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Abstract In theoretical ecology, models describing the spatial dispersal and the
temporal evolution of species having non-overlapping generations are often based
on integrodifference equations. For various such applications the environment has
an aperiodic influence on the models leading to nonautonomous integrodifference
equations. In order to capture their long-term behaviour comprehensively, both
pullback and forward attractors, as well as forward limit sets are constructed for
general infinite-dimensional nonautonomous dynamical systems in discrete time.
While the theory of pullback attractors, but not their application to integrodiffer-
ence equations, is meanwhile well-established, the present novel approach is needed
in order to understand their future behaviour.
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1 Introduction

Integrodifference equations not only occur as temporal discretisations of integro-
differential equations or as time-1-maps of evolutionary differential equations, but
are of interest in themselves. First and foremost, they are a popular tool in theoret-
ical ecology to describe the dispersal of species having non-overlapping generations
(see, for instance, [18] or [17,25,9]). While the theory of Urysohn or Hammerstein
integral equations is now rather classical [19], both numerically and analytically,
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our goal is here to study their iterates from a dynamical systems perspective. This
means one is interested in the long term behaviour of recursions based on a fixed
nonlinear integral operator. In applications, the iterates for instance represent the
spatial distribution of interacting species over a habitat. One of the central ques-
tions in this context is the existence and structure of an attractor. These invariant
and compact sets attract bounded subsets of an ambient state space X and fully
capture the asymptotics of an autonomous dynamical system [8,23]. The dynamics
inside the attractor can be very complicated and even chaotic [7].

Extending this situation, the main part of this paper is devoted to general
nonautonomous difference equations in complete metric spaces. Their right-hand
side can depend on time allowing to model the dispersal of species in temporally
fluctuating environments [3,9] being not necessarily periodic. Thus, the behaviour
depends on both the initial and the actual time. This is why many dynamically
relevant objects are contained in the extended state space Z × X (one speaks of
nonautonomous sets) [10], rather than being merely subsets of the state space X as
in the autonomous case. Furthermore, a complete description of the dynamics in a
time-variant setting necessitates a strict distinction between forward and pullback
convergence [10,15]. For this reason only a combination of several attractor notions
yields the full picture:

– The pullback attractor [4,11,15,20] is a compact, invariant nonautonomous set
which attracts all bounded sets from the past. As fixed target problem, it is
based on previous information, at a fixed time from increasingly earlier initial
times. Since it consists of bounded entire solutions to a nonautonomous system
(see [20, p. 17, Cor. 1.3.4]), a pullback attractor can be seen as an extension of
the global attractor to nonautonomous problems and apparently captures the
essential dynamics to a certain point. Meanwhile the corresponding theory is
widely developed in discrete and continuous time. However, pullback attractors
reflect the past rather than the future of systems (see [14]) and easy examples
demonstrate that differential or difference equations with identical pullback
attractors might have rather different asymptotics as t → ∞ and possibly
feature limit sets, which are not captured by the pullback dynamics.

– This led to the development of forward attractors, which are also compact and
invariant nonautonomous sets [15]. This dual concept depends on information
from the future and given a fixed initial time, the actual time increases be-
yond all bounds — they are a moving target problem. Forward attractors are
not unique, independent of pullback attractors, but often do not exist. Nev-
ertheless, we will describe forward attractors using a pullback construction,
even though this has the disadvantage that information on the system over the
entire time axis Z is required.

– Therefore, it was suggested in [12] to work with forward limit sets, a concept
related to the uniform attractor due to [24]. They correctly describe the asymp-
totic behaviour of all forward solutions to a nonautonomous difference equa-
tion. These limit sets have forward attraction properties, but different from
pullback and forward attractors, they are not (even positively) invariant and
constitute a single compact set, rather than a nonautonomous set. Nonetheless,
asymptotic forms of positive (and negative) invariance do hold.

The situation for forward attractors and limit sets is not as well-established as
their pullback counterparts and deserves to be developed for the above reasons.
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Their initial construction in [12,16] requires a locally compact state space, but
recent continuous-time results in [6], which extend these to infinite-dimensional
dynamical systems, will be transferred here. We indeed address nonautonomous
difference equations in (not necessarily locally compact) metric and Banach spaces,
introduce the mentioned attractor types and study their properties.

This brings us to our second purpose. The above abstract setting allows con-
crete applications to a particularly interesting class of infinite-dimensional dynam-
ical systems in discrete time, namely integrodifference equations (IDEs for short).
We provide sufficient criteria for the existence of pullback attractors tailor-made
for a quite general class of IDEs. Their right-hand sides go beyond pure integral op-
erators and might also include superposition operators, which are used to describe
populations having a sedentary fraction. Such results follow from a corresponding
theory of set contractions contained in [20, pp. 15ff], [19, pp. 79ff]. For completely
continuous right-hand sides (i.e., Urysohn operators) we construct forward limit
sets and provide an application to asymptotically autonomous IDEs. We restrict
to rather simple IDEs in the space of continuous functions over a compact domain
as state space. More complicated equations and the behaviour of attractors under
spatial discretisation will be tackled in future papers.

The contents of this paper are as follows: In Sect. 2 we establish the necessary
terminology and provide a useful dissipativity condition for nonautonomous dif-
ference equations. The key notions related to pullback convergence, i.e., limit sets
and attractors are reviewed and established in Sect. 3. The subsequent Sect. 4 ad-
dresses the corresponding notions in forward time. In detail, it establishes forward
limit sets and their (weakened) invariance properties. For a class of asymptoti-
cally autonomous equations it is shown that their forward limit sets coincide with
the global attractor of the limit equation. Moreover, a construction of forward
attractors is suggested. Finally, in Sect. 5 we provide some applications to various
IDEs. In particular, we illustrate the above theoretical results by studying pullback
attractors and forward limit sets.

Notation Let R+ := [0,∞). A discrete interval I is defined as the intersection of a
real interval with the integers Z, I′ := {t ∈ I : t+ 1 ∈ I} and N0 := {0, 1, 2, . . .}.

On a metric space (X, d), IX is the identity map, Br(x) := {y ∈ X : d(x, y) < r}
the open ball with center x ∈ X and radius r > 0, and B̄r(0) denotes its closure.
We write dist

(
x,A

)
:= infa∈A d(x, a) for the distance of x from a set A ⊆ X and

Br(A) :=
{
x ∈ X : dist

(
x,A

)
< r
}

for its r-neighbourhood. The Hausdorff semidis-

tance of bounded and closed subsets A,B ⊆ X is defined as

dist
(
A,B

)
:= sup

a∈A
inf
b∈B

d(a, b).

The Kuratowski measure of noncompactness on X (cf. [19, pp. 16ff, I.5]) is denoted
by χ : B(X)→ R, where B(X) stands for the family of bounded subsets of X.

A mapping F : X → X is said to be bounded, if it maps bounded subsets of X
into bounded sets and globally bounded, if F(X) is bounded. We say a bounded F

satisfies a Darbo condition, if there exists a real constant k ≥ 0 such that

χ
(
F(B)

)
≤ kχ(B) for all B ∈ B(X).

The smallest such k is the Darbo constant dar
(
F
)
∈ [0,∞) of F. A completely

continuous mapping F is bounded, continuous and satisfies dar
(
F
)

= 0.
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A subset A ⊆ I × X with t-fibres A(t) := {x ∈ X : (t, x) ∈ A}, t ∈ I, is called
nonautonomous set. If all fibres A(t) ⊆ X, t ∈ I, are compact, then A is denoted
as compact nonautonomous set and we proceed accordingly with other topological
notions. Furthermore, one speaks of a bounded nonautonomous set A, if there exists
real R > 0 and a point x0 ∈ X such that A(t) ⊆ BR(x0) holds for all t ∈ I.

Finally, on a Banach space X, L(X) denotes the space of bounded linear op-
erators and ρ(L) is the spectral radius of a L ∈ L(X).

2 Nonautonomous difference equations

Unless otherwise noted, let (X, d) be a complete metric space. We consider non-
autonomous difference equations in the abstract form

ut+1 = Ft(ut) (∆)

with continuous right-hand sides Ft : Ut → X and defined on closed sets Ut ⊆ X,
t ∈ I′. For an initial time τ ∈ I, a forward solution to (∆) is a sequence (φt)τ≤t with
φt ∈ Ut satisfying

φt+1 ≡ Ft(φt) (2.1)

for all τ ≤ t, t ∈ I′, while an entire solution (φt)t∈I satisfies (2.1) on I′. The unique
forward solution starting at τ ∈ I in uτ ∈ Uτ is denoted by ϕ(·; τ, uτ ); it is denoted
as general solution to (∆) and reads as

ϕ(t; τ, uτ ) :=

{
Ft−1 ◦ . . . ◦ Fτ (uτ ), τ < t,

uτ , τ = t,
(2.2)

as long as the compositions stay in Ut. Under the inclusion Ft(Ut) ⊆ Ut+1, t ∈ I′,
the general solution ϕ(t; τ, ·) : Uτ → Ut exists for all τ ≤ t and the process property

ϕ(t; s, ϕ(s; τ, u)) = ϕ(t; τ, u) for all τ ≤ s ≤ t, u ∈ Uτ (2.3)

holds; we introduce the nonautonomous set U := {(t, u) ∈ I×X : u ∈ Ut}.
One denotes (∆) as θ-periodic with some θ ∈ N, if Ft = Ft+θ, Ut = Ut+θ and

tacitly I = Z hold for all t ∈ Z. In this case the general solution satisfies

ϕ(t+ θ; τ + θ, uτ ) = ϕ(t; τ, uτ ) for all τ ≤ t, (τ, uτ ) ∈ U (2.4)

yielding a rather tame time-dependence. An autonomous equation (∆) is 1-periodic.
A nonautonomous set A ⊆ U is called positively or negatively invariant (w.r.t.

the difference equation (∆)), if the respective inclusion

Ft
(
A(t)

)
⊆ A(t+ 1), A(t+ 1) ⊆ Ft

(
A(t)

)
for all t ∈ I′

holds; an invariant set A is both positively and negatively invariant, that is,
Ft
(
A(t)

)
= A(t + 1) for all t ∈ I′. One denotes A as θ-periodic, if A(t) = A(t + θ)

holds for all t ∈ I with t+ θ ∈ I.
The next two subsections provide some preparations on nonautonomous dif-

ference equations in Banach spaces (X, ‖·‖):
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2.1 Semilinear difference equations

Let Lt ∈ L(X), t ∈ I′, be a sequence of bounded linear operators. For a linear

difference equation

ut+1 = Ltut

we define the transition operator Φ :
{

(t, τ) ∈ I2 : τ ≤ t
}
→ L(X) by

Φ(t, τ) :=

{
Lt−1 · · ·Lτ , τ < t,

IX , t = τ.

Then (∆) is understood as semilinear, if its right-hand side can be represented as

Ft = Lt + Nt (2.5)

with continuous mappings Nt : Ut → X, t ∈ I′. The variation of constants formula
[20, p. 100, Thm. 3.1.16] yields the general solution of (∆) in the form

ϕ(t; τ, uτ ) = Φ(t, τ)uτ +
t−1∑
s=τ

Φ(t, s+1)Ns
(
ϕ(s; τ, uτ )

)
for all τ ≤ t, uτ ∈ Uτ . (2.6)

The following result will be helpful in the construction of absorbing sets:

Lemma 2.1 Let Ft : Ut → Ut+1 be of semilinear form (2.5) and suppose there exist

reals αt ≥ 0, K ≥ 1 with

‖Φ(t, s)‖ ≤ K
t−1∏
r=s

αr for all s ≤ t. (2.7)

If there exist reals at ≥ 0, bt ≥ 0 such that the nonlinearity fulfills

‖Nt(u)‖ ≤ bt + at ‖u‖ for all t ∈ I′, u ∈ Ut, (2.8)

then the general solution of (∆) satisfies the estimate

‖ϕ(t; τ, uτ )‖ ≤ K ‖uτ‖
t−1∏
r=τ

(αr +Kar) +K

t−1∑
s=τ

bs

t−1∏
r=s+1

(αr +Kar) (2.9)

for all τ ≤ t and uτ ∈ Uτ .

Remark 2.2 (linear growth) In case Lt ≡ 0 on I′ one can choose K = 1, αt = 0 in
(2.7) and the estimate (2.9) simplifies to

‖ϕ(t; τ, uτ )‖ ≤ ‖uτ‖
t−1∏
r=τ

ar +
t−1∑
s=τ

bs

t−1∏
r=s+1

ar for all τ ≤ t, uτ ∈ Uτ .
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Proof Let τ ∈ I. It is convenient to abbreviate eα(t, s) :=
∏t−1
r=s αr and we first

assume that αt 6= 0, t ∈ I′. Given uτ ∈ Uτ , from (2.6) and (2.7) we obtain

‖ϕ(t; τ, uτ )‖ ≤ Keα(t, τ) ‖uτ‖+K

t−1∑
s=τ

eα(t, s+ 1) ‖Ns(ϕ(s; τ, uτ ))‖

(2.8)

≤ Keα(t, τ) ‖uτ‖+K

t−1∑
s=τ

eα(t, s+ 1)
(
bs + as ‖ϕ(s; τ, uτ )‖

)
and therefore the sequence u(t) := ‖ϕ(t; τ, uτ )‖ eα(τ, t) satisfies

u(t) ≤ K ‖uτ‖+K

t−1∑
s=τ

bseα(τ, s+ 1) +K

t−1∑
s=τ

as
αs
u(s) for all τ ≤ t.

Thus, the Grönwall inequality from [20, p. 348, Prop. A.2.1(a)] implies

u(t) ≤ Ke1+Ka
α

(t, τ) ‖uτ‖+K

t−1∑
s=τ

bseα(τ, s+ 1)e1+Ka
α

(t, s+ 1)

and consequently

‖ϕ(t; τ, uτ )‖ ≤ Keα+Ka(t, τ) ‖uτ‖+K

t−1∑
s=τ

bseα+Ka(t, s+ 1) for all τ ≤ t,

which is the claimed inequality (2.9). ut

2.2 Additive difference equations

We now address right-hand sides

Ft = Gt + Kt, (2.10)

where Gt : Ut → X is bounded and continuous, while Kt : Ut → X, t ∈ I′, is
assumed to be completely continuous.

Lemma 2.3 If Ft : Ut → Ut+1 is of additive form (2.10), then the general solution

of (∆) satisfies

dar
(
ϕ(t; τ, ·)

)
≤
t−1∏
s=τ

dar
(
Gs
)

for all τ ≤ t.

Proof Since Ft = Gt + Kt : Ut → X for every t ∈ I′ is continuous and bounded,
their composition (2.2) is also continuous and bounded. The estimate for the Darbo
constant of ϕ(t; τ, ·) will be established by mathematical induction. For t = τ the
assertion is clear, since ϕ(τ ; τ, ·) = IX and the Lipschitz constant of the identity
mapping is 1; it provides an upper bound for the Darbo constant (see [19, p. 81,
Prop. 5.3]). For times t ≥ τ , from dar

(
Kt ◦ ϕ(t; τ, ·)

)
= 0, which holds because Kt

is completely continuous (cf. [19, p. 82, Prop. 5.4]), it follows that

dar
(
ϕ(t+ 1; τ, ·)

)
= dar

(
Gt ◦ ϕ(t; τ, ·) + Kt ◦ ϕ(t; τ, ·)

)
≤ dar

(
Gt ◦ ϕ(t; τ, ·)

)
≤ dar

(
Gt
)

dar
(
ϕ(t; τ, ·)

)
=

t∏
s=τ

dar
(
Gs
)

for all τ ≤ t

from [19, pp. 79–80, Prop. 5.1]. This establishes the claim. ut
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3 Pullback convergence

In this section, suppose that I is unbounded below and that Ft : Ut → Ut+1, t ∈ I′,
i.e., (∆) generates a process on U .

A difference equation (∆) is said to be pullback asymptotically compact, if for
every τ ∈ I, every sequence (sn)n∈N in N0 with limn→∞ sn =∞ and every bounded
sequence (an)n∈N with an ∈ U(τ−sn), the sequence

(
ϕ(τ ; τ−sn, an)

)
n∈N possesses

a convergent subsequence.

3.1 Pullback limit sets

The pullback limit set ωA ⊆ U of a bounded subset A ⊆ U is given by the fibres

ωA(τ) :=
⋂
0≤s

⋃
s≤t

ϕ(τ ; τ − t,A(τ − t)) for all τ ∈ I. (3.1)

For pullback asymptotically compact nonautonomous difference equations (∆) it
is shown in [20, p. 14, Thm. 1.2.25] that ωA is nonempty, compact, invariant and
pullback attracts A, i.e., the limit relation

lim
s→∞

dist
(
ϕ(τ ; τ − s,A(τ − s)), ωA(τ)

)
= 0 for all τ ∈ I (3.2)

holds. For positively invariant sets A the defining relation (3.1) simplifies to

ωA(τ) =
⋂
0≤s

ϕ(τ ; τ − s,A(τ − s)). (3.3)

Therefore, as a fundamental tool for the construction of pullback limit sets and
attractors, as well as for forward attractors in Sect. 4.3, we state

Proposition 3.1 Suppose that (∆) has a nonempty, positively invariant, closed and

bounded subset A ⊆ U . If (∆) is pullback asymptotically compact, then the fibres

A?(τ) :=
⋂
0≤s

ϕ(τ ; τ − s,A(τ − s)) for all τ ∈ I (3.4)

define a maximal invariant, nonempty and compact nonautonomous set A? ⊆ A, which

pullback attracts A.

If the nonautonomous set A is even compact, then Prop. 3.1 applies without the
asymptotic compactness assumption.

Proof Since (∆) generates a continuous process ϕ in discrete time, the assertion
results via an adaption of [13, Prop. 5], where pullback asymptotic compactness
yields that the intersection of the nested sets in (3.4) is nonempty. ut
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3.2 Pullback attractors

A pullback attractor A∗ ⊆ U of (∆) is a nonempty, compact, invariant nonautono-
mous set which pullback attracts all bounded nonautonomous sets B ⊆ U . Bounded
pullback attractors are unique and allow the dynamical characterisation

A∗ =

{
(τ, u) ∈ U

∣∣∣∣ there exists a bounded entire solution
(φt)t∈I of (∆) satisfying φτ = u

}
(cf. [20, p. 17, Cor. 1.3.4]). Despite being pullback attracting nonautonomous sets
within A, the set A? constructed in Prop. 3.1 needs not to be a pullback attractor,
since nothing was assumed outside of A. Remedy provides the notion of a pullback

dissipative difference equation (∆). This means there exists a bounded set A ⊆ U
such that for every τ ∈ I and every bounded nonautonomous set B ⊆ U there is an
absorption time S = S(τ,B) ∈ N such that

ϕ(τ ; τ − s,B(τ − s)) ⊆ A(τ) for all s ≥ S.

For a uniformly pullback dissipative equation (∆) the absorption time S is indepen-
dent of τ . One denotes A as a pullback absorbing set.

If A is pullback absorbing, then the set A? obtained from Prop. 3.1 becomes a
pullback attractor, i.e., A? = A∗, and one has the characterisation

A∗ = ωA. (3.5)

A possibility to construct pullback absorbing sets provides

Proposition 3.2 (Pullback absorbing set) On a Banach space X, let ρ > 0 and

Ft : Ut → Ut+1 be of semilinear form (2.5) satisfying (2.7), (2.8). If the limit relations

lim
s→∞

τ−1∏
r=τ−s

(αr +Kar) = 0, Rτ := K

τ−1∑
s=−∞

bs

τ−1∏
r=s+1

(αr +Kar) <∞

hold for all τ ∈ I, then the difference equation (∆) is pullback dissipative with absorbing

set A := {(τ, u) ∈ U : ‖u‖ ≤ ρ+Rτ}. In case lims→∞ supτ∈I
∏τ−1
r=τ−s(αr+Kar) = 0

holds, the difference equation (∆) is uniformly pullback dissipative.

Proof The assertion follows from Lemma 2.1 by passing over to the pullback limit
τ → −∞ in the estimate (2.9). ut

A construction of pullback attractors A∗ based on set contractions, rather
than asymptotic compactness, is suitable for later applications to integrodifference
equations (see Sect. 5):

Theorem 3.3 If a difference equation (∆) of additive form (2.10) is uniformly pull-

back dissipative and
T−1∏
s=−∞

dar
(
Gs
)

= 0 for some T ∈ I

holds, then there exists a unique bounded pullback attractor of (∆).
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Remark 3.4 (periodic equations) For θ-periodic difference equations (∆) and sets A,
it results from (2.4) that also the pullback limit sets ωA from (3.1), the set A? from
Prop. 3.1 and the pullback attractor A∗ are θ-periodic (cf. [20, pp. 21ff, Sect. 1.4]).

Furthermore, Thm. 3.3 applies when
∏θ−1
s=0 dar

(
Gs
)
< 1.

Proof The terminology of [20] and results therein will be used. Let B̂ denote the
family of all bounded sets in I × X. Then Lemma 2.3 ensures that the general
solution ϕ(t; τ, ·) is B̂-contracting in the sense of [20, p. 15, Def. 1.2.26(i)].

Since (∆) has a bounded absorbing set A, for every bounded nonautonomous
set B, there exists an S ∈ N0 such that ϕ(τ ; τ − s,B(τ − s)) ⊆ A(t) holds for all
s ≥ S. This implies that the S-truncated orbit γSB , fibrewise given by

γSB(τ) :=
⋃
s≥S

ϕ(τ ; τ − s,B(τ − s)) ⊆ A(τ) for all τ ∈ I,

is bounded. Hence, [20, p. 16, Prop. 1.2.30] implies that (∆) is B̂-asymptotically
compact, so (∆) has a pullback attractor A∗ by [20, p. 19, Thm. 1.3.9].

Finally, the pullback attractor A∗ is contained in the closure of the absorbing
set A, so is bounded and thus uniquely determined. ut

4 Forward convergence

In the previous section, we constructed pullback attractors of pullback asymptot-
ically compact nonautonomous difference equations (∆) as pullback limit sets of
such absorbing sets. Our next aim is to provide related notions in forward time.
Due to the conceptional difference between pullback and forward convergence some
modifications are necessary, yet.

Above all, this requires a discrete interval I to be unbounded above. Now
the right-hand sides Ft : Ut → Ut+1, t ∈ I, are defined on a common closed subset
Ut = U ⊆ X, i.e., the extended state space U = I×U has constant fibres. Therefore,
the general solution ϕ : {(t, τ, u) ∈ I× U : τ ≤ t} → U is well-defined.

Given a nonautonomous set A ⊆ U , a difference equation (∆) is said to be

– A-asymptotically compact, if there exists a compact set K ⊆ U such that K
forward attracts A(τ), i.e.,

lim
s→∞

dist
(
ϕ(τ + s; τ,A(τ)),K

)
= 0 for all τ ∈ I,

– strongly A-asymptotically compact, if there exists a compact set K ⊆ U so that
every sequence

(
(sn, τn)

)
n∈N in N× I with sn →∞, τn →∞ as n→∞ yields

lim
n→∞

dist
(
ϕ(τn + sn; τn,A(τn)),K

)
= 0.

Remark 4.1 If A is positively invariant, then strong A-asymptotic compactness
(needed in Thm. 4.10 below) is a tightening of A-asymptotic compactness (required
in Thm. 4.9). Indeed, suppose that the sequence (dist

(
ϕ(tn; τ,A(τ)),K

)
)n∈N does

not converge to 0. Hence, the strong A-asymptotic compactness of (∆) and positive
invariance of A yields the contradiction

dist
(
ϕ(tn; τ,A(τ)),K

)
= dist

(
Ftn(ϕ(tn − 1; τ,A(τ)),K

)
≤ dist

(
Ftn(A(tn − 1)),K

)
−−−−→
n→∞

0.
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4.1 Forward limit sets

Let us investigate the forward dynamics of (∆) inside a nonautonomous set A. We
first capture the forward limit points from a single fibre A(τ):

Lemma 4.2 Suppose that A 6= ∅ is a bounded nonautonomous set. If (∆) is A-asymp-

totically compact with a compact subset K ⊆ U , then the fibres

ΩA(τ) :=
⋂
0≤s

⋃
s≤t

ϕ(τ + t; τ,A(τ)) ⊆ K for all τ ∈ I (4.1)

are nonempty, compact, and forward attract A(τ), i.e.,

lim
s→∞

dist
(
ϕ(τ + s; τ,A(τ)), ΩA(τ)

)
= 0. (4.2)

An analogous result for pullback limit sets is given in [20, p. 9, Lemma 1.2.12].

Remark 4.3 (characterisation of ΩA(τ)) The fibres ΩA(τ), τ ∈ I, consist of points v
such that there is a sequence

(
(sn, an)

)
n∈N with limn→∞ sn =∞, an ∈ A(τ) and

lim
n→∞

ϕ(τ + sn; τ, an) = v. (4.3)

This readily yields the monotonicity A1 ⊆ A2 ⇒ ΩA1
(τ) ⊆ ΩA2

(τ) for all τ ∈ I.

Proof Let τ ∈ I. Given a sequence yn := ϕ(τ + sn; τ, an) ∈ ϕ(τ + sn; τ,A(τ)) with
sn −−−−→

n→∞
∞ and an ∈ A(τ), by the A-asymptotic compactness of (∆), we obtain

0 ≤ dist
(
yn,K

)
≤ dist

(
ϕ(τ + sn, τ,A(τ)),K

)
−−−−→
n→∞

0.

Since K ⊆ U is compact, dist
(
yn,K

)
= mink∈K d(yn, k). This implies that there

exist a sequence (kn)n∈N in K satisfying

d(yn, kn) = dist
(
yn,K

)
−−−−→
n→∞

0,

and a subsequence (knj )j∈N converging to k̄ ∈ K. Thus,

0 ≤ d
(
ynj , k̄

)
≤ d
(
ynj , knj

)
+ d
(
knj , k̄

)
= dist

(
ynj ,K

)
+ d
(
knj , k̄

)
−−−−→
j→∞

0,

which implies that the subsequence (ynj )j∈N converges to k̄. Hence, by the char-
acterisation (4.3), k̄ ∈ ΩA(τ), i.e., ΩA(τ) is nonempty.

Now choose a sequence (vn)n∈N in ΩA(τ). By Rem. 4.3, for each fixed n ∈ N,
there is a sequence

(
(snm, a

n
m)
)
m∈N satisfying limm→∞ snm =∞ and anm ∈ A(τ) for

all m ∈ N such that

lim
m→∞

ϕ(τ + snm; τ, anm) = vn,

i.e., for every ε > 0, there is a M = M(n, ε) ∈ N such that

d
(
ϕ(τ + snm; τ, anm), vn

)
< ε for all m ≥M.
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Since limm→∞ snm = ∞, there is a M ′ = M ′(n) ∈ N satisfying snm > n for all
m ≥M ′. Pick ε = 1

n , (s̄n)n∈N as a subsequence (snmn)n∈N of (snm)n∈N and (ān)n∈N
as a subsequence (anmn)n∈N of (anm)n∈N in such a way that

m1 = max
{

1,M,M ′
}

+ 1, mn+1 = max
{

1,M,M ′,mn
}

+ 1 for all n ∈ N.

Clearly, mn+1 > max
{

1,M,M ′,mn
}

for n ∈ N. Hence, we constructed a sequence(
(s̄n, ān)

)
n∈N with limn→∞ s̄n =∞ and ān ∈ A(τ) such that

d
(
ϕ(τ + s̄n; τ, ān), vn

)
< 1

n for all n ∈ N.

Therefore,

0 ≤ dist
(
vn,K

)
≤ d
(
ϕ(τ + s̄n; τ, ān), vn

)
+ dist

(
ϕ(τ + s̄n; τ,A(τ)),K

)
≤ 1

n + dist
(
ϕ(τ + s̄n; τ,A(τ)),K

)
−−−−→
n→∞

0.

Similarly as above, because K is compact, there is a subsequence (vnj )j∈N con-
verging to v̄ ∈ K. Moreover, since ΩA(τ) is closed by definition, v̄ ∈ ΩA(τ), which
implies that ΩA(τ) is compact. Also note that limn→∞ dist

(
vn,K

)
= 0, so vn ∈ K,

i.e., ΩA(τ) ⊆ K.

Suppose that ΩA(τ̃) does not forward attract A(τ̃) for some τ̃ ∈ I, i.e., there
exist a real ε̃ > 0 and a sequence (s̃n)n∈N in N with limn→∞ s̃n =∞ and

dist
(
ϕ(τ̃ + s̃n; τ̃ ,A(τ̃)), ΩA(τ̃)

)
≥ ε̃ for all n ∈ N. (4.4)

Although the supremum in the Hausdorff semidistance in the left-hand side of (4.4)
may not be attained due to no condition ensuring that the image ϕ(τ̃+sn; τ̃ ,A(τ̃))
is compact, there still exists a point ỹn := ϕ(τ̃ + s̃n; τ̃ , ãn) ∈ ϕ(τ̃ + s̃n; τ̃ ,A(τ̃)) for
each n ∈ N with ãn ∈ A(τ̃) such that

dist
(
ϕ(τ̃ + s̃n; τ̃ ,A(τ̃)), ΩA(τ̃)

)
− ε̃

2 ≤ dist
(
ỹn, ΩA(τ̃)

)
≤ dist

(
ϕ(τ̃ + s̃n; τ̃ ,A(τ̃)

)
, ΩA(τ̃)).

The above inequalities in fact give dist
(
ỹn, ΩA(τ̃)

)
≥ ε̃

2 for all n ∈ N. On the other
hand, since ỹn ∈ ϕ(τ̃ + sn; τ̃ ,A(τ̃)), we obtain

dist
(
ỹn,K

)
≤ dist

(
ϕ(τ̃ + s̃n; τ̃ ,A(τ̃)),K

)
−−−−→
n→∞

0

and thus ỹn ∈ K. Moreover, since K is compact, there is a convergent subsequence
(ỹnj )j∈N with limit ỹ ∈ K. This shows ỹ ∈ ΩA(τ̃) by definition, and thus

dist
(
ỹ, ΩA(τ̃)

)
< ε for all ε > 0,

a contradiction to (4.4). Hence, every ΩA(τ) must forward attract A(τ). ut

Corollary 4.4 If in addition A is positively invariant w.r.t. (∆), then the inclusions

ΩA(τ) ⊆ ΩA(τ + 1) hold for all τ ∈ I.
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Owing to the positive invariance of A, every ΩA(τ) can also be written as

ΩA(τ) =
⋂
0≤s

ϕ(τ + s; τ,A(τ)) for all τ ∈ I. (4.5)

Comparing the respective relations (4.1) and (3.1), (4.2) and (3.2), (4.5) and (3.3)
shows that the fibres ΩA(τ) are counterparts to the pullback limit set ωA. However,
their invariance property is missing. This is easily demonstrated by

Example 4.5 Let I = N0 and α ∈ (0, 1
2 ]. The difference equation ut+1 = αut + αt

in R possesses the positively invariant and bounded set A = N0 × [− 1
α ,

1
α ]. This

yields the apparently not even positively invariant sets ΩA(τ) = {0} for all τ ∈ N0.

Proof Let τ ∈ I. Given a point v ∈ ΩA(τ), thanks to Fτ
(
A(τ)

)
⊆ A(τ + 1) and the

process property (2.3), we obtain

v ∈ ϕ(τ + s; τ,A(τ)) ⊆ ϕ(τ + s; τ + 1,A(τ + 1)) ⊆ U for all s > 0.

This implies ΩA(τ) ⊆ ΩA(τ + 1) ⊆ U . ut

While the fibres ΩA(τ) from Lemma 4.2 yield the long term behaviour starting
from a single fibre of A, the following result addresses all forward limit sets of (∆)
originating from within an entire nonautonomous set A.

Theorem 4.6 (Forward ω-limit sets) Suppose that A 6= ∅ is positively invariant

and bounded. If (∆) is A-asymptotically compact with a compact subset K ⊆ U , then

ω−A :=
⋂
τ∈I

ΩA(τ), ω+
A :=

⋃
τ∈I

ΩA(τ) ⊆ K

are nonempty and compact. In particular, ω+
A forward attracts A, i.e.,

lim
s→∞

dist
(
ϕ(τ + s; τ,A(τ)), ω+

A
)

= 0 for all τ ∈ I

and called forward ω-limit set of A.

Due to Cor. 4.4, ω+
A is a union over nondecreasing sets and actually a limit.

Remark 4.7 (characterisation of ω+
A) The forward ω-limit set ω+

A consists of all
points v such that there is a sequence

(
(sn, τn, an)

)
n∈N with limn→∞ τn = ∞,

(τn, an) ∈ A and sn ∈ N0 satisfying

lim
n→∞

ϕ(τn + sn; τn, an) = v.

Remark 4.8 (periodic equations) For θ-periodic difference equations (∆) and sets A
the fibres ΩA(τ) are θ-periodic due to (2.4) and (4.1). If A is moreover positively
invariant, then ΩA are even constant and thus ω−A = ω+

A = ΩA(τ) for all τ ∈ Z.

Proof (of Thm. 4.6) Since ΩA(τ) is nonempty, there exists a point v ∈ ΩA(τ) for all
τ ∈ I. This implies that v is also contained in ω+

A, i.e., the forward ω-limit set ω+
A is

nonempty. From Lemma 4.2, we know that ΩA(τ) ⊆ K for each τ ∈ I. This yields
ω+
A ⊆ K. Moreover, since K is compact and ω+

A is closed, ω+
A is also compact. The

claimed limit relation is a consequence of (4.2) and ΩA(τ) ⊆ ω+
A.

The properties of ω−A are an immediate consequence of the fact that ω−A is an
intersection of nested compact sets (cf. [23, p. 23, Lemma 22.2(5)]). ut
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Note that Exam. 4.5 demonstrates that both the set ω−A, as well as the forward
limit sets ω+

A constructed in Thm. 4.6 are not invariant or even positively invariant.
Yet, under additional assumptions weaker forms of invariance hold:

Theorem 4.9 (Asymptotic positive invariance) Suppose that (∆) is A-asympto-

tically compact with a compact subset K ⊆ U for a bounded, positively invariant A 6= 0.

If for every sequence
(
(sn, τn)

)
n∈N in N0 × I with limn→∞ τn =∞, one has

lim
n→∞

dist
(
ϕ(τn + sn; τn,K),K

)
= 0,

then the forward ω-limit set ω+
A is asymptotically positively invariant, that is, for

every strictly decreasing sequence εn ↘ 0, there exists a strictly increasing sequence

Tn ↗∞ in I as n→∞ such that

ϕ(τ + s; τ, ω+
A) ⊆ Bεn

(
ω+
A
)

for all Tn ≤ τ, s ∈ N0. (4.6)

Recall the definition of the neighborhoods Bεn
(
ω+
A
)

and thus (4.6) reads as

dist
(
ϕ(τ + s; τ, ω+

A), ω+
A
)
< εn for all Tn ≤ τ, s ∈ N0.

Proof Suppose by contradiction that there exists a fixed ε1 > 0 so that there is a
sequence

(
(s1n, τn)

)
n∈N with 0 ≤ s1n = s1n(ε1) ≤ T0(τn, ε1) and τn → ∞ as n → ∞

satisfying

dist
(
ϕ(τn + s1n; τn, ω

+
A), ω+

A
)
≥ ε1 for all n ∈ N. (4.7)

Since ϕ is continuous and ω+
A is compact due to Thm. 4.6, ϕ(τn + s1n; τn, ω

+
A) is

also a compact set. This implies that there exists a

y1
n = y1

n(ε1) := ϕ(τn + s1n; τn, w
1
n) ∈ ϕ(τn + s1n; τn, ω

+
A) ⊆ ϕ(τn + s1n; τn,K)

with w1
n = w1

n(ε1) ∈ ω+
A ⊆ K such that

dist
(
y1
n, ω

+
A
)

= dist
(
ϕ(τn + s1n; τn, w

1
n), ω+

A
)

= dist
(
ϕ(τn + s1n; τn, ω

+
A), ω+

A
)
≥ ε1 for all n ∈ N.

On the other hand, with y1
n ∈ ϕ(τn + s1n; τn,K), by the assumption, we obtain

0 ≤ dist
(
y1
n,K

)
≤ dist

(
ϕ(τn + s1n; τn,K),K

)
−−−−→
n→∞

0,

implying that y1
n ∈ K. Additionally, since the set K is compact, there is a subse-

quence (ynj (ε1))j∈N converging to ȳ1 = ȳ1(ε1) ∈ K. Therefore, by definition, the
inclusion ȳ1 ∈ ΩA(τ) ⊆ ω+

A leads to ȳ1 ∈ ω+
A, i.e., dist

(
ȳ1, ω

+
A
)
< ε for all ε > 0,

a contradiction to (4.7). Thus, for this ε1 > 0, there exists an integer s1 = s1(ε1)
large enough such that

dist
(
ϕ(τ + s1; τ, ω+

A), ω+
A
)
< ε1.

Repeating inductively with εn+1 < εn and sn+1(εn+1) > sn(εn) for all n ∈ N, we
then obtain that ω+

A is asymptotically positively invariant. ut
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Theorem 4.10 (Asymptotic negative invariance) Suppose that (∆) is strongly

A-asymptotically compact with a compact subset K ⊆ U for a bounded, positively in-

variant A 6= 0. If for every ε > 0 and T ∈ N, there exists a real δ = δ(ε, T ) > 0 such

that for all τ ∈ I, one has the implication

u0, v0 ∈ A(τ) ∪K,
d(u0, v0) < δ

}
⇒ sup

0≤s≤T
d
(
ϕ(τ + s; τ, u0), ϕ(τ + s; τ, v0)

)
< ε, (4.8)

then the forward ω-limit set ω+
A is asymptotically negatively invariant, that is, for

all u ∈ ω+
A, ε > 0 and T ∈ N, there are integers s∗ = s∗(ε) satisfying τ + s∗ − T ∈ I

and u∗ε ∈ ω+
A such that

d
(
ϕ(τ + s∗; τ + s∗ − T, u∗ε), u

)
< ε.

Proof Consider reals ε > 0 and T ∈ N and take a point u ∈ ω+
A. Thanks to Rem. 4.7,

there is a sequence
(
(sn, τn, an)

)
n∈N with T < sn = sn(ε)→∞, τn →∞ as n→∞,

τn ∈ I, τn + sn − T ∈ I and an = an(ε) ∈ A(τn), and an integer N = N1(ε) with

d
(
ϕ(τn + sn; τn, an), u

)
< ε

2 for all n ≥ N1(ε).

Given a sequence yn := ϕ(t∗n − T ; τn, an) ∈ ϕ(t∗n − T ; τn,A(τn)) ⊆ A(t∗n − T ) with
t∗n = t∗n(ε) := τn + sn, sn − T →∞, τn →∞ as n→∞, τn ∈ I and an ∈ A(τn), by
the strong A-asymptotic compactness of (∆), we obtain

0 ≤ dist
(
yn,K

)
≤ dist

(
ϕ(t∗n − T ; τn,A(τn)),K

)
−−−−→
n→∞

0.

Since K is compact, dist
(
yn,K

)
= mink∈K d(yn, k). This implies that there exist

a sequence (kn)n∈N in K such that

d(yn, kn) = dist
(
yn,K

)
−−−−→
n→∞

0,

and a subsequence (knj )j∈N converging to k̄ = k̄(ε) ∈ K. Thus,

0 ≤ d
(
ynj , k̄

)
≤ d
(
ynj , knj

)
+ d
(
knj , k̄

)
= dist

(
yn,K

)
+ d
(
knj , k̄

)
−−−−→
n→∞

0,

implying ynj := ϕ(t∗nj − T ; τnj , anj ) −−−−→
j→∞

k̄ with t∗nj := τnj + snj . Hence, by

Rem. 4.7, one has k̄ ∈ ω+
A. Moreover, with ynj ∈ A(t∗nj − T ) and k̄ ∈ K, by the

assumption, we obtain for an integer N2(ε, T ) large enough,

d
(
ϕ(t∗nj ; t

∗
nj − T, ynj ), ϕ(t∗nj ; t

∗
nj − T, k̄)

)
< ε

2 for all nj ≥ N2(ε, T ).

Now the triangle inequality and the process property (2.3) yield

d
(
ϕ(t∗nj ; t

∗
nj − T, k̄), u

)
≤ d

(
ϕ(t∗nj ; t

∗
nj − T, k̄), ϕ(t∗nj ; t

∗
nj − T, ynj )

)
+ d
(
ϕ(t∗nj ; t

∗
nj − T, ynj ), u

)
= d

(
ϕ(t∗nj ; t

∗
nj − T, k̄), ϕ(t∗nj ; t

∗
nj − T, ynj )

)
+d
(
ϕ(t∗nj ; t

∗
nj − T, ϕ(t∗nj − T ; τnj , anj )), u

)
= d

(
ϕ(t∗nj ; t

∗
nj − T, k̄), ϕ(t∗nj ; t

∗
nj − T, ynj )

)
+ d
(
ϕ(t∗nj ; τnj , anj ), u

)
< ε

2 + ε
2 = ε for all n ≥ N1(ε), nj ≥ N2(ε, T ).

Setting u∗ε := k̄ ∈ ω+
A, we then obtain that ω+

A is asymptotically negatively invari-
ant. ut
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4.2 Asymptotically autonomous difference equations

In general it is difficult to obtain the forward limit set ω+
A given as limit of the

fibres ΩA(τ) explicitly. This situation simplifies, if (∆) behaves asymptotically as
an autonomous difference equation

ut+1 = F(ut) (∆∞)

with right-hand side F : U → U in a sense to be specified below. Here, it is
common to denote the iterates of F by Fs : U → U , s ∈ N0. A maximal, invariant
and nonempty compact set A∗ ⊆ U attracting all bounded subsets of U is called
global attractor of (∆∞) (cf. [8, p. 17]).

For a class of nonautonomous equations (∆) introduced next, the sets ΩA(τ),
τ ∈ I, turn out to be constant and determined by the global attractor A∗ of (∆∞).

Theorem 4.11 (Asymptotically autonomous difference equations) Suppose

that (∆∞) has a bounded absorbing set A ⊆ U and a global attractor A∗ ⊆ A. If

A := I×A is a forward absorbing set of (∆) and the condition

lim
s→∞

sup
a∈A

d(ϕ(τ + s; τ, a),Fs(a)) = 0 for all τ ∈ I (4.9)

holds, then ΩA(τ) = A∗ for all τ ∈ I and in particular ω−A = ω+
A = A∗.

Remark 4.12 Asymptotically autonomous difference equations were also studied
in [5] in order to show that the fibres A∗(τ) of a pullback attractor A∗ to (∆)
converge to the global attractor A∗ of the limit equation (∆∞) as τ →∞. In these
results, however, asymptotic autonomy is based on e.g. the limit relation

lim
τ→∞

d(ϕ(τ + s; τ, aτ ),Fs(a0)) = 0 for all s ∈ N0

(see [5, Thm. 1]) with sequences (an)n∈N converging to some a0. This condition is
clearly different from (4.9).

Proof Given any τ ∈ I, we have to show two inclusions:
(⊆) Let v ∈ ΩA(τ). Due to Rem. 4.3 there exist sequences an ∈ A and sn →∞

as n→∞ with
lim
n→∞

ϕ(τ + sn; τ, an) = v

and it follows from (4.9) that

dist
(
v,A∗

)
≤ d(v, ϕ(τ + sn; τ, an)) + d(ϕ(τ + sn; τ, an),Fsn(an)) + dist

(
Fsn(an), A∗

)
≤ d(v, ϕ(τ + sn; τ, an)) + d(ϕ(τ + sn; τ, an),Fsn(an)) + dist

(
Fsn(A), A∗

)
−−−−→
n→∞

0,

since the global attractor A∗ of (∆∞) attracts the absorbing set A. This implies
that v ∈ A∗, and since v was arbitrary, the inclusion ΩA(τ) ⊆ A∗ holds for τ ∈ I.

(⊇) Conversely, since A∗ is compact, there exists an a∗ ∈ A∗ with

dist
(
A∗, ΩA(τ)

)
= dist

(
a∗, ΩA(τ)

)
≤ dist

(
a∗, ϕ(τ + s; τ, A∗)

)
+ dist

(
ϕ(τ + s; τ, A∗), ΩA(τ)

)
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for all s ∈ I and we separately estimate the two terms on the right-hand side of this
inequality. First, due to the invariance of A∗ there exists a∗s ∈ A∗ with a∗ = Fs(a∗s)
and therefore

dist
(
a∗, ϕ(τ + s; τ, A∗)

)
≤ d(a∗, ϕ(τ + s; τ, a∗s)) = d(Fs(a∗s), ϕ(τ + s; τ, a∗s))

≤ sup
a∈A∗

d(ϕ(τ + s; τ, a),Fs(a))
(4.9)−−−−→
s→∞

0.

Second, from A∗ ⊆ A = A(τ) one has

dist
(
ϕ(τ + s; τ, A∗), ΩA(τ)

)
≤ dist

(
ϕ(τ + s; τ,A(τ)), ΩA(τ)

) (4.2)−−−−→
s→∞

0,

which guarantees the remaining inclusion A∗ ⊆ ΩA(τ).
Hence, all ΩA(τ) are constant, thus ω−A = A∗ and ω+

A = A∗ = A∗. ut

The following simple example illustrates the condition (4.9):

Example 4.13 (Beverton-Holt equation) If α > 1, then it is well known that all
solutions to the autonomous Beverton-Holt equation vt+1 = αvt

1+vt
starting with a

positive initial value converge to α − 1 (see [18, pp. 13ff]). We establish that an
asymptotically autonomous, but nonautonomous Beverton-Holt equation

vt+1 =
ãtvt

1 + vt
, ãt :=

ft+1

ft
α (4.10)

shares this behaviour, whenever the sequence (ft)t∈I in (0,∞) satisfies

lim
t→∞

t−1∑
s=0

fτ+s

fτ+t
αs−t =

1

α− 1
for all τ ∈ I (4.11)

and grows at most polynomially. For instance, the relation (4.11) holds for the se-
quences ft = (t+c)n with c ∈ R, n ∈ {1, 2, 3, 4}. Indeed, the explicit representation

ϕ(τ + t; τ, a) =
(α− 1)a

α−1
αt

fτ
fτ+t

+ (α− 1)a
∑t−1
s=0

fτ+s
fτ+t

αs−t

of the general solution to (4.10) yields that limt→∞ ϕ(t + τ ; τ, a) = α − 1 holds
uniformly in a ∈ [ā,∞) for any ā > 0. Consequently, one has

sup
a≥ā

∣∣∣ϕ(τ + t; τ, a)− F t(a)
∣∣∣ ≤ sup

a≥ā
|ϕ(τ + t; τ, a)− (α− 1)|+ sup

a≥ā

∣∣∣α− 1− F t(a)
∣∣∣

−−−−→
t→∞

0

and therefore (4.9) is valid with arbitrary subsets A ⊆ [ā,∞).

We continue with two sufficient criteria for the condition (4.9) to hold. Thereto
we assume in the remaining subsection that (X, ‖·‖) is a Banach space.

Theorem 4.14 (Asymptotically autonomous linear difference equations) Sup-

pose that Lt,L ∈ L(X), bt, b ∈ X, t ∈ I, satisfy

lim
t→∞

Lt = L, lim
t→∞

bt = b. (4.12)

If ρ(L) < 1, then (∆∞) with right-hand side F(u) = Lu+ b and (∆) with right-hand

side Ft(u) = Ltu+ bt fulfill the limit relation (4.9) on every bounded subset A ⊆ X.
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Proof We note that (4.12) implies that (∆) is uniformly exponentially stable and
that the sequences (Lt)t∈I, (bt)t∈I are bounded. Thus, [2, Cor. 5 with H = `∞(I, X)]
implies that ϕ(·; τ, 0) is bounded and the representation ϕ(t; τ, uτ ) = Φ(t, τ)uτ +
ϕ(t; τ, 0) for all t ≥ τ , uτ ∈ X shows that ϕ(·; τ, uτ ) is bounded uniformly in uτ from
bounded subsets of X. Now it is easy to see that the difference ϕ(t; τ, a)−Ft−τ (a)
solves the initial value problem

wt+1 = Lwt + b̃t, uτ = 0,

whose inhomogeneity b̃t := (Lt − L)ϕ(t; τ, a) + bt − b satisfies limt→∞ b̃t = 0 uni-
formly in a from bounded subsets of X. Now using [2, Cor. 5 with H = c0(I, X)]
guarantees that the sequence ϕ(t; τ, a)−Ft−τ (a) converges to 0 as t→∞ uniformly
in a from bounded subsets of X, that is, in particular (4.9) holds. ut

Theorem 4.15 (Asymptotically autonomous semilinear difference equations)

Let Ft : U → U be of semilinear form (2.5) such that

‖Φ(t, s)‖ ≤ Kαt−s for all s ≤ t (4.13)

and

‖Nt(u)−Nt(ū)‖ ≤ L ‖u− ū‖ for all t ∈ I, u, ū ∈ U (4.14)

with K ≥ 1, α ∈ (0, 1) and L ∈ (0, 1−α
K ). If L ∈ L(X) and N : U → X satisfy

(i) there exists a K1 ≥ 0 such that ‖Lt − L‖ ≤ K1α
t for all t ∈ I,

(ii) for every r > 0 there exists a K2(r) ≥ 1 such that

sup
u∈U∩Br(0)

‖Nt(u)−N(u)‖ ≤ K2(r)αt for all t ∈ I,

then (∆∞) with right-hand side F(u) = Lu + N(u) and (∆) fulfill the limit relation

(4.9) even exponentially on every bounded subset A ⊆ X.

The assumption (4.13) holds in case ρ(L) < 1 with α ∈ (ρ(L), 1) (see [22, Thm. 5]).

Proof We proceed in two steps:
(I) Claim: All solutions to the autonomous equation (∆∞) are bounded, i.e.,∥∥∥Ft(a)

∥∥∥ ≤ K ‖a‖+
K

1− α−KL ‖N(0)‖ for all t ≥ 0, a ∈ X. (4.15)

This is a consequence of [20, p. 155, Thm. 3.5.8(a)].
(II) Let a ∈ U and we abbreviate ut := ϕ(t; τ, a), vt := Ft−τ (a). Due to step (I)

the sequence (vt)t≥τ is bounded and we choose r > 0 so large that ‖vt‖ < r for all
t ∈ I. It is easy to see that the difference wt := ut − vt satisfies the equation

wt+1 = Ltwt + (Lt − L)vt + Nt(vt)−N(vt) + Nt(ut)−Nt(vt) (4.16)

and fulfills the initial condition uτ−vτ = a−a = 0. Using the variation of constants
formula [20, p. 100, Thm. 3.1.16] results

wt =
t−1∑
s=τ

Φ(t, s+1) [(Ls − L)vs + Ns(vs)−N(vs) + Ns(us)−Ns(vs)] for all t ≥ τ,
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consequently

‖wt‖α−t

(4.13)

≤ K

α

t−1∑
s=τ

α−s ‖(Ls − L)vs + Ns(vs)−N(vs)‖+
K

α

t−1∑
s=τ

α−s ‖Ns(us)−Ns(vs)‖

(4.14)

≤ K

α

t−1∑
s=τ

α−s ‖(Ls − L)vs + Ns(vs)−N(vs)‖+
KL

α

t−1∑
s=τ

α−s ‖ws‖

and the Grönwall inequality [20, p. 348, Prop. A.2.1(a)] yields

‖wt‖ ≤
K

α

t−1∑
s=τ

(α+KL)t−s−1 ‖(Ls − L)vs + Ns(vs)−N(vs)‖ for all τ ≤ t

If we replace t by τ + t, then it results∥∥∥ϕ(τ + t; τ, a)− Ft(a)
∥∥∥

≤ K

α

t+τ−1∑
s=τ

(α+KL)t+τ−s−1 ‖(Ls − L)vs + Ns(vs)−N(vs)‖

(i)
≤ K

α

t+τ−1∑
s=τ

(α+KL)t+τ−s−1(K1rα
s + ‖Ns(vs)−N(vs)‖

)
(ii)
≤

K
(
K1r +K2(r)

)
α

(α+KL)t+τ−1
t+τ−1∑
s=τ

(
α

α+KL

)s −−−−→
t→∞

0

and therefore even exponential convergence holds in (4.9). ut

4.3 Forward attractors

In the previous Sect. 3.2 we constructed pullback attractors of nonautonomous
difference equations (∆) by means of Prop. 3.1 applied to a pullback absorbing,
positively invariant nonautonomous set. Now it is our goal is to obtain a corre-
sponding concept in forward time.

Mimicking the approach for pullback attractors, we define a forward attractor

A+ ⊂ U of (∆) as a nonempty, compact and invariant nonautonomous set forward
attracting every bounded subset B ⊆ U , i.e.,

lim
s→∞

dist
(
ϕ(τ + s; τ,B(τ)),A+(τ + s)

)
= 0 for all τ ∈ I. (4.17)

As demonstrated in e.g. [16, Sect. 4], forward attractors need not to be unique.
They are Lyapunov asymptotically stable, that is, Lyapunov stable and attractive
in the sense of (4.17) (see [12, Prop. 3.1]). While it is often claimed in the literature
that there is no counterpart to the characterisation (3.5) of pullback attractors A∗
for forward attractors A+ of nonautonomous equations, a suitable construction
will be given now.
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A nonautonomous difference equation (∆) is denoted as forward dissipative, if
there exists a bounded set A ⊆ U such that for every τ ∈ I and bounded B ⊆ U
there is an absorption time S = S(τ,B) ∈ N such that

ϕ(τ + s; τ,B(τ)) ⊆ A(τ + s) for all s ≥ S; (4.18)

one says that A is as a forward absorbing set.

Proposition 4.16 (Forward absorbing set) On a Banach space X, let Ft : U → U

be of the semilinear form (2.5) satisfying (2.7), (2.8) and let ρ > 0. If the limit relations

lim
s→∞

τ+s−1∏
r=τ

(αr +Kar) = 0, Rτ := K lim
t→∞

t−1∑
s=τ

bs

t−1∏
r=s+1

(αr +Kar) <∞

hold for all τ ∈ I and supτ∈IRτ < ∞, then the difference equation (∆) is forward

dissipative with absorbing set A :=
{

(t, u) ∈ U : ‖u‖ ≤ ρ+ supτ∈IRτ
}

.

For constant positive sequences αt ≡ α, at ≡ a, bt ≡ b in (2.8) satisfying α+Ka < 1,
both the pullback absorbing set from Prop. 3.2 and the forward absorbing set from
Prop. 4.16 have constant fibres and simplify to A = I×B

ρ+
Kb

1−α−aK
(0).

Proof The claim follows readily from relation (2.9) in Lemma 2.1. ut

Using [12, Prop. 3.2 with compact replaced by open and bounded] one shows

Proposition 4.17 Every bounded forward attractor has a nonempty, positively invari-

ant, closed and bounded forward absorbing set.

First, this Prop. 4.17 allows us to choose a closed and bounded, positively
invariant set A ⊆ U . We then deduce a nonempty, invariant and compact nonau-
tonomous set A? ⊆ A from Prop. 3.1.

Second, the construction of forward attractors requires I = Z. Different from
the pullback situation (with A being pullback absorbing), having an forward ab-
sorbing set A does not ensure the forward convergence within A, i.e.,

lim
s→∞

dist
(
ϕ(τ + s; τ,A(τ)),A?(τ)

)
= 0 for all τ ∈ Z

and in particular not forward convergence of a general bounded nonautonomous
set B ⊆ U to A∗. This is because (∆) may have forward limit points starting in
A which are not forward limit points from within A?. Corresponding examples
illustrating this are given in [14].

Now on the one hand, the set of forward ω-limit points for the dynamics starting
in A? is given by

ω?A :=
⋂
τ∈Z

⋃
0≤s

ϕ(τ + s; τ,A?(τ)) =
⋂
τ∈Z

⋃
0≤s
A?(τ + s) ⊆ U

and is nonempty and compact as intersection of nested compact sets. It consists of
all points u ∈ U such that there is a sequence

(
(sn, an)

)
n∈N with limn→∞ sn =∞

and an ∈ A(τ + sn) with τ ∈ Z satisfying

lim
n→∞

ϕ(τ + sn; τ, an) = u.
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On the other hand, the set of forward limit points ω+
A from within A was

constructed in Thm. 4.6. With A being positively invariant, the chain of inclusions
ω−A ⊆ ω

+
A ⊆ K holds, while ω?A is not necessarily contained in ω−A (see Exam. 4.20

for an illustration), as well as

lim
t→∞

dist
(
A?(t), ω−A

)
= 0.

Theorem 4.18 Suppose that (∆) has a positively invariant, closed and bounded set

A 6= ∅. If the assumptions in Prop. 3.1 and Thms. 4.9–4.10 hold, then the following

statements are equivalent:

(a) A? is forward attracting A, that is,

lim
s→∞

dist
(
ϕ(τ + s; τ,A(τ)),A?(τ + s)

)
= 0 for all τ ∈ Z, (4.19)

(b) ω+
A = ω?A.

Proof (⇒) Suppose that A? is forward attracting from within A and that ω+
A 6= ω?A.

Since ω?A ⊆ ω+
A, there exists a point ṽ ∈ ω+

A \ ω
?
A, i.e., there are τ̃ ∈ Z and

ε̃ = ε̃(τ̃) > 0 such that ṽ ∈ ΩA(τ̃) and

dist
(
ṽ, ω?A

)
> 2ε̃. (4.20)

Since ṽ ∈ ΩA(τ̃), there exists a sequence
(
(s̃n, b̃n)

)
n∈N with limn→∞ s̃n = ∞ and

points b̃n ∈ A(τ̃) satisfying dist
(
ṽ, ϕ(τ̃ + s̃n; τ̃ , b̃n)

)
< ε̃. Moreover, by the forward

attraction of A?, there exists an s′ > 0 such that

dist
(
ϕ(τ̃ + s′; τ̃ ,A(τ̃)),A?(τ̃ + s′)

)
< ε̃.

Combining all of them, we obtain

dist
(
ṽ,A?(τ̃ + s̃n)

)
≤ dist

(
ṽ, ϕ(τ̃ + s̃n; τ̃ , b̃n)

)
+ dist

(
ϕ(τ̃ + s̃n; τ̃ , b̃n),A?(τ + s̃n)

)
≤ dist

(
ṽ, ϕ(τ̃ + s̃n; τ̃ , b̃n)

)
+ dist

(
ϕ(τ̃ + s̃n; τ̃ ,A(τ̃)),A?(τ + s̃n)

)
< ε̃+ ε̃ = 2ε̃.

Since
⋂
n∈N

⋃
m≥nA?(τ̃ + s̃n) ⊆ ω?A by definition, it then follows

dist
(
ṽ, ω?A

)
≤ dist

ṽ, ⋂
n∈N

⋃
m≥n

A?(τ̃ + s̃n)

 ≤ dist
(
ṽ,A?(τ̃ + s̃n)

)
< 2ε̃,

a contradiction to (4.20). Hence, ω+
A = ω?A holds.

(⇐) Suppose that ω+
A = ω?A, i.e., dist

(
ω+
A, ω

?
A
)
< ε for all ε > 0, and that A? is

not forward attracting from within A, i.e., there exist a real ε̃ > 0 and a sequence
(s̃n)n∈N in N0 with limn→∞ s̃n =∞ and

dist
(
ϕ(τ + s̃n; τ,A?(τ)),A(τ + s̃n)

)
≥ 2ε̃ for all n ∈ N.

Although there is no condition ensuring the set ϕ(τ+sn; τ,A(τ)) is compact, which
means the supremum in the Hausdorff semidistance may not be attained, there



Forward and pullback dynamics of nonautonomous integrodifference equations 21

still exists a point ỹn := ϕ(τ + sn; τ, b̃n) ∈ ϕ(τ + sn; τ,A(τ)) for all n ∈ N and
b̃n ∈ A(τ) such that

dist
(
ϕ(τ + s̃n; τ,A(τ)),A?(τ + s̃n)

)
− ε̃ ≤ dist

(
ỹn,A?(τ + s̃n)

)
≤ dist

(
ϕ(τ + s̃n; τ,A(τ)

)
,A?(τ + s̃n)).

The above inequalities in fact give dist
(
ỹn,A?(τ+ s̃n)

)
≥ ε̃ for all n ∈ N. Moreover,

take a point ãn ∈ A?(τ + s̃n), then

d(ỹn, ãn) ≥ dist
(
ỹn,A(τ + s̃n)

)
≥ ε̃ for all n ∈ N.

On the other hand, by assumptions and definitions, (∆) is A-asymptotically com-
pact and both ỹn and ãn are in ϕ(τ + sn; τ,A(τ)) for all τ ∈ Z, so

dist
(
ỹn,K

)
≤ dist

(
ϕ(τ + s̃n; τ,A(τ)),K

)
−−−−→
n→∞

0,

dist
(
ãn,K

)
≤ dist

(
ϕ(τ + s̃n; τ,A(τ)),K

)
−−−−→
n→∞

0,

implying that both ỹn and ãn are in K as well. Additionally, since K is compact,
there are convergent subsequences (ỹnj )j∈N with limit ỹ ∈ K and (ãnj )j∈N with
limit ã ∈ K. This implies ỹ ∈ ΩA(τ) ⊆ ω+

A and ã ∈ ω?A by definitions. Combining
this with d(ỹn, ãn) ≥ ε̃ for all n ∈ N, we arrive at the contradiction

dist
(
ω+
A, ω

?
A
)
≥ dist

(
ỹn, ω

?
A
)
≥ d(ỹ, ã) ≥ ε̃ for all n ∈ N,

to the assumption. Thus, A? is forward attracting from within A. ut

Corollary 4.19 Suppose in addition that A ⊆ U is forward absorbing. If ω+
A = ω?A

holds, then A? is a forward attractor of (∆).

Proof Due to Prop. 3.1 the set A? is already nonempty, compact, invariant and
thus it suffices to show that A? is forward attracting. Thereto, suppose that B ⊆ U
is bounded and choose τ ∈ Z arbitrarily. With the forward absorption time S ∈ N
we obtain from Thm. 4.18 that

0 ≤ dist
(
ϕ(τ + s; τ,B(τ)),A?(τ + s)

)
(2.3)
= dist

(
ϕ
(
τ + s; τ + S, ϕ(τ + S, τ,B(τ))

)
,A?(τ + s)

)
(4.18)

≤ dist
(
ϕ(τ + s; τ + S,A(τ + S)),A?(τ + s)

) (4.19)−−−−→
s→∞

0

and this yields the assertion. ut

We close this section with a simple, yet illustrative example:

Example 4.20 (Beverton-Holt equation) Given reals 0 < α−, α+ we consider the
asymptotically autonomous Beverton-Holt equation

vt+1 =
ãtvt

1 + vt
, ãt :=

{
α−, t < 0,

α+, 0 ≤ t
(4.21)
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in U = R+ having the general solution

ϕ(t; τ, vτ ) =
vτ
∏t−1
r=τ ãr

1 + vτ
∑t−1
s=τ

∏s−1
r=τ ãr

for all τ ≤ t, 0 ≤ vτ .

It possesses the absorbing set A = Z×[0,max {α−, α+}+1] and the forward ω-limit
set ω+

A = [0,max {0, α+ − 1}]. Depending on the constellation of the parameters
α−, α+ one obtains the following capturing the forward dynamics:

α−, α+ A∗ = A? ω?A ω−A ω+
A

α−, α+ ≤ 1 -15 -10 -5 0 5 10 15
0

0.5
1

1.5
2

{0} {0} {0}

α− ≤ 1 < α+
-15 -10 -5 0 5 10 15

0
0.5

1
1.5

2

{0} {0} [0, α+ − 1]

α+ ≤ 1 < α− -15 -10 -5 0 5 10 15
0

0.5
1

1.5
2

{0} {0} {0}

1 < α− < α+
-15 -10 -5 0 5 10 15

0
0.5

1
1.5

2

[0, α+ − 1] [0, α− − 1] [0, α+ − 1]

1 < α+ ≤ α− -15 -10 -5 0 5 10 15
0

0.5
1

1.5
2

[0, α+ − 1] [0, α+ − 1] [0, α+ − 1]
For α+ ≤ 1 all fibres ΩA(τ) = {0} are constant. For α+ > 1 two cases arise:

– 1 ≤ α− < α+: Solutions starting in α+ + 1 at time τ < 0 first decay until time
t = 0 and then increase again, which yields

ΩA(τ) =

{
[0, ϕ(0; τ, α+ + 1)], τ < 0,

[0, α+ − 1], 0 ≤ τ.

– 1 ≤ α+ ≤ α−: Solutions starting in α+ + 1 decay to α+ − 1 and thus the fibres
are constant ΩA(τ) ≡ [0, α+ + 1] on Z.

Except for α− ≤ 1 < α+, where the pullback and forward dynamics of (4.21) differ,
Cor. 4.19 applies and yields that the pullback attractor A∗ = A? is the forward
attractor A+.

As a conclusion, in case A is a positively invariant, forward absorbing nonau-
tonomous set this section provided two concepts to capture the forward dynamics
of (∆), namely the limit set ω+

A from Thm. 4.6 and the forward attractor A+ = A?
constructed in Cor. 4.19. On the one hand, the limit set ω+

A ⊆ U is asymptotically
positively invariant, forward attracts and is contained in all other sets with these
properties. It depends only on information in forward time. On the other hand,
the forward attractor A+ ⊆ U shares these properties, but is actually invariant. Its
construction is based on information on the entire axis Z and more restrictively,
relies on the condition ω+

A = ω?A from Thm. 4.18(b). The latter might be hard
to verify in concrete examples, unless rather strict assumptions like asymptotic
autonomy hold [5].
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5 Integrodifference equations

The above abstract results will now be applied to nonautonomous IDEs. For this
purpose let (Ω,A, µ) be a measure space satisfying µ(Ω) <∞. Suppose additionally
that Ω is equipped with a metric such that it becomes a compact metric space.

We consider the Banach space X = C(Ω,Rd) of continuous Rd-valued functions
over Ω equipped with the norm ‖u‖0 := maxx∈Ω |u(x)| . If Z ⊆ Rd is a nonempty,
closed set, then U :=

{
u : Ω → Z | u ∈ C(Ω,Rd)

}
is a complete metric space.

Furthermore, we have U = I× U , where I is an unbounded discrete interval.
Given functions gt : Ω × Z → Rd and kt : Ω2 × Z → Rd, the Nemytskii operator

Gt : U → C(Ω,Rd) is defined by

Gt(u)(x) := gt(x, u(x)) for all (t, x) ∈ I′ ×Ω

and the Urysohn integral operators Kt : U → C(Ω,Rd) by

Kt(u)(x) :=

∫
Ω

kt(x, y, u(y)) dµ(y) for all (t, x) ∈ I′ ×Ω.

With these operators, a nonautonomous difference equation (∆) of the additive
form (2.10) is called an integrodifference equation and explicitly reads as

ut+1(x) = gt(x, ut(x)) +

∫
Ω

kt(x, y, ut(y)) dµ(y) for all (t, x) ∈ I′ ×Ω. (Ig)

Such problems are well-motivated from applications:

– For an integrodifferential equation D1u(t, x) =
∫
Ω
f(t, x, y, u(t, y)) dy with, e.g.,

a continuous kernel function f : R×Ω2×Rd → Rd, the forward Euler discreti-
sation with step-size h > 0 gives the IDE

ut+1(x) = ut(x) + h

∫
Ω

f(ht, x, y, ut(y)) dy for all (t, x) ∈ I′ ×Ω

matching (Ig) with a compact Ω ⊂ Rκ and the Lebesgue measure µ.
– Population genetics or ecological models of the form

ut+1(x) = (1− ϑ)g(x, ut(x)) + ϑ

∫
Ω

f(x, y, ut(y)) dy for all (t, x) ∈ I′ ×Ω

are investigated in [25], where ϑ ∈ [0, 1] is a parameter and e.g. continuous
functions g : Ω × Rd → Rd, f : Ω2 × Rd → Rd. These problems are of the from
(Ig) with a compact Ω ⊂ Rκ and the Lebesgue measure µ.

– Let the compact set Ω ⊂ Rκ be countable, η ∈ Ω and wη ≥ 0 be reals. Then
µ(Ω′) :=

∑
η∈Ω′ wη defines a measure on the family of all countable subsets

Ω′ ⊂ Rκ. The assumption
∑
η∈Ω wη < ∞ ensures that µ(Ω) < ∞. W.r.t. the

resulting µ-integral
∫
Ω
udµ =

∑
η∈Ω wηu(η) the IDE (Ig) becomes

ut+1(x) = gt(x, ut(x)) +
∑
η∈Ω

wηkt(x, η, ut(η)) for all (t, x) ∈ I′ ×Ω.

Such difference equations occur as Nyström methods with nodes η and weights

wη as used in numerical discretizations and simulations [1] of IDEs (Ig).
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Hypothesis: For every t ∈ I′ we suppose:

(H1) The function gt : Ω × Z → Rd is such that gt(·, z) : Ω → Rd is continuous and
there exist reals γt, `t ≥ 0 with

|gt(x, z)| ≤ γt, |gt(x, z)− gt(x, z̄)| ≤ `t |z − z̄| for all x ∈ Ω, z, z̄ ∈ Z.

(H2) The kernel function kt : Ω × Ω × Z → Rd is such that kt(x, ·, z) : Ω → Rd is
measurable for all x ∈ Ω, z ∈ Z, and the following holds for almost all y ∈ Ω:
kt(x, y, ·) : Z → Rd is continuous for all x ∈ Ω and the limit

lim
x→x0

∫
Ω

sup
z∈Z∩B̄r(0)

|kt(x, y, z)− kt(x0, y, z)| dµ(y) = 0 for all r > 0

holds uniformly in x0 ∈ Ω.
(H3) There exists a function κt : Ω2 → R+, measurable in the second argument with

supx∈Ω
∫
Ω
κt(x, y) dµ(y) <∞ and for almost all y ∈ Ω one has

|kt(x, y, z)| ≤ κt(x, y) for all x ∈ Ω, z ∈ Z.

Then the Nemytskii operator Gt : U → C(Ω,Rd) satisfies

‖Gt(u)‖0 ≤ γt, ‖Gt(u)− Gt(ū)‖0 ≤ `t ‖u− ū‖0 for all u, ū ∈ U, (5.1)

while the Urysohn operators Kt : U → C(Ω,Rd) are globally bounded by

‖Kt(u)‖0 ≤ ρt := sup
x∈Ω

∫
Ω

κt(x, y) dµ(y) for all u ∈ U (5.2)

and completely continuous due to [19, p. 166, Prop. 3.2].
In the following we tacitly suppose Ft(U) ⊆ U for all t ∈ I′.

Proposition 5.1 (dissipativity for (Ig)) If (H1–H3) with

sup
t∈I′

γt <∞, sup
t∈I′

ρt <∞ (5.3)

hold, then the bounded and closed set

A :=
{

(t, u) ∈ U : ‖u‖0 ≤ γt∗ + ρt∗
}
, t∗ :=

{
t− 1, t > min I,
t, t = min I

is positively invariant, forward absorbing (if I is unbounded above), pullback absorbing

(if I is unbounded below) w.r.t. (Ig) with absorption time 1.

Proof Clearly the set A is closed and due to (5.3) also bounded. Let t, τ ∈ I with
τ < t. Thus, t∗ = t− 1 and our assumptions readily imply that

‖ϕ(t; τ, u)‖
(2.2)
= ‖Ft−1(ϕ(t− 1; τ, u))‖

(2.10)

≤ ‖Gt−1(ϕ(t− 1; τ, u))‖+ ‖Kt−1(ϕ(t− 1; τ, u))‖
(5.1)

≤ γt−1 + ‖Kt−1(ϕ(t− 1; τ, u))‖
(5.2)

≤ γt∗ + ρt∗ for all (τ, u) ∈ U

and consequently ϕ(t, τ,U(τ)) ⊆ A(t) holds for all τ < t. Thanks to A,B ⊆ U for
any bounded B this inclusion guarantees that A is positively invariant, but also
forward and uniformly absorbing with absorption time S = 1. ut



Forward and pullback dynamics of nonautonomous integrodifference equations 25

-2 0 2
0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 5.1 Pullback convergence to the fibre φ+
τ : Ω → R+ (τ = 10, initial function u0(x) ≡ 4,

left) and sequence of sets containing the pullback attractor A∗ (0 ≤ t ≤ 10, right) for ϑ = 1
4

.

Theorem 5.2 (pullback attractor for (Ig)) Let I be unbounded below. If (H1–H3)

are satisfied with (5.3) and there exists a T ∈ I such that
∏T−1
s=−∞ `s = 0 hold, then

the IDE (Ig) has a unique and bounded pullback attractor A∗ ⊆ A.

Proof We aim to apply Thm. 3.3 to (Ig). Thereto, Prop. 5.1 guarantees that (Ig)
is uniformly pullback absorbing. Moreover, since the Lipschitz constant `t of the
Nemytskii operator Gt is an upper bound for its Darbo constant and because Kt

is completely continuous, the assertion follows. ut

Without further assumptions not much can be said about the detailed structure of
the pullback attractor A∗. Nevertheless, in case the functions gt, kt satisfy mono-
tonicity assumptions in the second resp. third argument, it is possible to construct
“extremal” solutions in the attractor [21]. We illustrate this in

Example 5.3 (spatial Beverton-Holt equation) Let ϑ ∈ [0, 1] and at : Ω → (0,∞),
t ∈ I′, be continuous functions describing the space- and time-dependent growth
rates and a compact habitat Ω. The spatial Beverton-Holt equation

ut+1(x) = (1− ϑ)
at(x)ut(x)

1 + ut(x)
+ ϑ

∫
Ω

k(x, y)
at(y)ut(y)

1 + ut(y)
dµ(y) (5.4)

for all (t, x) ∈ I′ ×Ω fits into the framework of (Ig) with Z = R+, U = C(Ω,R+),

gt : Ω ×R+ → R+, gt(x, z) :=
at(x)z

1 + z
,

kt : Ω ×Ω ×R+ → R+, kt(x, y, z) := k(x, y)
at(y)z

1 + z

and a continuous kernel function k : Ω ×Ω → (0,∞). Then (H1–H3) hold with

γt = (1− ϑ)αt, `t = (1− ϑ)αt, κt(x, y) = ϑαtk(x, y) for all x, y ∈ Ω

and αt := maxx∈Ω at(x). If limt→−∞(1−ϑ)T−t
∏T−1
s=t αs = 0 holds for some T ∈ I,

then Thm. 5.2 yields the existence of a pullback attractor A∗ ⊆ U for (5.4). Since
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the functions gt(x, ·), kt(x, y, ·) : R+ → R+ are strictly increasing more can be
said on the structure of A∗. As in [21, Prop. 8], there exists an “extremal” entire
solution φ+ being pullback attracting from above such that

A∗ ⊆
{

(t, u) ∈ U : 0 ≤ u(x) ≤ φ+
t (x) for all x ∈ Ω

}
.

We illustrate both the pullback convergence to the solution φ+, as well as the sets
containing solutions in the pullback attractor A∗ in Fig. 5.1, where Ω = [−π, π] is
equipped with the 1-dimensional Lebesgue measure, at(x) := 3− sin tx

10 (artificial)

and the Laplace kernel k(x, y) := a
2 e
−a|x−y| for the dispersal rate a = 10.

The remaining section addresses forward attraction. For simplicity we restrict
to the class of Urysohn IDEs

ut+1(x) =

∫
Ω

kt(x, y, ut(y)) dµ(y) for all (t, x) ∈ I′ ×Ω. (I0)

Hypothesis: For every t ∈ I′ we suppose:

(H4) For all r > 0 there exists a function λt : Ω2 → R+, measurable in the second
argument with supx∈Ω

∫
Ω
λt(x, y) dµ(y) <∞ and for almost all y ∈ Ω one has

|kt(x, y, z)− kt(x, y, z)| ≤ λt(x, y) |z − z̄| for all x ∈ Ω, z, z̄ ∈ Z ∩ B̄r(0).

Proposition 5.4 (dissipativity for (I0)) If (H2–H3) with R := supt∈I ρt < ∞
hold, then the bounded and compact nonautonomous set

A :=
{

(t, u) ∈ U : u ∈ Kt∗(U ∩BR(0))
}
, t∗ :=

{
t− 1, t > min I,
t, t = min I

is positively invariant, forward absorbing w.r.t. (I0) with absorption time 2.

Proof Let t ∈ I′ with t − 1 ∈ I′ and thus t∗ = t − 1. Since the Urysohn operators
Kt−1 are completely continuous, the fibres A(t) = Kt−1(U ∩BR(0)) are compact.
Thanks to

‖Kt(u)‖
(5.2)

≤ ρt ≤ R for all u ∈ U

it follows that A is bounded. Moreover, Kt(A(t)) ⊆ Kt(U∩BR(0)) = A(t+1) holds
for all t ∈ I′ and A is positively invariant. Furthermore, from the inclusion

ϕ(t; τ, u)
(2.2)
= Kt−1(ϕ(t− 1; τ, u)︸ ︷︷ ︸

∈U∩BR(0)

) ∈ A(t) for all t− τ ≥ 2, u ∈ U

we deduce that A is absorbing. ut

Theorem 5.5 (forward limit set for (I0)) Suppose that (H2–H3) hold with addi-

tionally R := supt∈I ρt <∞. If
⋃
t∈I Kt(U ∩BR(0)) is relatively compact and A is the

forward absorbing set from Prop. 5.4, then the following are true:

(a) ω+
A is asymptotically positively invariant,
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(b) ω+
A is asymptotically negatively invariant, provided (H4) is satisfied with

sup
τ≤t<τ+T

t−1∏
s=τ

∫
Ω

λs(x, y) dµ(y) <∞ for all τ ∈ I, T ∈ N. (5.5)

The relative compactness of the union
⋃
t∈I Kt(U ∩ BR(0)) holds for instance, if

the kernel functions kt stem from a finite set or the images Kt(U ∩BR(0)) form a
nonincreasing/nondecreasing sequence of sets.

Proof By assumption the set K :=
⋃
t∈I Kt(U ∩BR(0)) is compact and this implies

that (I0) is strongly A-asymptotically compact.
(a) By construction of K ⊆ U the assertion results from Thm. 4.9.
(b) Let u, ū ∈ A(s) ∪K and choose r > 0 so large that A(s) ∪K ⊆ Br(0). We

conclude

|Ks(u)(x)−Ks(ū)(x)| ≤
∫
Ω

|ks(x, y, u(y))− ks(x, y, ū(y)) dµ(y)|

≤
∫
Ω

λs(x, y) dµ(y) ‖u− ū‖0 for all (s, x) ∈ I×Ω

from assumption (H4). After passing to the least upper bound over x ∈ Ω it follows
that supx∈Ω

∫
Ω
λs(x, y) dµ(y) is a Lipschitz constant for Ks on A(s) ∪K. Hence,

the assumption (5.5) implies (4.8) and therefore Thm. 4.10 yields the claim. ut

The above results do apply to the following

Example 5.6 (spatial Ricker equation) Suppose that the compact Ω ⊆ Rκ is equipped
with the κ-dimensional Lebesgue measure µ and that µ(Ω) > 0 holds. Let (αt)t∈I′
denote a bounded sequence of positive reals, k : Ω × Ω → R+ be continuous and
(bt)t∈I′ be a bounded sequence in C(Ω,R+), t ∈ I′. The spatial Ricker equation

ut+1(x) = αt

∫
Ω

k(x, y)ut(y)e
−ut(y) dy + bt(x) for all (t, x) ∈ I′ ×Ω (5.6)

fits in the framework of (I0) with Z = R+ and the kernel function

kt(x, y, z) := αtk(x, y)ze−z + bt(x)
µ(Ω) for all x, y ∈ Ω, z ∈ R+;

hence, (5.6) is defined on the cone U := C(Ω,R+). If I is unbounded below, then
(5.6) possesses a pullback attractor A∗ ⊆ U ; see Fig. 5.2 for an illustration.

For our subsequent analysis it is convenient to set γ := supx∈Ω
∫
Ω
k(x, y) dy. We

begin with some preparatory estimates. Above all, (5.6) satisfies the assumption
(H4) with λt(x, y) = αtk(x, y), which guarantees the global Lipschitz condition

‖Kt(u)−Kt(ū)‖ ≤ αtγ ‖u− ū‖ for all u, ū ∈ U. (5.7)

If we represent the right-hand side of (5.6) in semilinear form (2.5) with

Ltu := αt

∫
Ω

k(·, y)u(y) dy, Nt(u) := αt

∫
Ω

k(·, y)(e−u(y) − 1)u(y) dy + bt,

then ‖Lt‖ = αtγ holds, as well as the global Lipschitz condition

‖Nt(u)−Nt(ū)‖0 ≤ αt(1 + 1
e2 )γ ‖u− ū‖0 for all u, ū ∈ U. (5.8)
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In order to obtain information on the forward attractor, we suppose that I = Z
and that (5.6) is asymptotically autonomous in forward time, i.e., there exist
α+ > 0 and b ∈ C(Ω,R+) such that

lim
t→∞

αt = α+ ∈ [0, 1), lim
t→∞

bt = b.

If α+γ < 1, then it follows from the contraction mapping principle and (5.7) that
the autonomous limit equation

ut+1(x) = α+

∫
Ω

k(x, y)ut(y)e
−ut(y) dy + b(x) for all (t, x) ∈ I′ ×Ω (5.9)

has a unique, globally attractive fixed-point u∗ ∈ U .
We choose I = N0 and an absorbing set A ⊆ U of the limit equation (5.9) such

that A = I×A is forward absorbing w.r.t. (5.6). If we assume sups≤t
∏t−1
r=s

αr
α+
≤ K,

then the growth estimate (4.13) holds with α = α+γ due to

‖Φ(t, s)‖ ≤
t−1∏
r=s

‖Lr‖ = (α+γ)t−s
t−1∏
r=s

αr
α+
≤ K(α+γ)t−s for all s ≤ t.

It follows from (5.8) that every nonlinearity Nt : U → C(Ω) has the Lipschitz
constant L := (1 + 1

e2 )γ supt≥0 αt. Consequently, if furthermore (αt)t∈I converges
exponentially to α+ with rate α, then Thm. 4.15 applies under the assumption

(1 + 1
e2 )γ sup

t≥0
αt <

1−α
K (5.10)

and thus (4.9) holds. Hence, we derive from Thm. 4.11 the relations

ΩA(τ) = ω−A = ω+
A =

{
u∗
}

for all τ ∈ N0.

If we concretely define

αt :=

{
α+(1 + αt), t ≥ 0,

α−, t < 0,
bt :=

{
b, t ≥ 0,

0, t < 0,

then this implies the elementary estimate

t−1∏
r=s

αr
α+

= exp
(t−1∑
r=s

ln(1 + αr)
)
≤ exp

(t−1∑
r=s

αr
)
≤ exp

(
1

1−α
)

for all s ≤ t.

Hence, we set K := exp
(

1
1−α

)
and (5.10) simplifies to 2(1+ 1

e2 )α exp
(

1
1−α

)
< 1−α.

This assumption can be fulfilled for α = α+γ sufficiently close to 0, which requires
the kernel data γ or the asymptotic growth rate α+ to be small.

Even more concretely, on the habitat Ω = [−L,L] with some real L > 0 we
again consider the Laplace kernel k(x, y) := a

2 e
−a|x−y| with dispersal rate a > 0,

which yields γ = 1− e−aL. In this framework, an illustration of the forward limit
set ω+

A = {u∗} and subfibres of the pullback attractor A∗ is given in Fig. 5.2. Here,
both the pullback attractor A∗ and the forward limit set ω+

A capture the long term
behaviour of (5.6).
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Fig. 5.2 Functions contained in the fibres
A∗(t) of the pullback attractor over the times
−10 ≤ t ≤ 10 (blue) and the forward limit

set N0 × ω+
A = N0 × {u∗} (red) for the spa-

tial Ricker equation (5.6) with Laplace kernel
(a = 2, L = 10), α+ = 0.12, α− = 14 and the
constant inhomogeneity b(x) := 5 cos x

8
More detailed, depicted are the 4-periodic or-
bits (blue) of the spatial Ricker equation,
which is autonomous for t < 0. In addition, the
fibres A∗(t) also contain 0, a nontrivial fixed
point and a 2-periodic orbit.
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10. R. Johnson, V. Muñoz-Villarragut, Some questions concerning attractors for non-autono-
mous dynamical systems Nonlin. Analysis 71 (2009), e1858–e1868.

11. P.E. Kloeden, Pullback attractors in nonautonomous difference equations, J. Difference
Equ. Appl. 6 (2000), no. 1, 33–52.

12. P.E. Kloeden, T. Lorenz, Construction of nonautonomous forward attractors, Proc. Am.
Math. Soc. 144 (2016), no. 1, 259–268.
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