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Abstract. We prove a necessary and sufficient condition for the exponential sta-
bility of time-invariant linear systems on time scales in terms of the eigenvalues of
the system matrix. In particular, this unifies the corresponding characterizations
for finite-dimensional differential and difference equations. To this end we use a
representation formula for the transition matrix of Jordan reducible systems in the
regressive case. Also we give conditions under which the obtained characterizations
can be exactly calculated and explicitly calculate the region of stability for several
examples.

1. Introduction. It is well-known that exponential decay of the solution of a
linear autonomous ordinary differential equation (ODE) #(t) = Az(t), t € R, or of
an autonomous difference equation (OAE) x1 = Axy, t € Z, can be characterized
by spectral properties of A. Namely, the solutions tend to 0 exponentially as t — oo,
if and only if all the eigenvalues of A € C#*¢ have negative real parts or a modulus
smaller than 1, respectively (cf. HAHN [7, p. 14], AGARWAL [1, p. 227]). In the
present paper we generalize this classical result to linear time-invariant dynamic
equations z = Az on arbitrary time scales. Here the problem is more subtle due
to the possible inhomogeneity of the time scale and so far only sufficient conditions
for the exponential decay of solutions are available.

The first result concerning the case of general time scales was obtained by
AULBACH & HILGER [2, Theorem 13] and it contains a condition for the bounded-
ness of solutions on time scales with bounded graininess. Although it unifies the
time scales T = R or T = hZ, h > 0, its assumptions are often too pessimistic,
e.g. on asymptotically homogeneous time scales (cf. Example 4.10), since the max-
imal graininess is involved. More detailed results are presented in KELLER [11,
p. 29, Satz 2.5.8], including criteria for asymptotic stability or instability. A totally
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different approach to the asymptotic stability of linear dynamic equations using
Lyapunov functions can be found in HILGER & KLOEDEN [10, Theorem 3] and
POTZSCHE [12, Abschnitt 2.1] provides sufficient conditions for the uniform expo-
nential stability in (infinite-dimensional) Banach spaces, as well as spectral stability
conditions for time-varying systems on time scales. Finally, stability and instability
results for real scalar dynamic equations have been obtained recently by GARD &
HOFFACKER [6)].

As a thorough introduction into dynamic equations on time scales we refer to
the paper HILGER [9] or the monograph BOHNER & PETERSON [3]. The paper [2]
presents the theory with a focus on linear systems.

This paper is organized as follows. In Section 2 we introduce the class of systems
we wish to study and define the concepts of exponential, uniform exponential and
robust exponential stability. In Section 3 we completely analyze the case of scalar
equations and use this characterization to define the set of exponential stability. We
discuss some basic properties of this set and present several cases in which this set
is easily calculated. To make the step to higher dimensions we consider in Section 4
the case of Jordan reducible time-varying systems. We introduce the notion of
monomials on a time scale and show growth conditions for such monomials under
the condition of uniform graininess. These results are used in Section 5 to study
exponential stability for regressive matrices. The general case is investigated in
Section 6.

First, however, we fix some notation. In the following K denotes the real (K = R)
or the complex (K = C) field. For a complex number z € C we denote by Rz and
Sz the real and the imaginary part, respectively, and B.(z) is the open ball with
center z and radius € > 0 in the complex plane. As usual, K%*¢ is the space of
square matrices with d rows, I is the identity mapping on the d-dimensional space
K¢ over K and o(A) C C denotes the set of eigenvalues of a matrix A € K¢x4,

We also introduce some notions which are specific for the calculus on time
scales. A time scale T is a non-empty, closed subset of the reals R. If T has a
left-scattered maximum m, then T% := T \ {m} and otherwise T® := T. If T is
unbounded above, then T* = T. On the subset T" the graininess is defined as
p*(t) :=inf{s € T: t < s} —t. A time scale T which is unbounded above is called
homogeneous if the graininess is constant. If lim; ,o, p*(¢) exists, then T is said to
be asymptotically homogeneous. The space of rd-continuous, regressive mappings
from T* to K?%¢ is denoted by €,4R(T*,K?*?). Furthermore, given a function
A € CgR(T#,C), then

RN(@) = lim L+sA(®)]—1
s\t (t) s

fort € T®

is the Hilger real part of A, and we have the inclusion R\ € (‘ffde(’H‘“, R), where
CHR(T*,R) := {a € CyR(T",R) : 1+ p*(t)a(t) > 0 for t € T*}.

2. Preliminaries. In this section we define the class of systems we consider and
several notions of stability associated to these systems. We show by example that
these notions do not coincide. To begin with we work with time-varying systems
as our first statements are also applicable in this case.

Let A : T* — K%¥¢ be rd-continuous and consider the d-dimensional linear
system of dynamic equations

2 = A(t)z. (2.1)
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Let ®4 : {(t,7) € T*" x T*: t > 7} — K%*? denote the transition matriz corre-
sponding to (2.1), that is, p(t,7,&) = ®4(t, 7)€ solves the initial value problem
(2.1) with initial condition z(7) = & for £ € K? and ¢,7 € T with ¢ > 7. The
classical examples for this setup are the following.

Example 2.1. If T = R we consider linear time-varying systems of the form
z(t) = A(t)z(t). If T = hZ, then (2.1) reduces to (z(t + h) — z(t))/h = A(t)z(t) or
equivalently z(t + h) = [Iq + hA(¢t)]z(t).

We are interested in the stability of the equilibrium position z* = 0 of system
(2.1) and introduce the following definitions.

Definition 2.2 (Exponential stability). Let T be a time scale which is unbounded
above. We call system (2.1)

(i) ezponentially stable if there exists a constant a > 0 such that for every tg € T
there exists a K = K (tp) > 1 with

1Bt t0)|| < Ke=@(=%0)  for ¢ >t , (2.2)

(ii) wuniformly exponentially stable if K can be chosen independently of to in the
definition of exponential stability,

(iii) robustly exponentially stable if there is an € > 0 such that the exponential
stability of (2.1) implies the exponential stability of z® = B(t)z for any rd-
continuous B : T — K?*¢ with sup,cr [|B(t) — A(t)|| < e. In particular, if 4
is constant we call (2.1) robustly exponentially stable if for all matrices B in a
suitable neighborhood of A the corresponding system is exponentially stable.

Remark 2.3. (i) To the purist it may seem inadequate to define exponential
stability for system (2.1) via the standard real exponential function instead
of the exponential function e4(t,to) on time scales, since the real exponential
function has no intrinsic meaning on a general time scale. Although this
may be the case we argue that our characterization gives a strong description
of the asymptotic behavior of a solution which we believe to be of interest.
The methods we employ are closely tied to our definition, which also makes
us believe that the definition is right, as it is fruitful. Also the use of the
real exponential function makes our result accessible to readers, who are not
familiar with the “time scale calculus.” Finally, let us point out that we
deduce a criterion for exponential stability in Theorem 4.8 involving e, (, to).

(ii) The notion of exponential stability for linear time-varying systems is de-
fined in different ways according to different authors. For example our notion
of uniform exponential stability is called ezponential asymptotic stability in
[1, p. 240, Definition 5.4.1(xi)], whereas our exponential stability is not de-
fined in that book. CESARI [4] avoids the concept of exponential stability
but introduces the difference between uniform and nonuniform asymptotic
stability of linear time-varying systems, which is the distinction that we want
to emphasize. In the terminology of DALECKII & KREIN [5] exponential sta-
bility means negativity of the maximal Lyapunov exponent, whereas uniform
exponential stability means negativity of the maximal Bohl exponent.

(iii) It is well-known that the three notions of stability from Definition 2.2 co-
incide in the autonomous case for ODEs and OAEs. As Example 2.4 below
demonstrates, this fails to be true on inhomogeneous time scales. Conse-
quently, it is advantageous to distinguish between uniformly exponentially
stable and only exponentially stable time-invariant dynamic equations, which
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are our main topic in Section 5. Indeed the main result of this paper (The-
orem 5.1) is based on an estimate of the type (2.2), where K is allowed to
depend on tg.

(iv) It can be shown that uniform exponential stability of a linear system
implies robust exponential stability [12, p. 72, Satz 1.3.43]. Thus there was
no call for the definition of “robust uniform exponential stability”.

Before we proceed with our analysis of properties characterizing exponential
stability we will first present some examples showing that even for time-invariant
systems the different notions need not coincide. Furthermore, we present a negative
example pertaining to the question of linearization theory. In particular, we show
by example that in the time-invariant case

(i) exponential stability does not imply uniform exponential stability,
(ii) exponential stability does not imply robust exponential stability,
(iii) exponential stability of a linearization is not sufficient for local asymptotic
stability of a nonlinear system linearized at a fixed point.

The examples are given in the order of the list above.
Example 2.4. Let K = R and d = 1. We define a sequence sj, recursively by

so0:=0, spp1:=s,+3k+1, ke,
and the time scale T by the discrete set

T:={0,1,4,5,8,11,12,...,8k,8¢ + 3,..., 8k + 3k, Sk41,--- } -
Consider on T the scalar equation
= —x. (2.3)
For k > 1 elementary calculations yield for ¢t € T,z € R that
o(t,sp —1,m0) =0,t> s, —1, and @(sy + 3k, s, 20) = (—2)Fz0.

This shows that the system (2.3) is exponentially stable, as all trajectories reach 0
in finite time. On the other hand the system is not uniformly exponentially stable,
as a solution starting in zg = 1 may become arbitrarily large depending on the
initial time #o. This completes the example showing claim (i) from above.

We now show that the system is also not robustly exponentially stable. To this end
let |n| < 1/4 and consider the system

A = (-14+n)z.
Then we have
@(sk41, 5k, T0) = (—2+ 3n) 0o .
Now for every |n| < 1/4,n # 0 there exists a ko such that for all £ > ky we have

|(=2 + 3n)*n| > 2. Hence all nonzero trajectories start to grow after time sj. As
no nonzero trajectory reaches 0 in finite time this shows exponential instability.

To show that a linearization principle does not hold we consider a slight modifi-
cation of the previous example. Note, however, that a linearization result is valid,
if the corresponding linear dynamic equation is assumed to be regressive (cf. [6,
Theorem 5.3]).

Example 2.5. Let {b;}ren be a sequence of positive integers such that

b
Zg—ﬁ:oo.

k=0
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Now define the sequence sy, recursively by
s50:=0, sSpr1:=sp+3bp+1, keNy,
and the time scale T by
T:= {...,Sk,sk+3,...,8k+3bk,8k+1,...}.

Finally, consider the system

o = —x— 2%, (24)
Here, we have z(sg) = —z(sk—1)% and z(t + 3) = —2=z(t) — 3z(t)3, for t € T,t #
sk, k € N. This shows that all transitions are diffeomorphisms, hence no trajectory

reaches 0 in finite time. Denote by ¢(t, 7, zo) the solution of the nonlinear equation
(2.4) with respect to the initial condition x(7) = z. Then we also have

lo(skq1 — 1,88, 70)| > 2°%|20|,  hence |p(sky1, Sk, o)| > 230% 202,

and inductively

-1

(k15 5, %0)| > |z0l* H 2" us

Jj=0
It suffices that |o(sk+ti, Sk, %o)| > 1 so that the trajectories remain bounded away
from O for all ¢ > sg4;. Thus we have to consider the condition

L
ol [T 20 > 1,
=0

or equivalently
l
b
log, (|zol) > — Z 3_; :
j=k

As the sum on the right diverges this shows that for all initial conditions (s, zo)
with zg # 0, the trajectory remains bounded away from 0 for all ¢ large enough,
so that the system is not asymptotically stable. It is immediate from Example 2.4
that the linearized system z® = —z is exponentially stable.

3. The Set of Exponential Stability. From now on let T be a time scale which
is unbounded above. In this section we define the subset of the complex plane
which is relevant for a spectral characterization of exponential stability for linear
time-invariant systems

™ = Az, (3.5)

where A € K¢, To motivate this definition we begin with the analysis of scalar
equations and characterize their exponential stabilty.

Proposition 3.1. Let T be a time scale which is unbounded above and let A € C.
The scalar equation

2 =Xx, zeC (3.6)
is exponentially stable if and only if one of the following conditions is satisfied for
arbitrary tg € T:

(i) v(A) := limsupp_, T+to ftf lim gy, (1) M At <0,
(i) VI' € T: 3t € T with t > T such that 1 + p*(t)A =0,
where we use the convention log0 = —oo in (i).
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Proof. (=) Assume that (3.6) is exponentially stable and that 1 + p*(¢)A # 0 for
all t > to and some tg € T. Then [9, Theorem 7.4(iii)] implies the following explicit
presentation of the modulus of the (possibly complex) evolution operator of (3.6)

T

log |1

lex(T', to)| = exp / lim M At for T > tg
to 5 ™ (1) s

and the estimate |ex (T, tp)| < Ke=2(T—t) for T > to with K = K (to) > 1 yields

T

log |1

/ lim MAtg—a(T—t0)+logK for T > tg .
to SNt (t) s

We therefore have

lim sup

T
I 1
/ im BN <o
T—o0 —to t

o SN (1) S

and the claim follows.
(<) To prove the converse direction let 7 € T be fixed. If 1 + p*(¢)\ = 0 for
some t > 7, t € T, then trivially p*(¢t) > 0 and

[2(t + 7 (8)) — 2(B)]/1*(t) = Ae(t)

or equivalently z(¢t + p*(t)) = 0 and thus (3.6) is exponentially stable if for every
7 € T there is a 7 < t € T with this property. Now assume this is not the case so
that 1+ p*(T)X # 0 for all T > 7 and some 7 € T large enough, then

T

log |1

lex(T, 7)| = exp / lim M At forT >
SN\ () s

and with

T
log |1 A
& = — limsup / log[1+sA ,,
Tooo LI =T sS\aur(®) s

we obtain for any € > 0 that there exists a constant K = K(7) > 1 such that

>0

lex(t,7)| < Ke™ (@)= for t > 7.
In particular, if we choose £ < a we obtain exponential stability of (3.6). O
In view of the previous definition the following notion appears to be appropriate.

Definition 3.2 (Set of exponential stability). Given a time scale T which is un-
bounded above we define for arbitrary tg € T

T

log |1

/ lim M At < 0}
to SNt (1) §

Sc(T):={ e C: lljryj;p Tty

and
Sr(T) :={A € RIVT € T: 3t € T with ¢t > T such that 1+ p*(t)\ = 0}.
The set of exponential stability for the time scale T is then defined by
S(T) := Sc(T) U Sr(T) -
Remark 3.3. (i) Note that the definition of S¢(T) is independent of ¢g.
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(i) For any time scale T we have S¢(T) C {A € C | R\ < 0} because £\ > 0
implies that |1 + sA| > 1 for all nonnegative s € R. Thus, if RA > 0 the
function appearing under the integral is nonnegative. Likewise, it is easy to see
that Sg(T) C (—00,0). Furthermore Sc(T) is symmetric with respect to the
real axis, as |1 +s\| = |[L+s)| for real 5. As s is not only real but also positive,
this implies that |]. + S)\1| < |1 +S)\2| fRA =RA2and 0 < A1 < $Ag. This
shows that if A € Sc(T), then the segment {RA+iaSA | a € [-1,1]} C Se(T).
In particular, the connected components of S¢(T) are simply connected.

(iii) It is evident from the definition that S¢(T) is an open subset of C. On the
other hand, given a time scale T the set Sg(T) is at most countable, because
the condition A\ € Sr(T) implies that the time scale T has infinitely many
“gaps” of length |A|"'. In every such gap there exists a rational number
gx- If there were uncountable many A € Sg(T), then there would exist an
uncountable number of distinct rational numbers ¢). This is impossible.

(iv) For regressive A € C, we have

log |1 +sA| { lo—g%w for p*(t) >0

lim .
R for p*(t) =0

s\t (t) s

In general, the set S¢ is awkward to calculate because of the limit superior

involved in the definition. We therefore present some criteria which allow for an
easier calculation of v(\).

Lemma 3.4. Let T be a time scale which is unbounded above and let A € C.
(a) If a := limg_ o0 limgn e () M exists, then v(\) = a.
(b) If there are tg € T, p > 0 such that for all k € Ny we have to + kp € T and

1 to+(k+1)p 1 1 A
gy =L lim log|1+sA[ ,,

P k= Jio1kp sN\ep*(t) S
exists, then y(A\) = a,.

(c) Let X be a compact metric space and T : X — X be a mapping that is
uniformly ergodic with ergodic measure . Let p1 : X — (0,00) be continuous
with image [a,b] and py : X — [0,00) be continuous. For every o € X define
a time scale T(xzg) by

U [Z p1(Th20) + 3 po(T*20), 3 (01 (TH0) + po(T*20))
m>0 Lk=0 k=0 k=0

Then for every A € C\ [—a~*, —b~'] we have
[ @R +log|1+ pr(2)Adn(a)
Jx (@) + p2(x)dn(z)

Remark 3.5. (i) Other sufficient criteria for the stability of regressive linear
dynamic equations in R can be found in [6, Corollaries 4.1, 4.2].
(ii) On a time scale, where p* is unbounded, but the real number a given in
Lemma 3.4(a) exists, we easily obtain y(A) = 0. Now, due to Proposition
3.1, the scalar equation (3.6) cannot be exponentially stable on such a time
scale. In particular this is true for so-called g-difference equations (cf. [3,
p. 91, Definition 2.57]), which are defined on the time scales T = {¢* }xen,,
g>1.
(iii) An illustrative interpretation of the time scale defined in Lemma 3.4(c) is
that there are continuous intervals of length ps(T*z() alternating with “gaps”

Y(A) = a, : (3.7
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of length p; (T*24). In particular, we can construct purely discrete time scales
in this manner by choosing ps = 0.

Proof. (a) and (b) follow from easy calculations. To show (c) we appeal to WALTERS
[14, Theorem 6.19] which shows in particular that unique ergodicity implies that
for every initial condition zg € X and every continuous function f : X — R we
have that

Now the function #» p2(z)RA is clearly continuous for all A € C and #» log |1+
p1(z)A] is continuous for those A € C such that 1+ p;(z)A # 0 for all z € X, that
is in particular for X ¢ [—a~", =b~']. Then for T, = Y1 o" (01 (T*x0) + p2(T*x0))

we have .
1 _/ lim log |1 + sA| Af =
Tm Jo s\t s

m 1 m—1 . 1 m—1 .
=7 \m Z p2(T%xo)RA + o Z log |1+ p1 (T z0)A| | -
k=0 k=0
By continuity of p; + p» the expression T}, /m converges to [ x P1 + p2dn and the
limit is nonzero as p; is strictly positive. Thus also m /T, converges and we obtain
that the expression to the right converges to a, for m — oco. For those T' € T(x)
that are not of the form T, we have at least that for some m € Ny it holds that
0 < T —Ty < maxzex p2(z). Using this fact an easy calculation shows that indeed

v(A) = a.. This concludes the proof. O
We note the following examples in order to show the applicability of the previous

lemma.

Example 3.6. (i) Consider the time scale T = hZ, h > 0, with Sg(hZ) =

—#}- An application of Lemma 3.4(a) shows S(hZ) = By (—7), as expected.
Moreover, for h — oo the set S(hZ) degenerates to the point {0}.
(ii) If T = R we obtain Sg(R) = @ and from Lemma 3.4(a) that S(R) =
{Ae C: RX <0}
(iii) Consider the time scale T = {t,}, y of so-called harmonic numbers
th 1= Y py %, n € N, which is unbounded above. The graininess is given
by p*(tn) = n%u Using methods from elementary calculus it can be shown
A| =
x

that lim,_,, xlog |1 + RA for A € C and consequently

lim lim log[1+ sA| = lim (n+1)log
t—00 s\ u* (1) S n—o0
Now from Lemma 3.4(a) we obtain {A € C: RA < 0} = S¢(T) = S(T). Note
that no gap occurs an infinite number of times, so that Sg(T) = 0.
(iv) Let Ty = Upen, [k & + 0], o € (0,1), be a union of closed intervals. To
calculate the set of exponential stability for this time scale we observe that

k+1 1 1 k+o
/ lim (0BLESAL L, / RAdt +log |1+ (1 — 0)A| =
k s\p* (t) s k

1+L‘:§R)\ for A e C.
n+1

= oRA+1log|l+(1—0)A| forkeNy
and consequently by Lemma 3.4(b) with to = 0, p = 1 we have
Sc(Ty) ={rAeC: oRX+1og|l+ (1—0)A| <0} .
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Also it is clear that Sg(T,) = {(c —1)7'} C Sc(T,). This representation
includes the limit cases S(Ty) = S(Z) and S(T1) = S(R). In Figure 1 we
show the stability region for the examples. In each picture the set S¢(T,) is
given by the hatched area. Note in particular that for the value ¢ = 0.21 the
stability region is disconnected. Let us briefly discuss for which values of o
there are disconnected stability regions in this example. By Remark 3.3 (ii) we
have that A € Sc(T,) implies RA € Sc(T,) so that we only have to investigate
the question for which o € (0,1) the set Sc(T,) N (—00,0) is disconnected.

Stability Region for 0=0.3

Stability Region for 0=0.8

30 30
20 20
2 2
3 10 S 10
> Pl
g 0 g 0
2 2
£-10 £-10
-20 -20
95 -15 -10 -5 0 9 -15 -10 -5 0
real axis real axis
Stability Region for 0=0.25 Stability Region for 6=0.21
30 : T T 30 T . .
20 20
2 2
3 10 3 10
> Pl
g0 g 0
2 2
£-10 £-10
-20 -20
95 -15 -10 -5 0 9 -15 -10 -5 0
real axis real axis

FIGURE 1. Stability regions as described in Example 3.6(iv) for
different values of o

For A € (—0,0) to be in the set Sc(T,) it is necessary and sufficient that
|14+ (1—0)A| < e If XA € [(0 —1)71,0)] it is easy to see that this is always
the case. Hence we consider the case A € J, := (—o0, (¢ — 1)7!] now. Here
we have to satisfy the inequality (¢ — 1)A — 1 < e~?*. It is clear that this
is satisfied for negative A with |A| large enough. However, by using standard
calculus it is easy to see that for o € (0,1/2) there is a unique local maximum
of the function f,(A) := (6 —1)A—1—e " at A\, = o~ 'log(o(l —o)71).
The requirement that A\, € J, or equivalently, o/(c — 1) > log(c/(1 — o))
implies that o € (0,a) with a constant a = 0.361896. Now we are interested
in the question for which o we have f,(\,) > 0. This leads to the condition
(0 — 1)1 > log(c/(1 — o)) which is true for o € (0,b] with b ~ 0.2178117.
In all we have shown that the stability region is disconnected if and only if
o €(0,b].

(v) It is known that for @ € [0,1] \ Q the map

2r+a modl
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is uniquely ergodic. As the continuous functions p1, p2 we choose p1(z)
1+ (z — 1/2)2, p2(x) = sin(nz) and by Lemma 3.4(c) we have that

1\ 2
1+)\+<a:—§> )\d;c<0}.
If we choose p2 = 0, then we obtain

1 2
SC(T):{AEC:/logl-i—)\-i—(a:—%) )\d;c<0}.
0

In Figure 2 a sketch of the stability regions corresponding to the different
choices of p, is shown.

1
Sc(T) = {)\E(C: %%)\+/ log
0

Example 11 (v), p,=0

Example 11 (v), pz(x): sin(Tx) 3
10 .
2,
5 (2]
% £ 1t
2 2
g 0 g0
2 g
£ EL
-5
_2,
- _3 L L L
195 -4 -3 -2 -1 0 1 -2 -1 ) 0
real axis real axis

FIGURE 2. Two stability regions as described in Example 3.6(v)
with or without continuous intervals

If we choose @ € Q the map # 2 + o mod 1 is periodic. Therefore,
if we consider the time scales described in Lemma 3.4(c) given by the maps
p1 from above and p; = 0 the stability region can be calculated by virtue of
Lemma 3.4(b). In principle, this region now depends on the initial condition.
For the choice o = 1/2 this difference is easily noticeable and the stability
regions for xg = 0.0099 and zy = 0.7382 are shown in Figure 3. For the
choice @ = 1/20 however, we were not able to produce pictures that give any
noticeable difference (although it exists of course).

Example 11 (v), pZ:O, a=1/2 Example 11 (v), pZ:O, a=1/20
3 3
2 2
% 1 X 1
> >
g0 g0
D [=2]
£ £
) -2r
I -1 0 1 T -1 0
real axis real axis

FIGURE 3. Two stability regions as described in Example 3.6(v)
with rational a.
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(vi) Finally, let T be obtained by gluing together identical Cantor sets. That is,
if Mc denotes the standard Cantor set obtained as the limit (in the Hausdorff
topology) of the compact sets M}, recursively defined by

2kt 1
6j+1 65+2
My :=[0,1], My :=Mp_1\ U (J?’k 7.73]9 )7
j

1
i=0
then we define T by t € T & t —n € Mg for some n € Ny. This time scale is
clearly periodic so that we may apply Lemma 3.4(b) to obtain that

Sc(T) = {AE(C: ZQk_llog <0},

k=1
because there are always 2¥~! gaps of length 3% for k = 1,2,.... An approx-
imation of this set is shown in Figure 4. As the Cantor set itself has measure
0 the points ¢ € T with p*(¢) = 0 do not contribute to the definition of the
set of exponential stability. Moreover, since (—o0,0) C Sc(T), Remark 3.3(ii)
yields Sg(T) C Sc(T) = S(T).

1
1+3—k)\

Stability Region for Cantor Sets
100 : : : :

)]
o

imaginary axis
o

|
[
o

10800 30 20  -10 0
real axis

FI1GURE 4. The stability region for repeated Cantor sets

In the remainder of the article we discuss higher dimensional systems.

4. Jordan Reducible Systems. Let A : T* — K%¥¢ be an rd-continuous map-
ping. In this section we consider d-dimensional time-varying linear systems (2.1),
which are Jordan reducible, i.e., there exist (constant) invertible matrices S € C¢*¢
such that

Ji(1)
STLA()S = =: J(t) forte T, (4.8)
Jn(t)
where each J;(t) € C% %% dy +...+d, =d, 1 <i<n <d,is a Jordan block
Ai(t) 1 0o ... 0
A(t) 10 L. 0
Ji(t) := . . for t € T".

)\i‘(t)
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Evidently time-invariant systems (2.1) are Jordan reducible and in this case A; is a
constant eigenvalue of A. We first note that Jordan reducibility allows for a block
decomposition of the transition matrix.

Theorem 4.1. Suppose A € C.qR(T*,K*?) is such that (2.1) is Jordan reducible.
Then the transition matriz of x™ = A(t)x is given by
CI)Jl (t7 T)
BAt,T) =S St fort,T € T, (4.9)
¢Jn (t7 T)
where we have used the notation introduced in (4.8). If A is not regressive, then
the representation (4.9) holds for t > 7 € T.

Proof. For the matrix function ¥ (¢) := S®;(¢,7)S~! the identity

TA) = ST(1) B, (t,7)S~ D) S5V A()SB (¢, 7)S! = A(£)T (1)
for t € T* holds and because of ¥(7) = I; we obtain the assertion. This calculation

can be performed without further assumptions on A if ¢ > 7, so that ®;(¢,7) is
well defined. This proves the second statement. [l

It is our goal to give an expression for the transition matrix of Jordan reducible
equations. This, however, needs some preparation.

Definition 4.2 (Monomials). For each n € Ny and A € C,.4R(T*,C) the mappings
my : T x T® — C, recursively defined by

t

n
mi(t,7) =1, mit () ::/ m3(5,7)

— 22 _As 4.1
T (A s forn e Ny, (4.10)

are called monomials of degree n.

Remark 4.3. To deduce Taylor’s formula for functions defined on general time
scales, [3, pp. 37-46, Section 1.6] introduce so-called “polynomials” h,(t,7), which
are related to the monomials from Definition 4.2 by the relation hy(t,7) = mg (¢, 7)
forne Ny, 7€ T* teT.

Example 4.4. On homogeneous time scales with graininess p*(¢) = h > 0 and for

=)' for t,7 € T.

regressive constants A € C we obtain m}(t,7) = e SV

Lemma 4.5. Consider a mapping A € C.yR(T*,C) which s uniformly regressive,
i.e., there exists a v > 0 such that

yEL L+ (@A) fort € T (4.11)
Then the estimate |m% (t,7)| < ™(t — 7)™ holds fort > 7 and n € Ny.

Proof. The proof is obtained using an easy induction argument. Trivially the de-
sired estimate holds for n = 0. The induction step n — n + 1 follows from

@0 mg(s,) L (s =)
m™t )| < / _mA&T) As</ S Gl My A
MmN S e | 2 S ), T @@ S

(4.11)

<

t t
< 7"+1/(s—7)m557"+1/ (t—m)" As =

= A"t —-7)" fort>T,

as desired. O
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Lemma 4.6. If A € C.qR(T*,C) and if Jy : T* — C¥*9,

Af) 10 ... 0

A®) 1 ... 0

Jx(t) == . :
G

denotes a mapping with values in (complex) Jordan canonical form, then the tran-
sition matriz of x® = J\(t)z is given by

1 mit,7) ... mi 1)
1 oo miE(t,T)
®,,(t, 1) = exl(t,T) ] . fort,T € T".
1

Proof. Obviously @, (1,7) = I; by Definition 4.2, and for arbitrary 7 € T* an
elementary calculation using the product rule (cf. [9, Theorem 2.6(ii)]) yields the
identity ®;, (-,7)"(t) = J(t)®, (t,7) for t € T*. O

Lemma 4.7. Consider mappings o € C/,R(T,R), A € €,4R(T,C) on a time scale
T with bounded graininess and which is unbounded above. Under the assumption

T eT:0< te%%foo : [a(t) — (RN ()]

it holds that
lim mY (¢, T)exoa(t,7) =0 forT€T,n€Ny.
t—o0

Proof. Using the decomposition from [9, Theorem 7.4(ii)] it suffices to show that
limg 00 MY (£, T)egirga (t: ) = 0. To this end we proceed by mathematical induction
over n € Ny. For n = 0 we have m{(t,7) = 1 (cf. (4.10)) and the assertion follows
by [8, p. 59, Satz 9.2], namely

lim eg
t—o00

fxoa(t7) =0 for 7€ T.

Now keeping n € Ny fixed, by assumption the relation
my(t, T)esnaa (t:T)
(@@ RA)®) (1+ p*(A®))
my(t, T)esnaa (t:T)
infte[T,oo) [a(t) - (ﬁ)\) (t)]

holds. Therefore the Theorem of de I’'Hospital (cf. [3, p. 48, Theorem 1.120]),
applied separately to the real and imaginary part, leads to

_ m3(t, T)ew\ea(t T)

a(t) = (RA)(2)

»0 for7eT

0

t—oo

thm myti(t, T)esinaaltsT) =

410) . my (s, T ¢ my(s,T 1
O i [ R o [ ST ] et =
i [ m3(t,7) 3 m3(t,7) ]emeoi(tﬁ) _

L+ p*()A(t) L+ p* (M) ] (a © RN)(2)
lim m} (¢, T)eqrnoa(t.r)
=00 (a6 RA)(£)(1 + p* () A(2))

which proves our lemma. O

m
t—oo

=0 forTeT,
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In the following theorem and in certain subsequent results we require that the
time scale T has bounded graininess p*. Beyond the standard examples T = R or
T = hZ, this is satisfied for time scales occurring in many applications ranging from
population dynamics (cf. [3, p. 15, Example 1.39]) to discretization theory (cf. [11,
pp- 93ff]). A prominent example of a time scale with unbounded p* is given by
T = {¢*}, eng» 4 > 1. Nevertheless, Remark 3.5(ii) indicates that in general one
cannot expect exponential stability of (3.5) on this time scale.

Theorem 4.8. Suppose A € C.qR(T,K¥*?) and that (2.1) is Jordan reducible on
a time scale T with bounded graininess and which is bounded above. If there exists
an o € CLR(T,R) such that

T eT:Vie{l,...,n}: 0< te%rTlf )[a(t) — (RN (®)] (4.12)

holds, then the transition matriz of (2.1) satisfies

lim eq(t,7)®a(t,7) =0 forTeT.
t—o0

Proof. By Theorem 4.1 and in particular by the representation (4.9) we only have
to show lim¢_, o €q(t,7)® s, (t,7) = 0 for ¢ € {1,...,n}. This is immediate from
Lemma 4.6, since the assumption (4.12) allows for the application of Lemma 4.7. O

Remark 4.9. Theorem 4.8 can be used to show the stability of linear time-varying
systems using time-dependent eigenvalues. Here the assumption of a Jordan re-
ducible mapping A is essential as classical examples for ODEs show (cf. [7, p. 307]).

Example 4.10. Consider an asymptotically homogeneous time scale T with h :=
limy o p*(t) > 0 and assume that A € K?*¢ is a regressive matrix such that
o(4) C By (-=%)- Then for the time-invariant system z® = Az the inequal-

ity J%l_—l < 0 holds for A € o(A) and there exists a T € T such that 0 <
inf, 7,00y [~ (RN)(#)]. Therefore ®4(t,t0), to € T, tends to 0 as t — oo.

5. The Regressive Case. In this section we assume that 4 € K¥*? is regressive,
so that we may freely use all the results obtained in Section 4. Moreover the
eigenvalues A € o(A) are regressive (see [3, Exercise 5.6, p. 190]).

Theorem 5.1 (Characterization of exponential stability). Let T be a time scale
which is unbounded above and let A € K¢*¢ be regressive. Then the following holds:
(a) If the system (3.5) is exponentially stable, then o(A) C Sc(T).
(b) If (4.11) holds for all eigenvalues A of A and if o(A) C Sc(T), then (3.5) is
exponentially stable.

Proof. To begin with, we choose an invertible matrix § € C¢*? such that .J :=
S~1AS is in Jordan canonical form and let the matrix A have the eigenvalues

Ay -.-5 An € C, n < d. Throughout this proof we use the induced matrix norm
d
Al ;= max Q;; 5.13
I =, 3 (513)

of A = (ai)ije{1,...,a); since all norms on K?*4 are equivalent, this is sufficient for
our purpose. Now suppose tg € T is fixed.

(a) Assume that (3.5) is exponentially stable. Then, if v € C? is an eigenvector
corresponding to A € o(A), by [3, p. 198, Theorem 5.30], we have that

lex(t, DlI[vll = 18at, )0l < K Dloll, t>7,
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for suitable constants K;,a > 0. This shows that |ex(t,7)| < K,e=*t=7) and
Proposition 3.1 implies that A € Sc(T). As A € o(A) was arbitrary, this completes
the proof.

(b) Since the eigenvalues of A € K¢*? are assumed to be uniformly regressive,
there exists a v > 0 such that

yEL< L+ pr ()| forteT,ie{l,...,n}.

Then for arbitrary i € {1,...,n} it follows as above
T
log |1+ sA;
lex; (T, t0)| = exp / lim M At for T >t
to SNt (1) s
and with  := 1 min {ay,...,a,}, where
T
log |1 ;
a; = —limsup / lim log 1+ shif At >0,
T—c0 —to Ji, sN\wr(®) S

we obtain the estimate

lea; (t,t0)] < Kie o(t=t)  for ¢ > ¢,
with some real Ky = Kji(tg) > 1. On the other hand our Theorem 4.1 implies
[|@a(t,to)ll < |S]| ||S_1H [|®(t,t0)||- Now, since all the non-zero entries of the ma-
trix @, (t,to) are of the type my (t,to)ex, (t, to) for some integer j; € {0,...,d; — 1},
and since A; satisfies (4.11) by assumption, Lemma 4.5 implies

|m§fi (t, to)ex, (¢, to)‘ < K49 (t — to)die= (%) for ¢ > .

Elementary calculus leads to the existence of some Ky = Ko(Ky,a,to,j;) > 1 such
that '

‘mi (t,to)ex, (tatO)‘ < Kye 21 fort>tg.
As each non-zero entry of the matrix ®;(t,%o) satisfies such an estimate, we have

also that @ ;(¢,1¢) is norm-wise exponentially bounded, i.e., we have ||®;(¢,10)|| <
Kze~2(t=t0) for all t > to and some K3 > 1 depending in particular on d. O

An immediate consequence of the previous result is the following characterization
of robust exponential stability.

Corollary 5.2. Let A € K¥*? be regressive. Then the following holds:

(a) If the system (3.5) is robustly exponentially stable, then o(A) C Sc(T),
(b) if (4.11) holds for all eigenvalues \ of A on a time scale with bounded grain-
iness, and if o(A) C Sc(T), then (3.5) is robustly exponentially stable.

Proof. (a) If (3.5) is robustly exponentially stable, then it is in particular exponen-
tially stable, hence o(A) C Sc(T).

(b) The set Sc(T) is clearly open and by the continuous dependence of the
spectrum of a matrix on its entries (cf. e.g. STEWART and SUN [13, Theorem
IV.1.1]), there is a neighborhood V C K%*? of A € K?*? guch that o(B) C S¢(T)
for B € V. It remains to show that each A € o(B) satisfies (4.11). By assumption
there exists a v > 0 such that

YEL< L+ pF(t)p| fort €T, p€ o(A)

and we may choose V' small enough so that for each A\ € o(B) there exists a u € o(A)
with |p— A| < ﬁ, where we abbreviate H := sup;cp p*(t). Now the estimate

Y U< [t ON + @) = A < L+ (N + 2y) " forteT
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leads to (27)~! < |1 + p*(t)A| and therefore A € o(B) is uniformly regressive. As
A was arbitrary, this completes the proof. O

6. The General Case. In this section we treat the case of not necessarily regres-
sive matrices A € K¢*¢. We are therefore not able to use the results of Section 4.
The following lemma provides an alternative way to conclude for exponential sta-
bility of Jordan blocks. This will be used in the proof of the main result of this
section (Theorem 6.2).

Lemma 6.1. Let T be a time scale which is unbounded above and with bounded
graininess. For A\ € C consider the Jordan block Jy € C*¢ given by

A1 0 ... O
A1 ... 0
JA = .
A
If the scalar equation
2 =\ (6.14)

is uniformly exponentially stable, then the system
2 = Iz (6.15)
is exponentially stable.

Proof. We show the assertion by constructing explicit bounds for individual solu-
tions with initial condition z(7) = £ € K%, 7 € T. Again we will use without loss
of generality the norm ||z|| := max {|zy|,...,|z4|} for z = (x1,...,24) € K? in our
considerations.

Assume that for the solutions of (6.14) we have bounds of the form ||z(t)|| <
Ke (=) ||¢|| for suitable constants @ > 0, K > 1 and all 7 € T. Fix 7 € T and
—a < B < 0. Now choose a sequence —a = 3 < B4-1 < ... < P2 < 1 = 5. We
will prove by induction on j = d,...,1 that there exists constants K; such that the
j-th component of the solution of (6.15) is exponentially bounded by

2 (O] < KB |jg]]

For j = d the assertion follows from the assumption as the d-th entry of z(t) is a
solution of (6.14) and hence

lza(t)] < Ke 7 6q| = KeP1 gy < KePat g

So assume the assertion is shown for some index d > (j + 1) > 2. By construction
the j-th component of the solution satisfies the equation

ij(t) = Az;(t) + zj41(t) forteT.
Thus by the variation of constants formula (which is shown in the general non-
regressive case in [12, p. 56, Satz 1.3.11]) we have the representation

t
21(t,7) = ex(t0)G + [ exttos () ().

T
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Using the exponential bound on ey (¢,7) and denoting by H the bound on the
graininess of T we obtain

t
5O < lex(tnI§]+ [ lealtis +n*(@)os (9)|As <

IN

t
Ke o g+ [ Ke ot Deor R, ehnte Ds ] <

IN

t
Keﬁj+1(t—r)|fj| +/ Keﬂj+1(t—S)eaHKj+1€Bj+1(s_T)AS €]l =
T

= KP4 KK e (- r)ebn ) g
and choosing K; large enough and using 3;11 < f; we obtain
2 (8)] < KDl fort > 7,

as desired. As we have exponential decay of all components of the solution z(t)
this implies the assertion. O

The main result of this section is now the following. Recall that an eigenvalue is
called defective if it is not semi-simple, i.e., if geometric and algebraic multiplicity
do not coincide.

Theorem 6.2. Let T be a time scale which is unbounded above. Let A € K¢*¢ and
consider the linear system (3.5). Then the following assertions hold:
(a) If (3.5) is exponentially stable, then o(A) C S(T).
(b) If o(A) C S(T), the time scale T has bounded graininess and for all defective
A € o(A) the scalar equation (3.6) is uniformly exponentially stable, then
system (3.5) is exponentially stable.

(¢c) If A is diagonalizable, then system (3.5) is exponentially stable if and only if
a(A) C §(T).

Proof. (a) Let A € o(A) and choose an associated eigenvector v. Then we have for
t > 7 € T that (cf. [3, p. 198, Theorem 5.30])

lea(t, DIl = @t )oll < Kre ® D] for ¢ > 7,

for suitable constants K,,a > 0. This shows that |ex(t,7)| < K,e~t=7) and
Proposition 3.1 implies that A € S(T). As A € 0(A) was arbitrary, this completes
the proof of (a).

(b) Let S € C¥*? be such that J := S~ AS is in Jordan canonical form with
Jordan blocks J;,i =1,...,n < d. If for some i the Jordan block J; is one dimen-
sional the assumption on the spectrum of A and Proposition 3.1 immediately imply
exponential stability of

2 = Jix. (6.16)

If dim J; > 1, that is, if the associated eigenvalue is defective, then exponential
stability of (6.16) is a consequence of the assumptions and Lemma 6.1. In total,
we have exponential stability in each of the Jordan blocks and the assertion easily
follows using Theorem 4.1.

(¢) This is immediate from (a) and (b). O

Corollary 6.3. Let T be a time scale which is unbounded above. Let A € K3*¢
and consider the linear system (3.5). Then the following assertions hold:

(a) If (3.5) is robustly exponentially stable, then o(A) C Sc(T).
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(b) If 6(A) C Sc(T), the time scale T has bounded graininess and for all multiple
eigenvalues X € o(A) the scalar equation (3.6) is uniformly exponentially
stable, then system (3.5) is robustly exponentially stable.

(c) If A has d distinct eigenvalues, then system (3.5) is robustly exponentially
stable if and only if o(A) C Sc(T).

Proof. (a) By Theorem 6.2(a) the assumption implies o(B) C S(T) for all matrices
B in a neighborhood of A. Again using [13, Theorem IV.1.1] this is equivalent to
the statement that for a suitable neighborhood U of o(A) we have U C S(T). This
implies that o(A) C int S(T) = Sc(T).

(b) As S¢(T) is open and by continuous dependence of the eigenvalues on the
entries of a matrix we have o(B) C S¢(T) for all matrices B in a neighborhood V
of A. If A € o(A) has algebraic multiplicity greater than 1 we have by assumption
that the scalar equations (3.6) is uniformly exponentially stable. By arguments
similar to [12, Abschnitt 1.3] this implies that the scalar equation

=z (6.17)

is uniformly exponentially stable for all |p—A| < € for some € > 0 small enough. Now
[13, Theorem IV.1.4] guarantees that by choosing a sufficiently small neighborhood
U of A we can ensure that any defective eigenvalue of a matrix B € U has to
satisfy |p — A| < e for some multiple eigenvalue A € 0(A). Thus forall Be UNV
the assumptions of Theorem 6.2(b) are satisfied which shows robust exponential
stability of A.

(c¢) This is immediate from (a) and (b). O

7. Conclusion. We have presented a domain of exponential stability which com-
pletely characterizes exponential stability of scalar equations. This immediately
implies a characterization of the (generic) case of matrices with distinct eigenval-
ues. For the case of (defective) multiple eigenvalues we obtain some criteria in
the regressive case under a uniform regressivity assumption on the eigenvalues of
A. Tf the assumption of regressivity is dropped this can be replaced by a uni-
form exponential stability assumption on the scalar equations defined by defective
eigenvalues.

The topic warrants further investigation. In particular, it should be examined if
uniform exponential stability of certain A € o(A) is really necessary to prove Theo-
rem 6.2(b). Also it would be interesting to know conditions for uniform exponential
stability. Finally, the set of exponential stability is not completely understood. It
seems clear, that it can have many connected components. It should be possible
to construct examples of that type using some modification of Example 3.6(iv) by
introducing gaps of varying sizes. What is unclear is, if there are conditions that
imply unboundedness of S¢(T). One could conjecture that for this to happen suf-
ficiently many times ¢ € T with u*(t) < € are needed for any € > 0. But a precise
statement remains obscure to us for the moment.

Concluding this paper we remark that all statements remain true with obvious
modifications if one replaces the time scale T by an arbitrary measure chain (cf. [8,

9).
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