(Ω)d+)◦ ⊆ (C(Ω)d+)◦.

In case Ω = Ω◦, (Qn) have eventually positive weights and the net condition
(3.1) hold, then for each function u ∈ C(Ω)d with 0 ≺ u there is a N ∈ N such
that one has for n ≥ N :

(c) If K(x̄, η) is Y+-injective for one x̄ ∈ Ω and all η ∈ Ωn, then 0 ≺ Knu.
(d) If Y+ is solid and K(x, η) is strongly Y+-positive for all x ∈ Ω, η ∈ Ωn,

then 0 ≺≺ Knu.

A large number of common integration rules (Qn) have positive weights:

Example 3.5 (positive weights) (1) If the set Ω is a compact interval,
then the following classes of quadrature formulas (Qn) have positive weights:
Closed Newton-Cotes with n ∈ {2, . . . , 8, 10} nodes, open Newton-Cotes with
n ∈ {1, 2, 4} nodes (see [16, pp. 120–121 and p. 156, Exer. 41]), Clenshaw-
Curtis [16, p. 86], Gauß-Legendre [16, p. 105] and Gauß-Lobatto. Also com-
posite versions of these quadrature rules clearly have positive weights as well.
(2) If Ω is a rectangle in Rκ, κ > 1, then the product cubature rules obtained
from the above quadrature methods feature positive weights. The same holds
for domains Ω ⊂ Rκ being C1-diffeomorphic to a rectangle Q ⊂ Rκ by means
a C1-diffeomorphism T : Q→ Ω due to the change of variables formula∫

Ω
u(y) dy =

∫
Q
u(T (x)) |detDT (x)| dx

11



and applying a cubature rule over rectangles to the right-hand side integral.

PROOF. (a) By Thm. 2.7 with the measure µ from Rem. 2.1 we know
Kn ∈ L(C(Ωn)d) is positive. Referring to the definition (3.2) this extends
to Kn ∈ L(C(Ω)d).
(b) results from a direct computation using Lemma 2.3(c).
For the remaining proof we suppose 0 ≺ u. This implies 0 6 u(x) for x ∈ Ω
and there exists x0 ∈ Ω with 0 6= u(x0). Let us write B := {x ∈ Ω : u(x) 6= 0}.
By the continuity of u and the assumption on Ω there exist ε0 > 0, x1 ∈ Ω so
that B2ε0(x1) ⊂ B. Since (Qn) fulfills the net condition (3.1), there exists an
n0(ε0) ∈ N such that for n ≥ n0(ε0) there exists jn ∈ {0, . . . , qn} with nodes
satisfying ηjn ∈ B. In the following, assume the rule (Qn) has positive weights
for n ≥ n1 and let n ≥ N := max {n0(ε0), n1}:
(c) From Y+-injectivity of K(x̄, ηjn) one obtains 0 < K(x̄, ηjn)u(ηjn). Conse-
quently, 0 6= Kn(u)(x̄) and hence 0 ≺ Knu.
(d) Let y′ ∈ Y ′+\{0} and x ∈ Ω. Using the strong positivity of K(x, ηjn) we ob-
tain 0� K(x, ηnj)u(ηnj) and Lemma A.1(b) implies 0 < 〈〈K(x, ηjn)u(ηjn), y′〉〉.
Thus, 0 < 〈〈(Knu)(x), y′〉〉 and using Lemma 2.3(c) this means 0 ≺≺ Kn(u). 2

4 Projection methods

Let X(Ω) denote a normed space of functions u : Ω → R being for instance
continuous X(Ω) = C(Ω) or square-integrable X(Ω) = L2(Ω). Projections
methods approximate elements of an infinite-dimensional function space X(Ω)
by elements from suitable finite-dimensional subspaces Xn, n ∈ N.

For this purpose, we choose linearly independent functions φ1, . . . , φdn ∈ X(Ω)
and linearly independent ψ′1, . . . , ψ

′
dn ∈ X(Ω)′. Then Xn := span {φ1, . . . , φdn}

is denoted as ansatz space and has dimension dn. If φ′1, . . . , φ
′
dn ∈ X(Ω)′ are

functionals satisfying φ′i(φj) = δij for all 1 6 i, j 6 dn, then

πn : X(Ω)→ Xn, πnu :=
dn∑
j=1

φ′j(u)φj (4.1)

defines a bounded projection onto Xn. The above functionals are related by

Pn


φ′1
...

φ′dn

 =


ψ′1
...

ψ′dn

 (4.2)
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with an (invertible) matrix Pn ∈ Rdn×dn . This approach extends to vector-
valued functions u : Ω → Rd and operators acting on a Cartesian product
X(Ω)d in terms of the projection

Πn ∈ L(X(Ω)d, Xd
n), Πnu :=


πnu1

...

πnud

 =
dn∑
j=1

φj(·)


φ′j(u1)

...

φ′j(ud)

 . (4.3)

Remark 4.1 (discrete projection methods) Projection methods applied to
integral operators K in (F ) merely yield semi-discretizations, that is, although
the operators ΠnK are finite-dimensional, they still contain integrals to be eval-
uated. Hence, in order to arrive at full discretizations, it remains to apply a
Nyström method to ΠnK. In this procedure, positivity properties are preserved,
provided the quadrature rules (Qn) satisfy the criteria derived in Sect. 3.

4.1 Collocation methods

Let X(Ω) = C(Ω) be the space of continuous functions over a compact set
Ω ⊂ Rκ (see [3, pp. 50ff] or [9, pp. 81ff]) and equip Rd with the norm

|x| := d
max
i=1
|xi| . (4.4)

For pairwise different collocation points x1, . . . , xdn ∈ Ω we require the inter-
polation conditions (πnu)(xi) = u(xi) for 1 6 i 6 dn yielding ψ′i(u) = u(xi)
and resulting in the collocation matrix

Pn = (φi(xj))
dn
i,j=1.

Theorem 4.2 (positivity of Πn on C(Ω)d) If all the functions

σi : Ω→ R, σi(x) :=
dn∑
j=1

(P−1
n )ijφj(x) for all 1 6 i 6 dn

have nonnegative values, then the following hold:

(a) Πn is C(Ω)d+-positive.
(b) If additionally Y+ is solid and

∀x ∈ Ω : ∃i0 ∈ {1, . . . , dn} : σi0(x) > 0 (4.5)

holds, then Πn(C(Ω)d+)◦ ⊂ (C(Ω)d+)◦.
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PROOF. (a) Let u ∈ C(Ω)d, 0 ≺ u and y′ ∈ Y ′+. Due to Lemma 2.3(a) this
means that 0 6 〈〈u(x), y′〉〉 for all x ∈ Ω. If we briefly write φ′j(u) = (φ′j(uk))

d
k=1,

then it results

〈〈(Πnu)(x), y′〉〉 (4.3)
= 〈〈

dn∑
j=1

φj(x)φ′j(u), y′〉〉 =
dn∑
j=1

φj(x)〈〈φ′j(u), y′〉〉

(4.2)
=

dn∑
j=1

φj(x)〈〈
dn∑
i=1

(P−1
n )iju(xi), y

′〉〉 =
dn∑
i=1

〈〈u(xi), y
′〉〉

dn∑
j=1

φj(x)(P−1
n )ij

=
dn∑
i=1

〈〈u(xi), y
′〉〉︸ ︷︷ ︸

≥0

σi(x) ≥ 0 for all x ∈ Ω (4.6)

by assumption. Therefore, Lemma 2.3(a) yields the claim.
(b) Let u ∈ C(Ω)d, 0 ≺≺ u. Due to Lemma 2.3(c) this means 0 < 〈〈u(x), y′〉〉 for
all x ∈ Ω, y′ ∈ Y ′+ \ {0}. The relations (4.6) and our assumptions ensure that

〈〈(Πnu)(x), y′〉〉 =
dn∑
i=1

〈〈u(xi), y
′〉〉σi(x) ≥ 〈〈u(xi0), y

′〉〉σi0(x) > 0

for all x ∈ Ω, y′ ∈ Y ′+\{0} and thus Lemma 2.3(c) yields Πnu ∈ (C(Ω)d+)◦. 2

On the one hand, the relevance of Thm. 4.2 in obtaining structure-preserving
collocation methods manifests as follows:

Corollary 4.3 Let Hypothesis (L) hold and σi : Ω → R, 1 6 i 6 d, have
nonnegative values.

(a) If K is C(Ω)d+-positive, then ΠnK ∈ L(C(Ω)d, Xd
n) and KΠn ∈ L(C(Ω)d)

are C(Ω)d+-positive.
(b) If K is strongly C(Ω)d+-positive and (4.5) holds, then ΠnK ∈ L(C(Ω)d, Xd

n)
is strongly C(Ω)d+-positive.

PROOF. Statement (a) results since positivity is preserved under composi-
tion, while (b) is a consequence of Cor. A.2. 2

On the other hand, the applicability of Thm. 4.2 is hindered by the following
fact: Many bases {φ1, . . . , φdn} (e.g. B-splines, Bernstein polynomials, etc.)
consist of functions having nonnegative values yielding a nonnegative colloca-
tion matrix Pn. Thus, the inverse P−1

n has nonnegative entries, if and only if
Pn is a monomial matrix, i.e. every column/row contains exactly one positive
element (cf. [13, p. 2, Thm. 1.1]).

14



Remark 4.4 (basis transformation) The assumption of Thm. 4.2 is in-
variant under basis transformations. Indeed, if T ∈ Rdn×dn is invertible, then
also the functions

φ̄i :=
dn∑
l=1

Tilφl : Ω→ R for all 1 6 i 6 dn

define a basis
{
φ̄1, . . . , φ̄dn

}
of Xn. Due to φ̄i(xj) =

∑dn
l=1 Tilφl(xj) it has the

collocation matrix P̄n = TPn. This implies

σ̄ :=


σ̄1

...

σ̄dn

 =
dn∑
j=1


(P̄−1

n )1jφ̄j
...

(P̄−1
n )dnjφ̄j

 = P̄−1
n


φ̄1

...

φ̄dn



= P̄−1
n

dn∑
l=1


T1lφl

...

Tdnlφl

 = P̄−1
n T


φ1

...

φdn

 = P−1
n


φ1

...

φdn


and consequently σ̄i = σi for all 1 6 i 6 dn.

4.1.1 Lagrange bases

Suppose that {φ1, . . . , φdn} is a Lagrange basis of the ansatz space Xn, i.e. it
satisfies the interpolation condition φi(xj) = δij for all 1 6 i, j 6 dn. Hence,
the collocation matrix Pn = Idn is the identity and the projections read as

Πnu =
dn∑
j=0

φj(·)u(xj) for all u ∈ C(Ω)d.

Concrete examples are as follows, in which Ω = [a, b] is equipped with a grid

a =: x0 < x1 < . . . < xn−1 < xn := b (4.7)

and we abbreviate hj := xj+1 − xj, 0 6 j < n.

Example 4.5 (piecewise linear collocation) Let us consider the ansatz
space Xn ⊂ C[a, b] of piecewise affine functions with break points {x0, . . . , xn}.
It is of dimension dn = n+ 1 and the hat functions φ0, . . . , φn : [a, b]→ R+,

φ0(x) :=


x1−x
h0

, a 6 x 6 x1,

0, else,
φn(x) :=


x−xn−1

hn−1
, xn−1 6 x 6 b,

0, else,
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φj(x) :=


x−xj−1

hj−1
, xj−1 6 x 6 xj,

xj+1−x
hj

, xj < x 6 xj+1,

0, else

for all 0 < j < n (4.8)

are a suitable basis. This extends to rectangles Ω := [a1, b1] × . . . × [aκ, bκ],
where each interval [aj, bj] may have n subdivisions given by the break points

aj =: xj0 < xj1 < . . . < xjn−1 < xjn := bj for all 1 6 j 6 κ.

If φji : [aj, bj]→ R+, 0 6 i 6 n, are the corresponding hat functions associate
to an interval [aj, bj], 1 6 j 6 κ, then we define their multivariate version

φι(ξ) :=
κ∏
j=1

φjιj(ξj) for ξ = (ξ1, . . . , ξκ) ∈ Ω, ι = (ι1, . . . , ικ) ∈ {0, . . . , n}κ

and choose {φι : Ω→ R+ | ι ∈ {0, . . . , n}κ} as basis of Xn ⊂ C(Ω). It has
dimension dn = (n + 1)κ. It is not hard to see that φι(x) ∈ [0, 1] holds on Ω.
This yields a Lagrange basis consisting of nonnegative functions. In each case
Thm. 4.2 implies that both Πn is C(Ω)d+-positive and Πn(C(Ω)d+)◦ ⊆ (C(Ω)d+)◦.

Example 4.6 (polynomial interpolation) Let us consider the ansatz space
Xn := span {1, x, . . . , xn} consisting of all polynomials with degree 6 n. It is
of dimension dn = n+ 1 and the Lagrange functions

φj : [a, b]→ R, φj(x) :=
n∏
k=0

k 6=j

x− xk
xj − xk

for all 0 6 j 6 n

yield a Lagrange basis {φ0, . . . , φn} for Xn of functions with positive and neg-
ative values. Interpolating the constant function u(x) ≡ 1 yields that the ba-
sis functions form a partition of unity, i.e.

∑dn
j=0 φj(x) ≡ 1 on [a, b]. Thus

Thm. 4.2 implies both Πn is C[a, b]d+-positive and Πn(C[a, b]d+)◦ ⊂ (C[a, b]d+)◦.

Although polynomial interpolation preserves positivity, it is burdened by its
numerical instability [10, pp. 51–52, Sect. 4.5]; see also Ex. 5.2. We next il-
lustrate that various typically used collocation methods do not yield order
preserving schemes.

4.1.2 Spline interpolation

Quadratic splines Define ξi := a + ih for 0 6 i 6 n with h := b−a
n

. Let
Xn ⊆ C1[a, b] denote the dn = n + 2-dimensional space of quadratic splines
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equipped with the basis {φ−2, . . . , φn−1} of B-splines (cf. [11, pp. 242ff])

φj(x) :=
1

2h2


(x− ξj)2, ξj 6 x < ξj+1,

h2 + 2h(x− ξj+1)− 2(x− ξj+1)2, ξj+1 6 x < ξj+2,

(ξj+3 − x)2, ξj+2 6 x < ξj+3;

(4.9)

they are nonnegative and satisfy suppφj = [ξj, ξj+3]. For the collocation points

x0 := a, xi := ξi+ξi−1

2
for all 1 6 i 6 n, xn+1 := b

establishing the grid (4.7) the collocation matrix becomes tridiagonal

Pn =
1

2



1 1

1
4

3
2

1
4

. . . . . . . . .

1
4

3
2

1
4

1 1


∈ R(n+2)×(n+2)

(see [11, pp. 270]). The extremal entries of P−1
n depending on n ≥ 3 are illus-

trated in Fig. 1. They have positive and negative signs, and hence Thm. 4.2
does not apply. In order to demonstrate that positivity of the projection op-
erator is indeed violated consider ξ := a+ h. One obtains

(πnu)(ξ)
(4.1)
=

n−1∑
j=−2

φ′j(u)φj(ξ) = φ′−1(u)φ−1(ξ) + φ′0(u)φ0(ξ)
(4.9)
=

φ′−1(u)

2
+

φ′0(u)

2

and in particular for u(xj) = 0 with j > 0 one has

(πnu)(ξ) =
φ′−1(u)+φ′0(u)

2

(4.2)
= (P−1

n )21+(P−1
n )31

2
u(a),

where u : [a, b] → R+ is any continuous function with u(a) > 0 and u(x) = 0
for x ≥ x1. Now Lemma B.1 yields that (P−1

n )21 + (P−1
n )31 < 0 and therefore

πnu 6∈ C[a, b]+ holds.

Cubic splines In contrast, let us next construct positivity preserving pro-
jection methods as follows:

Corollary 4.7 (cubic splines) The piecewise defined cubic spline

(Πnu)(x) :=
(
1− 3(x−xi

hi
)2 + 2(x−xi

hi
)3
)
u(xi) (4.10)

+
(
3(x−xi

hi
)2 − 2(x−xi

hi
)3
)
u(xi+1) for all x ∈ [xi, xi+1], 0 6 i < n
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Fig. 1. Extremal entries of the inverse collocation matrices P−1
n for the quadratic

splines from Sect. 4.1.2 depending on n (left) and the associate functions
σi : [−1, 1]→ R, 0 6 i 6 n+ 1, for n = 20 (right)

yields a C[a, b]d+-positive projection Πn : C[a, b]d → C1[a, b]d satisfying the
estimate ‖Πn‖L(C[a,b]d) 6 2.

Although (4.10) gives rise to a positivity preserving spline, its derivative van-
ishes in all the collocation points xj and thus Πnu has rather unpleasant
approximation properties. This is also exemplified by a low convergence rate
in numerical simulations (see Ex. 5.2) based on (4.10).

PROOF. (I) Given nonnegative real numbers s0, . . . , sn, the cubic C1-spline
s : [0, 1]→ R, piecewise defined as

s(x) = si + (x− xi)mi + (x−xi
hi

)2 (3(si+1 − si)− hi(2mi +mi+1))

+ (x−xi
hi

)3 (hi(mi +mi+1)− 2(si+1 − si))

for x ∈ [xi, xi+1], 0 6 i < n is investigated in [18]. It satisfies the interpolation
conditions s(xi) = si, as well as s′(xi) = mi for 0 6 i 6 n, where mi ∈ R are
free parameters. According to [18, Thm. 4], the spline s is nonnegative on the
interval [0, 1] if and only if (mi,mi+1) ∈ Wi(u) holds for all 0 6 i < n, where

Wi :=
{

(x, y) ∈ R2 : −3si 6 hi+1x, hi+1y 6 3si+1

}
∪ {(x, y) ∈ R2 : 0 6 36sisi+1(x2 + xy + y2 − 3τi+1(x+ y) + 3τ 2

i+1)

+ 3(si+1x− siy)(2hi+1xy − 3si+1x+ 3siy)

+ 4hi+1(si+1x
3 − siy3)− h2

i+1x
2y2}

with τi+1 := si+1−si
hi

. In particular, choosing mi := 0 for all 0 6 i 6 n yields
the inclusion (0, 0) ∈ Wi and a nonnegative spline

s(x) = (1− 3θ2 + 2θ3)si + (3θ2 − 2θ3)si+1 for all x ∈ [xj, xj+1],

where θ := x−xi
hi
∈ [0, 1].
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from Sect. 4.1.3 depending on n (left) and the associate functions σi : [−1, 1]→ R,
−n 6 i 6 n, for n = 10 and δ

α = 1 (right)

(II) Let u ∈ C(Ω)d+, which by Lemma 2.3(a) means that 0 6 〈u(x), y′〉 for all
x ∈ [a, b], y′ ∈ Y ′+. Then the nonnegativity of the spline from step (I) yields

〈(Πnu)(x), y′〉 (4.10)
= (1− 3θ2 + 2θ3) 〈u(xi), y

′〉+ (3θ2 − 2θ3) 〈u(xi+1), y′〉 ≥ 0

for all x ∈ [xi, xi+1], 0 6 i < n. Lemma 2.3(a) guarantees Πnu ∈ C(Ω)d+, that
is the positivity claim for Πn. Finally, the estimate

(πnu)(x) = (1− 3θ2 + 2θ3︸ ︷︷ ︸
∈[0,1]

)u(xi) + (3θ2 − 2θ3︸ ︷︷ ︸
∈[0,1]

)u(xi+1) for all x ∈ [xi, xi+1]

implies |(πnu)(x)| 6 2 ‖u‖∞ for all x ∈ [a, b] and u ∈ C[a, b]. Keeping an eye
on (4.4) this leads to the claimed norm estimate for the projections Πn. 2

Remark 4.8 (positivity preserving splines) The above Cor. 4.7 is based
on the idea to apply positivity preserving interpolation methods. Besides the
cubic C1-splines from [18], this can alternatively be done using the rational
splines of order ≥ 3 constructed in [17,20], where the latter reference provides
even error estimates. Via bivariate splines this approach also extends to higher-
dimensional domains Ω.

4.1.3 sinc-Collocation

Collocation methods based on the cardinal sine function

sinc : R→ R, sincx :=


sin(πx)
πx

, x 6= 0,

1, x = 0

are discussed in [19]. They require the tanh-transformation φ : R→ (a, b)

φ(x) := a+b
2

+ b−a
2

tanh
(
x
2

)
, φ−1(x) := ln x−a

b−x
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(with inverse). In order to approximate functions u : [a, b] → R choose some

δ ∈ (0, π) so that (a, b) ⊆ D :=
{
z ∈ C :

∣∣∣arg z−a
b−z

∣∣∣ < δ
}

holds and assume u
is the restriction of a homomorphic function u : D → C satisfying the growth
condition |u(z)| 6 C |(z − a)(z − b)|α for all z ∈ D with reals C, α > 0. Given

n ∈ N, h :=
√

πδ
αn

and S(j, h)(x) := sinc x−jh
h

, we introduce the dn := 2n + 3
basis functions

φ−(n+1)(x) := b−x
b−a , φi(x) := S(i, h)(φ−1(x)) for all |i| 6 n, φn+1(x) := x−a

b−a

with the 2n+ 3 collocation points

xj :=


a, j = −n− 1,

φ(jh), |j| 6 n,

b, j = n+ 1.

This yields the nonnegative collocation matrix Pn := (φi(xj))
n+1
i,j=−n−1 given by

Pn =



1 b−x−n
b−a . . . b−xn

b−a 0

0 1 . . . 0 0
...

. . .
...

0 0 . . . 1 0

0 x−n−a
b−a . . . xn−a

b−a 1


∈ R(2n+3)×(2n+3).

Fig. 2 shows the extremal entries of P−1
n depending on n ≥ 2. Having positive

and negative entries in P−1
n , Thm. 4.2 fails to apply for sinc-collocation.

4.2 Bubnov-Galerkin methods

For a second class of projection methods, assume X(Ω) = L2(Ω) and that
{φ1, . . . , φdn} forms a basis of a subspace Xn ⊂ L2(Ω). With the inner product

(u, v) :=
∫

Ω
u(y)v(y) dµ(y) (4.11)

we require orthogonality (πnu−u, φi) = 0 for 1 6 i 6 dn leading to functionals
ψ′i(u) = (u, φi). This results in the positively definite Gramian matrix

Pn = ((φj, φi))
dn
i,j=1.

Theorem 4.9 (positivity of Πn on L2(Ω)d) Assume that every basis ele-
ment φi : Ω→ R, 1 6 i 6 dn, has nonnegative values. If the Gramian matrix
Pn is monomial, then Πn is L2(Ω)d+-positive.
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PROOF. Let u ∈ L2(Ω)d, 0 ≺ u and y′ ∈ Y ′+. Thanks to Lemma 2.9(a)
this implies 0 6 〈〈u(y), y′〉〉 for µ-a.a. y ∈ Ω. Since the Gramian matrix Pn is
assumed to be monomial, we obtain from [13, p. 2, Thm. 1.1] that the inverse
is nonnegative. Hence, if we write φ′j(u) = ((uk, φj))

d
k=1, then (4.1) implies

〈〈(Πnu)(x), y′〉〉 = 〈〈
dn∑
j=1

φ′j(u)φj(x), y′〉〉 =
dn∑
j=1

φj(x)〈〈φ′j(u), y′〉〉

=
dn∑
j=1

φj(x)〈〈
dn∑
i=1

(P−1
n )ij

∫
Ω
u(y)φi(y) dµ(y), y′〉〉

=
dn∑
i=1

∫
Ω
φi(y) 〈〈u(y), y′〉〉︸ ︷︷ ︸

≥0

dµ(y)
dn∑
j=1

φj(x)(P−1
n )ij ≥ 0

for all x ∈ Ω by assumption. Therefore, Lemma 2.9(a) yields the claim. 2

Corollary 4.10 For orthogonal bases {φ1, . . . , φdn} consisting of nonnegative
functions the projection Πn is L2(Ω)d+-positive.

PROOF. Because {φ1, . . . , φdn} is orthogonal, the Gramian matrix is diago-
nal with positive entries along the diagonal, i.e. it is monomial. 2

Corollary 4.11 Let Hypothesis (L2) hold with a monomial Gramian matrix
Pn. If K is L2(Ω)d+-positive, then also the compositions ΠnK ∈ L(L2(Ω), Xn)
and KΠn ∈ L(L2(Ω)d) are L2(Ω)d+-positive.

PROOF. We refer to Cor. A.2. 2

In the following subsections we endow Ω = [a, b] with a grid (4.7).

4.2.1 Piecewise constant functions in Rκ

The grid (4.7) breaks Ω = [a, b] into the subintervals [xj−1, xj] of length hj,
1 6 j 6 n. For the ansatz space

Xn := {u ∈ L2[a, b] : u is constant on [xj, xj+1], 0 6 j < n}

of piecewise constant functions the characteristic functions φj := χ[xj−1,xj ],
1 6 j 6 n, establish an orthogonal basis yielding the diagonal Gramian matrix

Pn := diag(h0, . . . , hn−1).
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Fig. 3. Extremal entries of the inverse Gramian matrices P−1
n for piecewise affine ba-

sis functions from Sect. 4.2.2 depending on n (left), as well as the associate functions
σi : [−1, 1]→ R, 0 6 i 6 n, for n = 20

In particular, Cor. 4.10 applies and yields a positive Bubnov-Galerkin method
with orthogonal projections

Πnu =
n∑
j=1

1

hj−1

∫ xj

xj−1

u(y) dyχ[xj−1,xj ]. (4.12)

Concerning an extension to rectangles Ω := [a1, b1]× . . .× [aκ, bκ] we proceed
as follows: Subdivide each interval [aj, bj] into n subintervals Iji . With the
corresponding characteristic functions φji = χIji

: [aj, bj] → R+, 1 6 i 6 n,

multivariable versions read as

φι(x) :=
κ∏
j=1

φjιj(xj) for x = (x1, . . . , xκ) ∈ Ω, ι = (ι1, . . . , ικ) ∈ {1, . . . , n}κ .

Given this, choose {φι : Ω→ R+ | ι ∈ {1, . . . , n}κ} as basis of Xn ⊂ Lp(Ω)
having the dimension dn = nκ.

Differing from their convenient role in collocation methods (cf. Ex. 4.5), piece-
wise linear functions do not preserve positivity.

4.2.2 Piecewise linear functions

With the above notation, consider the ansatz space

Xn :=
{
u ∈ L2[a, b] : u is affine on [xj, xj+1], 0 6 j < n

}
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of piecewise affine functions. The hat functions φj : [a, b] → R from Ex. 4.5
constitute a basis yielding the tridiagonal (n+ 1)× (n+ 1)-Gramian matrix

Pn =
1

6



2h0 h0

h0 2(h0 + h1) h1

. . . . . . . . .

hn−2 2(hn−2 + hn−1) hn−1

hn−1 2hn−1


(cf. [9, p. 104, Rem. 4.5.26]). Now Cor. 4.10 does not apply, because as illus-
trated in Fig. 3, the entries of P−1

n are positive and negative.

Example 4.12 For simplicity we restrict to hj = b−a
n

and obtain

Pn =
b− a
6n



2 1

1 4 1
. . . . . . . . .

1 4 1

1 2


.

as the Gramian matrix. For x ∈ (a, a+ h] one has

(πnu)(x)
(4.1)
=

n∑
j=0

φ′j(u)φj(x) = φ′0(u)φ0(x) + φ′1(u)φ1(x)

(4.2)
=
(
(P−1

n )11(u, φ0) + (P−1
n )12(u, φ1)

)
φ0(x)

+
(
(P−1

n )21(u, φ0) + (P−1
n )22(u, φ1)

)
φ1(x)

=
(
(P−1

n )11φ0(x) + (P−1
n )21φ1(x)

)
(u, φ0)

+
(
(P−1

n )12φ0(x) + (P−1
n )22φ1(x)

)
(u, φ1)

and in particular with the characteristic function u := χ[a,a+θh] ∈ Lp[a, b]+ and
θ ∈ (0, 1) it results from (4.11) that (u, φ0) = hθ

2
(2 − θ), (u, φ1) = hθ

2
θ. We

consequently arrive at

(πnu)(x) =hθ
2

[(
(P−1

n )11φ0(x) + (P−1
n )21φ1(x)

)
(2− θ)

+
(
(P−1

n )12φ0(x) + (P−1
n )22φ1(x)

)
θ
]

and hence, if we choose θ > 0 close to 0 and x 6 a+ h close to a+ h (where
φ0 has values near 0 and φ1 near 1, cf. (4.8)), then the sign of (πnu)(x) is
determined by the entry (P−1

n )21. Now by Lemma B.1 one has (P−1
n )21 < 0
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and thus there exists an interval [a+ h0, a+ h], h0 ∈ (0, h) on which (πnu)(x)
is negative, that is πnu 6∈ L2[a, b]+.

5 Applications

5.1 Dispersal kernels

In order to describe the dispersal stage in ecological models [14], various real-
valued functions kij : Ω2 → R+ are used as entries in corresponding matrix-
valued kernels K : Ω2 → Rd×d for Fredholm operators K; thus one speaks
of dispersal kernels and chooses the Lebesgue measure µ = λκ. Often the
functions k = kij are symmetric, i.e. k(x, y) = k(y, x), or of convolution form
k(x, y) = k̃(x − y) for all x, y ∈ Ω with an even function k̃ : Rκ → R+.
Given a dispersal rate α > 0 and the Euclidean norm |·| on Rκ typical choices
are listed in Tab. 1. The kernels from Tab. 1 satisfy Hypothesis (L) (whose

kernel k̃(x)

Gauß 1√
2πα2

exp
(
− 1

2α2 |x|2
)

Cauchy α
π(α2+|x|2)

Laplace 1
2α exp

(
− 1
α |x|

)
exponential square root 1

4α exp
(
−
√

1
α |x|

)
top-hat 1

2αχBα(0)(|x|)

tent 1
α max

{
0, 1− 1

α |x|
}

Table 1
List of dispersal kernels satisfying

∫
R k̃(y) dy = 1 for κ = 1

limit relation moreover holds uniformly in x0), as well as Hypothesis (L2).
Consequently, the resulting Fredholm operator Ku =

∫
Ω k(·, y)u(y) dy acting

on C(Ω) resp. L2(Ω) is even compact. In case Y+ = R+ these kernels yield
positive operators K due to Thm. 2.7 resp. 2.12. On the space X(Ω) = C(Ω),
besides for the top-hat and the tent kernel, K is even strongly positive. Yet,
for sufficiently large dispersal rates α also the top-hat and tent kernel yield a
strongly positive K, i.e. provided the condition Ω ⊆ Bα(y) for all y ∈ Ω holds.

Now we return to matrix-valued kernels in K: Here criteria for positivity can
be derived from Ex. 2.4 and 2.5. With vectors ei ∈ Rd spanning Y+ ⊂ Rd and
e′j ∈ Rd, a kernel K(x, y) ∈ Rd×d is

• Y+-positive ⇔ 0 6 〈〈K(x, y)ei, e
′
j〉〉,

• strictly Y+-positive ⇔ 0 6 〈〈K(x, y)ei, e
′
j〉〉 and K(x, y) is Y+-injective,
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• strongly Y+-positive ⇔ 0 < 〈〈K(x, y)ei, e
′
j〉〉

holds for all 1 6 i, j 6 d, x ∈ Ω and µ-a.a. y ∈ Ω.

If a cone Y+ is an orthant as in Ex. 2.5, then 〈〈K(x, y)ei, e
′
j〉〉 = ςiςjkij(x, y)

implies that K(x, y) is

• Y+-positive ⇔ ςiςjkij(x, y) ≥ 0,
• strictly Y+-positive ⇔ ςiςjkij(x, y) ≥ 0 and K(x, y) is Y+-injective,
• strongly Y+-positive ⇔ sgn kij(x, y) = ςiςj

for all 1 6 i, j 6 d, x ∈ Ω and µ-a.a. y ∈ Ω.

5.2 Krein-Rutman eigenfunctions

Let X(Ω) be a Banach space of real-valued functions over Ω. Given a compact
Fredholm operator K ∈ L(X(Ω)d), the Krein-Rutman Thm. A.3 provides con-
ditions guaranteeing that its spectral radius r(K) > 0 is the dominant eigen-
value with an associate nonnegative eigenfunction u∗ ∈ X(Ω)d. In this section,
we investigate in which sense this property is preserved under discretization.

For this purpose, consider an abstract eigenvalue problem

Ku = λu in X(Ω)d (5.1)

for a Fredholm operator K. Numerical approaches to (5.1) approximate (λ, u) ∈
C×X(Ω) by eigenpairs (λn, v̂

n) ∈ C× RdNn of related problems

Knv̂n = λnv̂
n, (5.2)

where the matrices Kn ∈ RdNn×dNn depend on the particular discretization
method. Nevertheless, Kn consists of block matrices

Kn :=


K11 . . . K1d

...
...

Kd1 . . . Kdd

 , v̂n :=


v1

...

vd

 ,

with also vi ∈ RNn and Kij ∈ RNn×Nn depending on the method.

Nevertheless, in our numerical computations we rely on the Matlab functions
eig to approximate the dominant eigenvalue of Kn and eigs when also the
corresponding eigenvectors are of interest.
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Fig. 4. Nyström discretization to approximate the dominant positive eigenfunction
of the Gauß kernel with α = 0.01 based on quadrature rules with 90 nodes. The
dots represent the values u∗n(η), η ∈ Ωn

5.2.1 Nyström methods

Let X(Ω) = C(Ω) and (Qn) be a quadrature rule. Replacing K in (5.1) by the
discrete Fredholm operator (3.2) yields

qn∑
j2=0

wj2K(x, ηj2)u(ηj2) = λu(x) for all x ∈ Ω.

If we now set x = ηj1 for 0 6 j1 6 qn, then one obtains a matrix Kn as in
relation (5.2) with Nn := qn + 1 and the blocks

Ki1i2 = (wj2ki1i2(ηj1 , ηj2))
qn
j1,j2=0 for all 1 6 i1, i2 6 d.

For simplicity we retreat to real-valued continuous kernels K : Ω×Ω→ (0,∞)
and the solid cone Y+ := R+. Then K is strongly positive by Thm. 2.7(b) and
the Krein-Rutman Thm. A.3(b) yields that the spectral radius r(K) > 0 is
the dominant eigenvalue with eigenfunction u∗ ∈ C(Ω)◦+. If all the quadrature
weights are positive, then a discrete Fredholm operator Kn from (3.2) is

• strongly positive on C(Ωn) (cf. Rem. 3.3) and thus Thm. A.3(b) applies,
• positive on C(Ω) (due to Thm. 3.4), where Thm. A.3(a) applies.

In any case, one obtains the dominant eigenpair (r(Kn), v̂n) from the equation
(5.2) and as dominant eigenfunction u∗n ∈ C(Ω) we use the Nyström interpolate

u∗n(x) :=
1

r(Kn)

qn∑
j=0

wjK(x, ηj)v̂
n
j for all x ∈ Ω.

The positivity of the numerically obtained eigenfunction u∗n is confirmed by
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Fig. 5. Nyström discretization to approximate the dominant positive eigenfunction
of the Gauß kernel with α = 0.01 based on Milne’s rule (C.3) with with 45 nodes
(left) and 90 nodes (right).

Example 5.1 (Gauß kernel) We apply different Nyström methods to the
Fredholm operator

(Ku)(x) =
1√

2πα2

∫ 1

−1
e−

(x−y)2

2α2 u(y) dy

with the dispersal rate α = 0.01 over Ω = [−1, 1]. The corresponding dominant
eigenfunctions (as Nyström interpolates) for the Trapezoidal rule (C.2) and
6th order Gauß rule (C.4) are illustrated in Fig. 4 (each with 90 notes). Both
cases yield strongly positive eigenfunctions (although hardly visible in Fig. 4,
one has u∗(x) > 0 for x ∈ {−1, 1}), but the Gauß discretizations exhibit a
strongly oscillatory behavior. This is due to the fact that the used number of
nodes (qn = 89) is small in comparison to the dispersal rate (α = 0.01). Os-
cillations become weaker when increasing qn.
For the Milne rule (C.3) this situation changes, since it involves negative
weights. Indeed, the resulting discrete Fredholm operator Kn is not positive
and the Krein-Rutman Thm. A.3 does not apply. As illustrated in Fig. 5 the
eigenfunction corresponding to the eigenvalue with maximal real part can have
varying signs. Numerical experiments exhibit that this sign changing property
persists until the number of nodes is larger than 146.

5.2.2 Projection methods

Based on the ansatz space Xn = span {φ1, . . . , φdn} we aim to approximate
solutions to eigenvalue problems (5.1) numerically. Thereto, replace u in (5.1)
by un = Πnu given as in (4.3). This leads to a discretized version

Knun = λnu
n in Xd

n (5.3)
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with Kn = KΠn in order to obtain approximations (λn, u
n), un ∈ Xd

n, to an
eigenpair (λ, u), u ∈ X(Ω)d, of (5.1). Note that for a solution un ∈ Xd

n of the
discretized problem (5.3) one has Knun ∈ Xd

n.

Similarly, one proceeds for spatial discretization of Fredholm equations of the
first and second kind (cf. [3,9]).

For a matrix-valued kernel K(x, y) define the Fredholm operators

Ki1,i2 ∈ L(X(Ω)), Ki1i2u :=
∫

Ω
ki1i2(·, y)u(y) dy for all 1 6 i1, i2 6 d.

In this notation, the eigenvalue problem (5.1) is equivalent to the relation

d∑
i2=1

Ki1i2ui2 = λui1 for all 1 6 i1 6 d

and in order to arrive at the spatially discretized problem (5.3), we insert
ui2 =

∑dn
j1=1 v

j1
i2φj1 with coefficients vj1i2 ∈ R. Applying the functional φ′j2 yields

d∑
i2=1

dn∑
j1=1

φ′j2(Ki1i2φj1)v
j1
i2 = λnv

j2
i1 for all 1 6 i1 6 d, 1 6 j2 6 dn.

This is equivalent to an eigenproblem (5.2) with Nn = dn and the blocks

Ki1i2 :=


φ′1(Ki1i2φ1) . . . φ′1(Ki1i2φdn)

...
...

φ′dn(Ki1i2φ1) . . . φ′dn(Ki1i2φdn)

 , vi1 :=


v1
i1
...

vdni1


for all 1 6 i1, i2 6 d. On this basis, the eigenfunctions of (5.3) become

un =
dn∑
j=1

φj


vj1
...

vjd

 .

In order to be more specific, let us emphasize the subsequent projection meth-
ods with an interval Ω = [a, b] on a grid (4.7).

Collocation with Lagrange bases : Lagrange bases {φ1, . . . , φdn} lead to blocks

Ki1i2 =
∫

Ω


ki1i2(x1, y)φ1(y) . . . ki1i2(x1, y)φdn(y)

...
...

ki1i2(xdn , y)φ1(y) . . . ki1i2(xdn , y)φdn(y)

 dy.
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In particular, the bases from Ex. 4.5 (hat functions) and Ex. 4.6 (Lagrange
functions) are of the form {φ0, . . . , φn} and thus dn = n+ 1 in (5.2).

Collocation with cubic splines : Use the order-preserving C1-spline

(Πnu)(x) := κj(x)u(xj) + κ̄j(x)u(xj+1) for all x ∈ [xj, xj+1], 0 6 j < n

from Cor. 4.7 with the real coefficients

κj(x) := 1− 3(x−xj
hj

)2 + 2(x−xj
hj

)3, κ̄j(x) := 3(x−xj
hj

)2 − 2(x−xj
hj

)3,

which results in

(KΠnu)(x) =
n−1∑
j=0

∫ xj+1

xj
K(x, y)κj(y) dyu(xj) +

n−1∑
j=0

∫ xj+1

xj
K(x, y)κ̄j(y) dyu(xj+1)

for all x ∈ [a, b]. Setting x = xi for 0 6 i 6 n in the ansatz (5.3) combined
with the abbreviations ui := u(xi) yields the n+ 1 identities

n−1∑
j=0

∫ xj+1

xj
K(xi, y)κj(y) dyuj +

n−1∑
j=0

∫ xj+1

xj
K(xi, y)κ̄j(y) dyuj+1 = λui

for all 0 6 i 6 n, which are equivalent to the eigenvalue problem

(


∫ x1
x0
K(x0, y)κ0(y) dy . . .

∫ xn
xn−1

K(x0, y)κn−1(y) dy 0
...

...
...∫ x1

x0
K(xn−1, y)κ0(y) dy . . .

∫ xn
xn−1

K(xn−1, y)κn−1(y) dy 0

0 . . . 0 0



+



0 0 · · · 0

0
∫ x1
x0
K(x0, y)κ̄0(y) dy . . .

∫ xn
xn−1

K(x0, y)κ̄n−1(y) dy
...

...
...

0
∫ x1
x0
K(xn−1, y)κ̄0(y) dy . . .

∫ xn
xn−1

K(xn−1, y)κ̄n−1(y) dy


)


u0

...

un−1

un


= λ



u0

...

un−1

un


in R(n+1)d. Referring to the formulation (5.2) this gives rise to the blocks

Ki1i2 =



∫ x1
x0
ki1i2(x0, y)κ0(y) dy . . .

∫ xn
xn−1

ki1i2(x0, y)κn−1(y) dy 0
...

...
...∫ x1

x0
ki1i2(xn−1, y)κ0(y) dy . . .

∫ xn
xn−1

ki1i2(xn−1, y)κn−1(y) dy 0

0 . . . 0 0


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i αi νi λi

1 1.0 0.86033358901938 0.5746552163364324

2 2.0 1.30654237418881 0.3694054047082261

Table 2
Dominant eigenvalues λi of Ki for L = 2

+



0 0 · · · 0

0
∫ x1
x0
ki1i2(x0, y)κ̄0(y) dy . . .

∫ xn
xn−1

ki1i2(x0, y)κ̄n−1(y) dy
...

...
...

0
∫ x1
x0
ki1i2(xn−1, y)κ̄0(y) dy . . .

∫ xn
xn−1

ki1i2(xn−1, y)κ̄n−1(y) dy


.

Bubnov-Galerkin method with piecewise constant basis : One obtains the blocks

Ki1i2 =
∫

Ω

∫
Ω


ki1i2(x, y)φ1(y)φ1(x) . . . ki1i2(x, y)φdn(y)φ1(x)

...
...

ki1i2(x, y)φ1(y)φdn(x) . . . ki1i2(x, y)φdn(y)φdn(x)

 dy dx.

Because the piecewise constant basis functions {φ1, . . . , φn} from Sect. 4.2.1
have the support [xj, xj+1], 0 6 j < n, the integrals simplify to

Ki1i2 =


∫ x1
x0

∫ x1
x0
ki1i2(x, y) dy dx . . .

∫ x1
x0

∫ xn
xn−1

ki1i2(x, y) dy dx
...

...∫ xn
xn−1

∫ x1
x0
ki1i2(x, y) dy dx . . .

∫ xn
xn−1

∫ xn
xn−1

ki1i2(x, y) dy dx

 .

Finally let us test the above methods by means of

Example 5.2 (Laplace kernel) Let α1, α2 > 0 denote dispersal rates and a
mapping k : Ω× Ω→ (0,∞) be continuous. The Fredholm operator

Ku :=
∫

Ω
K(·, y)u(y) dy, K(x, y) :=

 1
2α1
e
−
|x−y|
α1 −k(x, y)

0 1
2α2
e
−
|x−y|
α2


satisfies Hypothesis (NL) and is compact on C(Ω)2, as well as on L2(Ω)2.

The south-east cone Y+ := R+ × (−R+) is spanned by the vectors e1 :=
(

1
0

)
,

e2 := −
(

0
1

)
and with e′i := ei for i = 1, 2 we consequently obtain

〈K(x, y)e1, e
′
1〉 = 1

2α1
e
−
|x−y|
α1 > 0, 〈K(x, y)e2, e

′
1〉 = k(x, y) > 0,

30



10
1

10
2

n

10
-6

10
-4

10
-2

10
0

e
rr

o
r(

n
)

Error in the dominant eigenvalue

piecewise linear

polynomial

piecewise constant

cubic spline

10
2

n

10
-6

10
-4

10
-2

10
0

e
rr

o
r(

n
)

Error in the dominant eigenvalue

piecewise linear

polynomial

piecewise constant

cubic spline

Fig. 6. Error in the dominant eigenvalue for piecewise linear collocation (◦), poly-
nomial collocation (•), Bubnov-Galerkin with piecewise constant functions (+) and
cubic splines (×) up to n = 100 nodes (left) and up to n = 500 nodes (right)

〈K(x, y)e1, e
′
2〉 = 0, 〈K(x, y)e2, e

′
2〉 = 1

2α2
e
−
|x−y|
α2 > 0.

Therefore, the kernel K(x, y) is Y+-positive for all x, y ∈ Ω. Thus, Thm. 2.7
implies that K is C(Ω)2

+-positive, while Thm. 2.12 ensures L2(Ω)2
+-positivity.

With the aid of

Kiu(x) :=
1

2αi

∫
Ω
e
−
|x−y|
αi u(y) dy for all x ∈ Ω, i = 1, 2

we obtain the spectrum σ(K) = σ(K1) ∪ σ(K2).
In order to compute the dominant eigenvalue of K numerically, we retreat to
intervals Ω = [−L

2
, L

2
] for some L > 0. It is shown in [14, pp. 24–27, Sect. 3.2]

that the dominant eigenvalue λi > 0 of Ki and the smallest positive solution
νi of the transcendental equation tan( L

2αi
ν) = 1

ν
are related via λi = 1

1+ν2i
. We

refer to Tab. 2 for exact values and approximate the dominant eigenvalue with
positive collocation methods (piecewise linear, polynomial and spline) and pos-
itive Bubnov-Galerkin methods (piecewise constant). This is based on a grid
(4.7) with a = −L

2
, b = L

2
and xj := −L

2
+ j L

n
, 0 6 j 6 n. For the sake of

discrete projection methods, the remaining integrals are approximated by the
summed midpoint rule (C.1) with the centered nodes ηi := xi − L

2n
, 1 6 i 6 n.

For L = 2 and αi as in Tab. 2 we moreover compute the dominant eigenvalue
of Kn and relate it to the exact eigenvalue λ1 ≈ 0.5746552163364324 of K.
The results of our numerical simulations are illustrated in Fig. 6. Piecewise
linear collocation and the Bubnov-Galerkin method with piecewise constant ba-
sis functions illustrate quadratic convergence. This is also true for collocation
with polynomial basis functions until beginning with n ≈ 25 computational in-
stabilities become apparent. The positivity preserving collocation based on cubic
splines from Cor. 4.7 shows only linear convergence.
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6 Conclusion

We provided sufficient conditions that positivity properties in a general class
of matrix-valued kernels K transfer to Fredholm operators (F ) over compact
domains Ω. In addition, the persistence of this property under Nyström and
projection methods is studied. As a result, when solving numerical problems
involving such operators, we recommend to restrict to Nyström methods with
positive weights. Among the projection methods, collocation with piecewise
linear basis functions yields positivity-preserving semi-discretizations and a
combination with the Midpoint Rule (C.1) or the Trapezoidal Rule (C.2) leads
to a corresponding scheme. Although there are further positivity preserving
collocation methods, they have less favorable properties. For Bubnov-Galerkin
methods, piecewise constant approximation is suitable and can be combined
with e.g. the Midpoint Rule (C.1) in order to arrive at feasible schemes pre-
serving positivity.

A Cones and positive operators

Let (X, ‖·‖) denote a real Banach space with dual space X ′ and the duality
pairing 〈x, x′〉 := x′(x). A nonempty closed and convex subset X+ ⊆ X is
called (order) cone, if R+X+ ⊆ X+ and X+ ∩ (−X+) = {0} hold. Equipped
with such a cone one arrives at an ordered Banach space X. Let us assume
X+ 6= {0} throughout and for elements x, x̄ ∈ X we write

x 6 x̄ :⇔ x̄− x ∈ X+,

x < x̄ :⇔ x̄− x ∈ X+ \ {0} , (A.1)

x� x̄ :⇔ x̄− x ∈ X◦+;

the latter relation requires X◦+ 6= ∅ and one speaks of a solid cone X+. A cone
is total, if X = X+ −X+. Solid cones satisfy X = X+ −X+ and are total.

By means of the dual cone X ′+ := {x′ ∈ X ′ : 0 6 〈x, x′〉 for all x ∈ X+} we
can characterize the elements of X+ and X◦+ as follows:

Lemma A.1 (a) X ′+ 6= {0} and for every x ∈ X the following holds:

x ∈ X+ ⇔ 0 6 〈x, x′〉 for all x′ ∈ X ′+,
x ∈ X+ \ {0} ⇒ 0 < 〈x, x′0〉 for some x′0 ∈ X ′+ \ {0} .

(b) If X+ is solid, then for every x ∈ X the following holds:

x ∈ X◦+ ⇔ 0 < 〈x, x′〉 for all x′ ∈ X ′+ \ {0} ,
x ∈ ∂X+ ⇒ 0 = 〈x, x′0〉 for some x′0 ∈ X ′+ \ {0} . (A.2)
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PROOF. Due to [5, p. 222, Prop. 19.3(a–b)] it remains to verify the direction
“⇐” in the first equivalence of (b). Let 0 < 〈x, x′〉 for all x′ ∈ X ′+ \{0} and we
deduce x ∈ X+ from (a). Using the contraposition of (A.2) we derive x /∈ ∂X+

which implies that x ∈ X◦+. 2

A bounded linear mapping T ∈ L(X) is called

• positive, if T (X+ \ {0}) ⊆ X+,
• strictly positive, if T (X+ \ {0}) ⊆ X+ \ {0},
• strongly positive, if T (X+ \ {0}) ⊆ X◦+.

When working with several cones, we write X+-positive etc., in order to indi-
cate a particular cone. We denote T ∈ L(X) as X+-injective, provided

N(T ) ∩X+ = {0}

holds. Then T is strictly positive, if and only if it is positive and X+-injective.
A strongly positive T yields the inclusion TX◦+ ⊆ X◦+.

The positivity properties are preserved under compositions and it holds:

Corollary A.2 Let X+ be a solid cone and T, S ∈ L(X). If S is strictly
positive and T is strongly positive, or if S strongly positive and T satisfies
TX◦+ ⊆ X◦+, then TS is strongly positive.

PROOF. This is immediate by definition. 2

We conclude with a version of the Krein-Rutman theorem suiting our purposes:

Theorem A.3 (Krein-Rutman) Let X+ be a cone and T ∈ L(X) be com-
pact.

(a) If X+ is total and T is positive with r(T ) > 0, then the spectral radius
r(T ) is an eigenvalue of T with positive eigenvector x∗ (cf. [5, p. 226,
Thm. 19.2] or [21, p. 290, Prop. 7.26]).

(b) If X+ is solid and T is strongly positive, then T has exactly one eigen-
vector with 0 < x∗ and ‖x∗‖ = 1; the corresponding eigenvalue is r(T )
and 0� x∗ (cf. [21, p. 290, Thm. 7.C]).

One calls x∗ a dominant eigenvector ( eigenfunction on function spaces X).
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B Tridiagonal matrices

Let n ∈ N \ {1} and a1, . . . , an, b1, . . . , bn−1, c1, . . . , cn−1 be reals with bj 6= 0,
1 6 j < n, such that the tridiagonal matrix

T :=



a1 b1

c1 a2 b2

. . . . . . . . .

cn−2 an−1 bn−1

cn−1 an


is nonsingular. If we recursively introduce the finite sequences

dn := an, dt−1 := at−1 − bt−1ct−1

dt
for all t = n, . . . , 2,

δ1 := a1, δt+1 := at+1 − btct
δt

for all t = 1, . . . , n− 1,

then the following holds (with the convention that empty products are 1):

Lemma B.1 ([8, Thm. 2.1]) The entries of the inverse T−1 are given by

(T−1)ij = (−1)i+j

bi · · · bj−1
dj+1···dn
δi···δn , i 6 j,

cj · · · ci−1
di+1···dn
δj ···δn , j < i.

C Quadrature rules

Below we list the quadrature rules (Qn) used in our numerical simulations.
We abbreviate xj := a+ jh with h = b−a

n
and refer to [6, pp. 361ff, Chap. 15]

for the following facts (here ξ ∈ [a, b] refers to an intermediate point).

• Summed midpoint rule: The constant weights wj = h supplemented by
nodes ηj = a+ (j + 1

2
)h and qn := n− 1 lead to

∫ b

a
u = h

n−1∑
j=0

u(xj + h
2
) + b−a

24
h2u′′(ξ) (C.1)

• Summed trapezoidal rule: The weights w0 = wn = h
2
, wj = h for 1 6 j < n,

the nodes ηj = xj and qn = n yield

∫ b

a
u = h

2

n−1∑
j=0

(u(xj) + u(xj+1))− b−a
12
h2u′′(ξ) (C.2)
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• Summed Milne’s rule: The weights w3j = w3j+2 = 2
3
h, w3j+2 = −1

3
h, the

nodes η3j = 3xj+xj+1

4
, η3j+1 = xj+xj+1

2
, η3j+2 = xj+3xj+1

4
and qn = 3n give

∫ b

a
u =h

3

n−1∑
j=0

(
2u(3xj+xj+1

4
)− u(xj+xj+1

2
) + 2u(xj+3xj+1

4
)
)

+ b−a
23040

h4u(4)(ξ) (C.3)

• Summed 6th order Gauß: The weights w3j = w3j+2 = 5
8
h, w3j+1 = 4

9
h, the

nodes η3j = xj +
(
1 −

√
3
5

)
h
2
, η3j+1 = xj + h

2
, η3j+2 = xj +

(
1 +

√
3
5

)
h
2

and
qn = 3n imply the quadrature rule

∫ b

a
u = h

18

n−1∑
j=0

(
5u(xj + (1−

√
3
5
)h

2
) + 8u(xj + h

2
) + 5u(xj + (1 +

√
3
5
)h

2
)
)

+ b−a
31500

h6u(6)(ξ). (C.4)
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