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Abstract. We construct invariant foliations of the extended state space for nonau-

tonomous semi-linear dynamic equations on measure chains (time scales). These equa-

tions allow a specific parameter dependence which is the key to obtain perturbation
results necessary for applications to an analytical discretization theory of ODEs.

Using these invariant foliations we deduce a version of Pliss’s reduction principle.

1. Introduction

We begin with a motivation for this paper having its origin in the classical theory of
discrete dynamical systems. For this purpose, consider a C1-mapping f : U → X from
an open neighborhood U ⊆ X of 0 into a Banach space X , which leaves the origin fixed
(f(0) = 0). It is a well-established result and can be traced back to the work of Perron in
the early 1930s (to be more precise, it is due to his student Ta Li (cf. [Li34])) that the origin
is an asymptotically stable solution of the autonomous difference equation

(1.1) xk+1 = f(xk),

if the spectrum Σ(Df(0)) is contained in the open unit circle of the complex plane. Similar
results also hold for continuous dynamical systems (replace the open unit disc by the negative
half-plane) or nonautonomous equations (replace the assumption on the spectrum by uniform
asymptotic stability of the linearization). In a time scales setting of dynamic equations these
questions are addressed in the works [GH03] (for scalar equations), [Kel99] (equations in
Banach spaces) and easily follow from a localized version of Theorem 2.2(a) below. Such
considerations are usually summarized under the phrase “principle of linearized stability”,
since the stability properties of the linear part dominate the nonlinear equation locally.

Significantly more interesting is the generalized situation when Σ(Df(0)) allows a decom-
position into disjoint spectral sets Σs,Σc, where Σs is contained in the open unit disc, but Σc
lies on its boundary. Then nonlinear effects enter the game and the center manifold theorem
applies (cf., e.g., [Ioo79]): There exists a locally invariant submanifold R0 ⊆ X which is
graph of a C1-mapping r0 over an open neighborhood of 0 in R(P ), where P ∈ L(X ) is the
spectral projector associated with Σc. Beyond that, the stability properties of the trivial
solution to (1.1) are fully determined by those of

(1.2) pk+1 = Pf(pk + r0(pk)).

The advantage we obtained from this is that (1.2) is an equation in the lower-dimensional
subspace R(P ) ⊆ X . This is known as the reduction principle. From the immense literature
we only cite [Pli64] — the pathbreaking paper in the framework of finite-dimensional ODEs.

The paper at hand has two primary goals:
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(1) It can be considered as a continuation of our earlier works [Pöt06, KP06]. In [Pöt06]
we studied the robustness of invariant fiber bundles under parameter variation and
obtained quantitative estimates. Such results were successfully applied to study
the behavior of invariant manifolds under numerical discretization using one-step
schemes (cf. [KP06]). Here we prepare future results in this direction on the behavior
of invariant foliations under varying parameters. As a matter of course, this gives
the present paper a somehow technical appearance, at least until Section 4.

(2) We want to derive a version of the above reduction principle for nonautonomous
dynamic equations on measure chains. To obtain this in a geometrically transparent
fashion, invariant foliations appear to be the appropriate vehicle.

In Section 2 we establish our general set-up and present an earlier result on the existence
of invariant fiber bundles, which canonically generalize stable and unstable manifolds of
dynamical systems to nonautonomous equations. The actual invariant foliations are con-
structed in Section 3 via pseudo-stable and -unstable fibers through specific points in the
extended state space. Each such fiber contains all initial values of solutions approaching
the invariant fiber bundles exponentially; actually they are asymptotically equivalent to a
solution on the invariant fiber bundles. This behavior can be summarized under the notion
of an asymptotic phase. While the above global results are stated in a — from an applied
point of view — very restrictive setting of semi-linear equations, the final Section 4 covers a
larger class of dynamic equations. For them we deduce a reduction principle and apply this
technique to a specific example.

Let us close this introductory remarks by pointing out that our Proposition 3.2 is not just a
“unification” of the corresponding results obtained in, e.g., [AW99] for ODEs and [AW03] for
difference equations. In fact, we had to include a particular parameter dependence allowing a
perturbation theory needed to study the behavior of ODEs under numerical approximation.
Beyond that, invariant foliations are the key ingredient to obtain topological linearization
results for dynamic equations (cf. [Hil96]).

Throughout this paper, Banach spaces X are all real (F = R) or complex (F = C) and
their norm is denoted by ‖·‖. For the open ball in X with center 0 and radius r > 0 we
write Br. L(X ) is the Banach space of linear bounded endomorphisms, IX the identity on
X , and R(T ) := TX the range of an operator T ∈ L(X ).

If a mapping f : Y → Z between metric spaces Y and Z satisfies a Lipschitz condition,
then its smallest Lipschitz constant is denoted by Lip f . Frequently, f : Y × P → Z also
depends on a parameter from some set P, and we write

Lip1 f := sup
p∈P

Lip f(·, p).

In case P has a metric structure, we define Lip2 f accordingly, and proceed along these lines
for mappings depending on more than two variables.

To keep this work self-contained, we introduce some basic terminology from the calculus
on measure chains (cf. [Hil90, BP01]). In all subsequent considerations we deal with a
measure chain (T,�, µ), i.e. a conditionally complete totally ordered set (T,�) (see [Hil90,
Axiom 2]) with growth calibration µ : T2 → R (see [Hil90, Axiom 3]). The most intuitive
and relevant examples of measure chains are time scales, where T is a canonically ordered
closed subset of the reals and µ is given by µ(t, s) = t − s. Continuing, σ : T → T, σ(t) :=
inf {s ∈ T : t ≺ s} defines the forward jump operator and µ∗ : T → R, µ∗(t) := µ(σ(t), t)
the graininess. For τ ∈ T we abbreviate T+

τ := {s ∈ T : τ � s} and T−τ := {s ∈ T : s � τ}.
Since we are interested in an asymptotic theory, we impose the following standing

Hypothesis. µ(T, τ) ⊆ R, τ ∈ T, is unbounded above, and µ∗ is bounded.
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Crd(T,X ) denotes the set of rd-continuous functions from T to X (cf. [Hil90, Section 4.1]).
Growth rates are functions a ∈ Crd(T,R) with −1 < inft∈T µ

∗(t)a(t), supt∈T µ
∗(t)a(t) <∞.

Moreover, for a, b ∈ Crd(T,R) we introduce the relations bb− ac := inft∈T(b(t)− a(t)),

a C b :⇔ 0 < bb− ac , a E b :⇔ 0 ≤ bb− ac

and the set of positively regressive functions

C+
rdR(T,R) := {a ∈ Crd(T,R) : a is a growth rate and 1 + µ∗(t)a(t) > 0 for t ∈ T} .

This class is technically appropriate to describe exponential growth and for a ∈ C+
rdR(T,R)

the exponential function on T is denoted by ea(t, s) ∈ R, s, t ∈ T (cf. [Hil90, Theorem 7.3]).
Measure chain integrals of mappings φ : T → X are always understood in Lebesgue’s

sense and denoted by
∫ t
τ
φ(s) ∆s for τ, t ∈ T, provided they exist (cf. [Nei01]).

We finally introduce the so-called quasiboundedness which is a convenient notion due to
Bernd Aulbach describing exponentially growing functions.

Definition 1.1. For c ∈ C+
rdR(T,R) and τ ∈ T we say that φ ∈ Crd(T,X ) is

(a) c+-quasibounded, if ‖φ‖+τ,c := supt∈T+
τ
‖φ(t)‖ ec(τ, t) <∞,

(b) c−-quasibounded, if ‖φ‖−τ,c := supt∈T−τ ‖φ(t)‖ ec(τ, t) <∞,
(c) c±-quasibounded, if supt∈T ‖φ(t)‖ ec(τ, t) <∞.

X+
τ,c and X−τ,c denote the sets of c+- and c−-quasibounded functions on T+

τ and T−τ , resp.

Remark 1.1. (1) In order to provide some intuition for these abstract notions, in case c C 0 a
c+-quasibounded function is exponentially decaying as t→∞. Accordingly, for 0 C c a c−-
quasibounded function decays exponentially as t→ −∞ (supposed T is unbounded below).
Classical boundedness corresponds to the situation of 0+- (or 0−-) quasiboundedness.

(2) Obviously X+
τ,c and X−τ,c are nonempty and by [Hil90, Theorem 4.1(iii)], it is immediate

that for any c ∈ C+
rdR(T,R), τ ∈ T, the sets X+

τ,c and X−τ,c are Banach spaces with the norms
‖·‖+τ,c and ‖·‖−τ,c, respectively.

2. Preliminaries on Semi-linear Equations

Given A ∈ Crd(T,L(X )), a linear dynamic equation is of the form

(2.1) x∆ = A(t)x;

here the transition operator ΦA(t, s) ∈ L(X ), s � t, is the solution of the operator-valued
initial value problem X∆ = A(t)X, X(s) = IX in L(X ).

A projection-valued mapping P : T→ L(X ) is called an invariant projector of (2.1), if

(2.2) P (t)ΦA(t, s) = ΦA(t, s)P (s) for all s, t ∈ T, s � t

holds, and finally an invariant projector P is denoted as regular, if

IX + µ∗(t)A(t)|R(P (t)) : R(P (t))→ R
(
P (σ(t))

)
is bijective for all t ∈ T.

Then the restriction Φ̄A(t, s) := ΦA(t, s)|R(P (s)) : R(P (s)) → R(P (t)), s � t, is a well-
defined isomorphism, and we write Φ̄A(s, t) for its inverse (cf. [Pöt02, p. 85, Lemma 2.1.8]).
These preparations allow to include non-invertible systems (2.3) into our investigation.

For the mentioned applications in discretization theory it is crucial to deal with equations
admitting a certain dependence on parameters θ ∈ F (see [KP06]). More precisely, we
consider nonlinear perturbations of (2.1) given by

(2.3) x∆ = A(t)x+ F1(t, x) + θF2(t, x)
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with mappings Fi : T × X → X , such that Fi is rd-continuous (see [Hil90, Section 5.1])
for i = 1, 2. Further assumptions on F1, F2 can be found below. A solution of (2.3) is a
function ν satisfying the identity ν∆(t) ≡ A(t)ν(t)+F1(t, ν(t))+θF2(t, ν(t)) on a T-interval.
Provided it exists, ϕ denotes the general solution of (2.3), i.e., ϕ(·; τ, x0; θ) solves (2.3) on
T+
τ and satisfies the initial condition ϕ(τ ; τ, x0; θ) = x0 for τ ∈ T, x0 ∈ X . It fulfills the

cocycle property

(2.4) ϕ(t; s, ϕ(s; τ, x0; θ); θ) = ϕ(t; τ, x0; θ) for all τ, s, t ∈ T, τ � s � t, x0 ∈ X .
We define the dynamic equation (2.3) to be regressive on a set Θ ⊆ F, if

IX + µ∗(t) [A(t) + F1(t, ·) + θF2(t, ·)] : X → X for all θ ∈ Θ

is a homeomorphism. Then the general solution ϕ(t; τ, x0; θ) exists for all t, τ ∈ T and the
cocycle property (2.4) holds for arbitrary t, s, τ ∈ T.

From now on we assume:

Hypothesis 2.1. Let K1,K2 ≥ 1 be reals and a, b ∈ C+
rdR(T,R) growth rates with a C b.

(i) Exponential dichotomy: There exists a regular invariant projector P : T→ L(X ) of
(2.1) such that the estimates

‖ΦA(t, s)Q(s)‖ ≤ K1ea(t, s),
∥∥Φ̄A(s, t)P (t)

∥∥ ≤ K2eb(s, t) for all t � s(2.5)

are satisfied, with the complementary projector Q(t) := IX − P (t).
(ii) Lipschitz perturbation: We abbreviate Hθ := F1 + θF2, for i = 1, 2 the identities

Fi(t, 0) ≡ 0 on T hold and the mappings Fi satisfy the global Lipschitz estimates

Li := sup
t∈T

LipFi(t, ·) <∞.

Moreover, we require

(2.6) L1 <
bb− ac

4(K1 +K2)
,

choose a fixed δ ∈
(

2(K1 +K2)L1,
bb−ac

2

)
and abbreviate Θ := {θ ∈ F : L2 |θ| ≤ L1},

Γ :=
{
c ∈ C+

rdR(T,R) : a+ δ C c C b− δ
}
, Γ :=

{
c ∈ C+

rdR(T,R) : a+ δ E c E b− δ
}
.

Remark 2.1. (1) The existence of suitable values for δ yields from (2.6): Since we have
δ < bb−ac

2 , there exist functions c ∈ Γ and, in addition, a+ δ, b− δ are positively regressive.
Furthermore, for later use we have the inequality

L(θ) :=
K1 +K2

δ
(L1 + |θ|L2) < 1 for all θ ∈ Θ

and define the constant `(θ) := K1K2
K1+K2

L(θ)
1−L(θ) .

(2) Under Hypothesis 2.1 the solutions ϕ(·; τ, x0; θ) exist and are unique on T+
τ for arbi-

trary τ ∈ T, x0 ∈ X , θ ∈ F (cf. [Pöt02, p. 38, Satz 1.2.17(a)]) and depend continuously on
the data (t, τ, x0, θ).

The next notion is helpful to understand the geometrical behavior of solutions for (2.3):
Any (nonempty) subset S(θ) of the extended state space T× X is called a nonautonomous
set with τ -fibers

S(θ)τ := {x ∈ X : (τ, x) ∈ S(θ)} for all τ ∈ T.
We denote S(θ) as forward invariant, if for any pair (τ, x0) ∈ S(θ) one has the inclusion
(t, ϕ(t; τ, x0; θ)) ∈ S(θ) for all t ∈ T+

τ . Presumed each fiber S(θ)τ is a submanifold of
X , we speak of a fiber bundle. Our invariant fiber bundles generalize invariant manifolds
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to nonautonomous equations, and consist of all initial value pairs leading to exponentially
decaying solutions; admittedly in the generalized sense of quasiboundedness.

Theorem 2.2 (invariant fiber bundles). Assume that Hypothesis 2.1 is fulfilled. Then for
all θ ∈ Θ the following statements are true:

(a) The pseudo-stable fiber bundle of (2.3), given by

S(θ) :=
{

(τ, x0) ∈ T×X : ϕ(·; τ, x0; θ) ∈ X+
τ,c for all c ∈ Γ

}
is an invariant fiber bundle of (2.3) possessing the representation

S(θ) = {(τ, x0 + s(τ, x0; θ)) ∈ T×X : τ ∈ T, x0 ∈ R(Q(τ))}

with a continuous mapping s : T×X ×Θ→ X satisfying

s(τ, x0; θ) = s(τ,Q(τ)x0; θ) ∈ R(P (τ)) for all τ ∈ T, x0 ∈ X

and the invariance equation

P (t)ϕ(t; τ, x0; θ) = s(t, Q(t)ϕ(t; τ, x0; θ); θ) for all (τ, x0) ∈ S(θ), τ � t.

Furthermore, for all τ ∈ T, x0 ∈ X it holds:
(a1) s(τ, 0; θ) ≡ 0,
(a2) s : T×X ×Θ→ X satisfies the Lipschitz estimates

Lip s(τ, ·; θ) ≤ `(θ), Lip s(τ, x0; ·) ≤ δK1K2(K1 +K2)L2

[δ − 2(K1 +K2)L1]2
‖x0‖ .

(b) For T unbounded below, the pseudo-unstable fiber bundle of (2.3), given by

R(θ) :=
{

(τ, x0) ∈ T×X :
there exists a solution ν : T→ X of (2.3)
with ν(τ) = x0 and ν ∈ X−τ,c for all c ∈ Γ

}
is an invariant fiber bundle of (2.3) possessing the representation

R(θ) = {(τ, y0 + r(τ, y0; θ)) ∈ X : τ ∈ T, y0 ∈ R(P (τ))}

with a continuous mapping r : T×X ×Θ→ X satisfying

(2.7) r(τ, x0; θ) = r(τ, P (τ)x0; θ) ∈ R(Q(τ)) for all τ ∈ T, x0 ∈ X

and the invariance equation

(2.8) Q(t)ϕ(t; τ, x0; θ) = r(t, P (t)ϕ(t; τ, x0; θ); θ) for all (τ, x0) ∈ R(θ), τ � t.

Furthermore, for all τ ∈ T, x0 ∈ X it holds:
(b1) r(τ, 0; θ) ≡ 0,
(b2) r : T×X ×Θ→ X satisfies the Lipschitz estimates

Lip r(τ, ·; θ) ≤ `(θ), Lip r(τ, x0; ·) ≤ δK1K2(K1 +K2)L2

[δ − 2(K1 +K2)L1]2
‖x0‖ .(2.9)

(c) For T unbounded below, and if L1 <
δ

2(K1+K2+max{K1,K2}) , then only the zero solu-
tion of (2.3) is contained in S(θ) and R(θ), i.e.

S(θ) ∩R(θ) = T× {0}

and the zero solution is the only c±-quasibounded solution of (2.3) for any c ∈ Γ.

Proof (of Theorem 2.2): See [Pöt06, Theorem 3.3]. �
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3. Invariant Foliations

In the previous Section 2 and Theorem 2.2 we were able to characterize the set of solutions
(or trajectories) for (2.3) which approach the zero solution at an exponential rate. Now we
drop the restriction to the trivial solution and investigate attractivity properties of arbitrary
solutions. For that purpose, we begin with an abstract lemma carrying most of the technical
load for the following proofs. Due to the fact that the general solution ϕ of (2.3) exists
uniquely in forward time, the mapping Gθ : {(t, x, τ, x0) ∈ T × X × T × X : τ ∈ T, t ∈
T+
τ , x, x0 ∈ X} → X ,

Gθ(t, x; τ, x0) := Hθ(t, x+ ϕ(t; τ, x0; θ))−Hθ(t, ϕ(t; τ, x0; θ))

is well-defined under Hypothesis 2.1. Moreover, by Remark 2.1(2), Gθ is continuous in
(τ, x0), Gθ(t, 0; τ, x0) ≡ 0 and Lip2Gθ ≤ L1 + |θ|L2.

Lemma 3.1. Assume that Hypothesis 2.1 is fulfilled and choose τ ∈ T fixed. Then for
growth rates c ∈ C+

rdR(T,R), a C c C b, the operator Sτ : X+
τ,c ×R(Q(τ))×X ×Θ→ X+

τ,c,

Sτ (ψ; y0, x0, θ) := ΦA(·, τ) [y0 −Q(τ)x0] +
∫ ·
τ

ΦA(·, σ(s))Q(σ(s))Gθ(s, ψ(s); τ, x0) ∆s

−
∫ ∞
·

Φ̄A(·, σ(s))P (σ(s))Gθ(s, ψ(s); τ, x0) ∆s(3.1)

is well-defined and has, for fixed y0 ∈ R(Q(τ)), x0 ∈ X , θ ∈ Θ the following properties:
(a) There exists a z0 ∈ X such that ψ := ϕ(·; τ, z0; θ)− ϕ(·; τ, x0; θ) ∈ X+

τ,c and satisfies

(3.2) Q(τ)ψ(τ) = y0 −Q(τ)x0,

if and only if ψ ∈ X+
τ,c solves the fixed point problem

(3.3) ψ = Sτ (ψ; y0, x0, θ).

Moreover, in case c ∈ Γ we have:
(b) Sτ (·; y0, x0, θ) : X+

τ,c → X+
τ,c is a uniform contraction with Lipschitz constant

(3.4) LipSτ (·; y0, x0, θ) ≤ L(θ) < 1,

(c) the unique fixed point ψ∗τ (y0, x0, θ) ∈ X+
τ,c of Sτ (·; y0, x0, θ) does not depend on the

growth rate c ∈ Γ and we have the estimates

‖P (τ)ψ∗τ (y0, x0, θ)(τ)‖ ≤ `(θ) ‖y0 − x0‖ ,(3.5)

LipP (τ)ψ∗τ (·, x0, θ)(τ) ≤ `(θ),(3.6)

(d) for c ∈ Γ the mapping ψ∗τ : R(Q(τ))×X ×Θ→ X+
τ,c is continuous.

Proof. Let τ ∈ T be fixed, and choose a growth rate c ∈ C+
rdR(T,R) with a C c C b. We

show the well-definedness of the operator Sτ . Thereto, pick x0 ∈ X , y0 ∈ R(Q(τ)), θ ∈ Θ
arbitrarily. For ψ, ψ̄ ∈ X+

τ,c we obtain just as in the proof of [Pöt06, Lemma 3.2],∥∥Sτ (ψ; y0, x0, θ)(t)− Sτ (ψ̄; y0, x0, θ)(t)
∥∥ ec(τ, t)

≤
(

K1

bc− ac
+

K2

bb− cc

)
δL(θ)

K1 +K2

∥∥ψ − ψ̄∥∥+

τ,c
for all t ∈ T+

τ .(3.7)

Thus, to show that Sτ is well-defined, we observe Sθ(0; y0, x0, θ) = ΦA(·, τ) [y0 −Q(τ)x0]
from (3.1), whence

‖Sτ (ψ; y0, x0, θ)(t)‖ ec(τ, t)



STABILITY IN CRITICAL CASES 7

≤ ‖ΦA(t, τ) [y0 −Q(τ)x0]‖ ec(τ, t) + ‖Sτ (ψ; y0, x0, θ)− Sτ (0; y0, x0, θ)‖+τ,c
(2.5)

≤ K1 ‖y0 − x0‖+
(

K1

bc− ac
+

K2

bb− cc

)
δL(θ)

K1 +K2
‖ψ‖+τ,c for all t ∈ T+

τ

and taking the supremum over t ∈ T+
τ implies Sτ (ψ; y0, x0, θ) ∈ X+

τ,c.
(a) Let x0 ∈ X , θ ∈ Θ be arbitrary. We suppress the dependence on θ.

(⇒) Let y0 ∈ R(Q(τ)) and assume there exists a z0 ∈ X such that ψ = ϕ(·; τ, z0) −
ϕ(·; τ, x0) is c+-quasibounded and Q(τ)ψ(τ) = y0 −Q(τ)x0. Then ψ is a c+-quasibounded
solution of the linear inhomogeneous equation x∆ = A(t)x + Gθ(t, ψ(t); τ, x0) and [Pöt02,
p. 103, Satz 2.2.4(a)] implies that ψ is a fixed point of Sτ (·; y0, x0).

(⇐) Conversely, assume ψ ∈ X+
τ,c satisfies (3.3) for some y0 ∈ R(Q(τ)), x0 ∈ X . Then

define z0 := P (τ) [x0 + ψ(τ)] + y0 and set ν := ψ + ϕ(·; τ, x0). Hence,

ν(τ) = ψ(τ) + x0
(3.3)
= P (τ)ψ(τ) +Q(τ)Sτ (ψ; y0, x0)(τ) + x0

(3.1)
= P (τ)ψ(τ) + y0 −Q(τ)x0 + x0 = P (τ) [ψ(τ) + x0] + y0 = z0(3.8)

and the difference ν also solves (2.3). Due to the uniqueness of forward solutions, this gives
us ν = ϕ(·; τ, z0), i.e., ψ = ϕ(·; τ, z0)− ϕ(·; τ, x0). Finally, one has

Q(τ)ψ(τ)
(3.8)
= Q(τ) [z0 − x0] = Q(τ) [y0 − x0] = y0 −Q(τ)x0

and the equivalence in assertion (a) is established.
From now on, let c ∈ Γ.
(b) Passing over to the least upper bound for t ∈ T+

τ in (3.7) yields the estimate (3.4) and
our choice of δ in Hypothesis 2.1(ii) guarantees L(θ) < 1 for θ ∈ Θ. Therefore, the contrac-
tion mapping principle implies a unique fixed point ψ∗τ (y0, x0, θ) ∈ X+

τ,c of Sτ (·; y0, x0, θ),
which moreover satisfies

(3.9) ‖ψ∗τ (y0, x0, θ)‖+τ,c ≤
K1

1− L(θ)
‖y0 − x0‖

(c) One proceeds as in [Pöt06, Lemma 3.2(c)] to show that ψ∗τ (y0, x0, θ) ∈ X+
τ,c is inde-

pendent of c ∈ Γ. To prove the Lipschitz estimate (3.6), we suppress the dependence on the
fixed parameters x0 ∈ X , θ ∈ Θ. To this end, consider y0, ȳ0 ∈ R(Q(τ)) and corresponding
fixed points ψ∗τ (y0), ψ∗τ (ȳ0) ∈ X+

τ,c of Sτ (·; y0) and Sτ (·; ȳ0), respectively. We have

‖ψ∗τ (y0)− ψ∗τ (ȳ0)‖+τ,c
(3.3)

≤ ‖Sτ (ψ∗τ (y0); y0)− Sτ (ψ∗τ (ȳ0); y0)‖+τ,c
+ ‖Sτ (ψ∗τ (ȳ0); y0)− Sτ (ψ∗τ (ȳ0); ȳ0)‖+τ,c

(3.4)

≤ L(θ) ‖ψ∗τ (y0)− ψ∗τ (ȳ0)‖+τ,c + ‖Sτ (ψ∗τ (ȳ0); y0)− Sτ (ψ∗τ (ȳ0); ȳ0)‖+τ,c ,
and thus,

‖ψ∗τ (y0)− ψ∗τ (ȳ0)‖+τ,c ≤
1

1− L(θ)
‖Sτ (ψ∗τ (ȳ0); y0)− Sτ (ψ∗τ (ȳ0); ȳ0)‖+τ,c

(3.1)
=

1
1− L(θ)

sup
t∈T+

τ

‖ΦA(t, τ)Q(τ) [y0 − ȳ0]‖ ec(τ, t)
(2.5)

≤ K1

1− L(θ)
‖y0 − ȳ0‖ .

(3.10)

Moreover, directly from (3.1) and (3.3) we get the identity

P (·)ψ∗τ (y0)
(2.2)
= −

∫ ∞
·

Φ̄A(·, σ(s))P (σ(s))Gθ(s, ψ∗τ (y0)(s); τ, x0) ∆s
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and similarly to the proof of (b) this yields

‖P (·) [ψ∗τ (y0)− ψ∗τ (ȳ0)]‖+τ,c ≤
K2

bb− cc
δL(θ)

K1 +K2
‖ψ∗τ (y0)− ψ∗τ (ȳ0)‖+τ,c ,

with (3.10) this implies (3.6). The same arguments give (note Gθ(t, 0; τ, x0) ≡ 0)

‖P (·)ψ∗τ (y0)‖+τ,c ≤
K2

bb− cc
δL(θ)

K1 +K2
‖ψ∗τ (y0)‖+τ,c ,

and together with (3.9) we get (3.5). Therefore we have established the assertion (c).
(d) This can be shown as in [Pöt06, Lemma 3.2(d)]. �

Proposition 3.2 (invariant fibers). Assume that Hypothesis 2.1 is fulfilled. Then for all
τ ∈ T, x0 ∈ X , θ ∈ Θ the following holds:

(a) The pseudo-stable fiber through (τ, x0), given by

S+(x0, θ)τ :=
{
z0 ∈ X : ϕ(·; τ, z0; θ)− ϕ(·; τ, x0; θ) ∈ X+

τ,c for all c ∈ Γ
}

is forward invariant w.r.t. (2.3), i.e.,

(3.11) ϕ(t; τ, S+(x0, θ)τ ; θ) ⊆ S+(ϕ(t; τ, x0; θ), θ)τ for all t ∈ T+
τ

and possesses the representation

(3.12) S+(x0, θ) =
{

(τ, y0 + s+(τ, y0, x0; θ)) : y0 ∈ R(Q(τ))
}

as graph of a continuous mapping s+ : T×X × X ×Θ→ X satisfying

s+(τ, y0, x0; θ) = s+(τ,Q(τ)y0, x0; θ) ∈ R(P (τ)) for all y0 ∈ X .
Furthermore, for all c ∈ Γ it holds:
(a1) s+ : T×X × X ×Θ→ X is linearly bounded

(3.13)
∥∥s+(τ, y0, x0; θ)

∥∥ ≤ ‖P (τ)x0‖+ `(θ) ‖y0 − x0‖ for all y0 ∈ X ,

(a2) s+(τ, ·, x0; θ) is globally Lipschitzian with

(3.14) Lip2 s
+(·, θ) ≤ K1`(θ).

(b) For T unbounded below and if (2.3) is regressive on Θ, then the pseudo-unstable
fiber through (τ, x0), given by

R−(x0, θ)τ :=
{
z0 ∈ X : ϕ(·; τ, z0; θ)− ϕ(·; τ, x0; θ) ∈ X−τ,c for all c ∈ Γ

}
is invariant w.r.t. (2.3), i.e.,

ϕ(t; τ,R−(x0, θ)τ ; θ) = R−(ϕ(t; τ, x0; θ), θ)τ for all t ∈ T
and possesses the representation

R−(x0, θ) =
{

(τ, y0 + r−(τ, y0, x0; θ)) : y0 ∈ R(P (τ))
}

as graph of a continuous mapping r− : T×X × X ×Θ→ X satisfying

r+(τ, y0, x0; θ) = r+(τ, P (τ)y0, x0; θ) ∈ R(Q(τ)) for all y0 ∈ X .
Furthermore, for all c ∈ Γ it holds:
(b1) r− : T×X × X ×Θ→ X is linearly bounded∥∥r−(τ, y0, x0; θ)

∥∥ ≤ ‖Q(τ)x0‖+ `(θ) ‖y0 − x0‖ for all y0 ∈ X ,

(b2) r−(τ, ·, x0; θ) is globally Lipschitzian with

Lip2 r
−(·, θ) ≤ K2`(θ).
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Remark 3.1. It is not difficult to see that the pseudo-stable fibers S+(x0, θ)τ are the leaves
of a (forward) invariant foliation over each fiber R(θ)τ , i.e., for each τ ∈ T we have

X =
⋃

x0∈R(θ)τ

S+(x0, θ), S+(x1, θ) ∩ S+(x2, θ) = ∅ for all x1, x2 ∈ R(θ)τ , x1 6= x2.

Similarly, the fibers R−(x0, θ) form a foliation over S(θ)τ .

Proof. Keep θ ∈ Θ fixed and note that we suppress the dependence on θ to a large extend.
(a) Let x0, y0 ∈ X and c ∈ Γ. We aim to show the invariance assertion (3.11) for S+(x0)τ .

Let x̂0 ∈ ϕ(t; τ, S+(x0)τ ) for some t ∈ T+
τ , and by definition this is equivalent to the existence

of a z0 ∈ X such that x̂0 = ϕ(t; τ, z0) and ϕ(·; τ, z0)− ϕ(·; τ, x0) ∈ X+
τ,c. Therefore,

ϕ(·; t, x̂0)−ϕ(·; t, ϕ(t; τ, x0)) = ϕ(·; t, ϕ(t; τ, z0))−ϕ(·; t, ϕ(t; τ, x0))
(2.4)
= ϕ(·; τ, z0)−ϕ(·; τ, x0),

i.e., x̂0 ∈ S+(ϕ(t; τ, x0))τ for all t ∈ T+
τ .

The above Lemma 3.1 implies that Sτ (·; y0, x0) : X+
τ,c → X+

τ,c possesses a unique fixed
point ψ∗τ (y0, x0) ∈ X+

τ,c. Furthermore, this fixed point is of the form ψ∗τ (y0, x0) = ϕ(·; τ, z0)−
ϕ(·; τ, x0) with some z0 ∈ X (cf. Lemma 3.1(a)). We define

(3.15) s+(τ, y0, x0; θ) := P (τ) [x0 + ψ∗τ (Q(τ)y0, x0; θ)(τ)]

and evidently have s+(τ, y0, x0) ∈ R(P (τ)). Let us verify the representation (3.12).
(⊆) Let z0 ∈ S+(x0)τ , i.e., ψ = ϕ(·; τ, z0)− ϕ(·; τ, x0) ∈ X+

τ,c. Then Lemma 3.1 implies

z0 = ψ(τ) + x0
(3.2)
= P (τ)ψ(τ) + y0 −Q(τ)x0 + x0 = P (τ)ψ(τ) + y0 + P (τ)x0,

hence Q(τ)z0 = y0, and z0 = Q(τ)z0 + P (τ) [x0 + ψ∗τ (y0, x0)(τ)]. Thus, z0 is contained in
the graph of s+(τ, ·, x0) over R(Q(τ)).
(⊇) On the other hand, let z0 ∈ X be of the form z0 = y0 + s+(τ, y0, x0) with y0 ∈ R(Q(τ)).
Then (3.1) and (3.3) imply Q(τ)ψ∗τ (y0, x0)(τ) = y0 − Q(τ)x0, which yields z0 = y0 +
P (τ) [x0 + ψ∗τ (y0, x0)(τ)] = x0+ψ∗τ (y0, x0)(τ), and consequently ϕ(·; τ, z0)−ϕ(·; τ, x0) ∈ X+

τ,c,
i.e., z0 ∈ S+(x0)τ . We postpone the continuity proof for s+ to the end (a2) below.

(a1) Referring to (3.15), the inequality (3.13) is an immediate consequence of (3.5).
(a2) The estimate (3.14) is a consequence of (3.6) and (3.15). Addressing the continuity

of s+, we know from Lemma 3.1(d) that ψ∗τ : R(Q(τ)) × X × Θ → X+
τ,c is continuous, and

by definition in (3.15) we get the continuity of s+(τ, ·). Finally, the strategy to show that
s+ : T×X ×X ×Θ→ X is continuous can be adapted from [Pöt06, Proof of Theorem 3.3].

(b) Since (2.3) is assumed to be regressive, its general solution ϕ(t; τ, x0; θ) exists for all
t, τ ∈ T, as well as the mapping Gθ(t, x; τ, x0). Analogously to Lemma 3.1 we can show that
the operator S̄τ : X−τ,c ×R(P (τ))×X ×Θ→ X−τ,c,

S̄τ (ψ; y0, x0, θ) := Φ̄A(·, τ) [y0 − P (τ)x0]−
∫ ·
τ

Φ̄A(·, σ(s))P (σ(s))Gθ(s, ψ(s); τ, x0) ∆s

+
∫ ·
−∞

ΦA(·, σ(s))Q(σ(s))Gθ(s, ψ(s); τ, x0) ∆s

possesses a unique fixed point ψ∗τ (y0, x0, θ) ∈ X−τ,c. We define r−(τ, y0, x0; θ) := Q(τ)[x0 +
ψ∗τ (P (τ)y0, x0; θ)(τ)] and proceed as in (a). �

In a more geometrically descriptive way, the subsequent result states that the invariant
fiber bundles from Theorem 2.2 are exponentially attractive in a generalized sense of qua-
siboundedness. In fact, this convergence is actually “in phase” with solutions on the fiber
bundles, and for that reason we speak of an asymptotic phase: For each solution ν of (2.3)
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there exists a solution ν0 in the fiber bundles from Theorem 2.2 such that the difference
ν − ν0 is quasibounded.

Theorem 3.3 (asymptotic phase). Assume T is unbounded below, that Hypothesis 2.1 is
fulfilled with

(3.16) L1 <
bb− ac

4(K1 +K2 +K1K2 max {K1,K2})
,

and choose a fixed δ ∈
(

2(K1 +K2 +K1K2 max {K1,K2})L1,
bb−ac

2

)
and c ∈ Γ. Then for

all τ ∈ T, x0 ∈ X , θ ∈ Θ the following holds:

(a) The pseudo-unstable fiber bundle R(θ) from Theorem 2.2(b) possesses an asymptotic
(forward) phase, i.e., there exists a retraction π+(τ, ·; θ) : X → R(θ)τ onto R(θ)τ
with the property:

(3.17)
∥∥ϕ(t; τ, x0; θ)− ϕ(t; τ, π+(τ, x0; θ); θ)

∥∥ ≤ K1

1− L(θ)
1 + (K2 − 1)`(θ)

1− `(θ)
‖x0‖ ec(t, τ)

for all t ∈ T+
τ . Geometrically, π+(τ, x0, θ) is the unique intersection

(3.18) R(θ)τ ∩ S+(x0, θ)τ =
{
π+(τ, x0; θ)

}
for all x0 ∈ X

and one has:
(a1) π+ : T×X ×Θ→ X is continuous and linearly bounded

(3.19)
∥∥π+(τ, x0; θ)

∥∥ ≤ K2
1 + `(θ)
1− `(θ)

‖x0‖ for all x0 ∈ X ,

(a2) ϕ(t; τ, ·; θ) ◦ π+(τ, ·; θ) = π+(t, ·; θ) ◦ ϕ(t; τ, ·; θ) for t ∈ T+
τ .

(b) In case (2.3) is regressive on Θ, the pseudo-stable fiber bundle S(θ) from Theo-
rem 2.2(a) possesses an asymptotic (backward) phase, i.e., there exists a retraction
π−(τ, ·; θ) : X → S(θ)τ onto S(θ)τ with the property:∥∥ϕ(t; τ, x0; θ)− ϕ(t; τ, π−(τ, x0; θ); θ)

∥∥ ≤ K2

1− L(θ)
1 + (K1 − 1)`(θ)

1− `(θ)
‖x0‖ ec(t, τ)

for all t ∈ T−τ . Geometrically, π−(τ, x0, θ) is the unique intersection

S(θ)τ ∩R−(x0, θ)τ =
{
π−(τ, x0; θ)

}
for all x0 ∈ X

and one has:
(b1) π− : T×X ×Θ→ X is continuous and linearly bounded∥∥π−(τ, x0; θ)

∥∥ ≤ K1
1 + `(θ)
1− `(θ)

‖x0‖ for all x0 ∈ X ,

(b2) ϕ(t; τ, ·; θ) ◦ π−(τ, ·; θ) = π−(t, ·; θ) ◦ ϕ(t; τ, ·; θ) for t ∈ T−τ .

Remark 3.2. Note that condition (3.16) is stronger than the corresponding inequality (2.6)
necessary for Theorem 2.2 and Proposition 3.2. Consequently, all the above results remain
applicable. The fact that (3.16) holds, implies max {K1,K2} `(θ) < 1 and thus `(θ) < 1 for
all θ ∈ Θ. Using Theorem 2.2 and Proposition 3.2 this gives us

Lip2 r < 1, Lip2 s
+ < 1,(3.20)

Lip2 s < 1, Lip2 r
− < 1.
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Proof. Let θ ∈ Θ, c ∈ Γ and fix τ ∈ T, x0 ∈ X .
(a) We derive that there exists a unique z0 ∈ R(θ)τ ∩ S+(x0, θ)τ . For that purpose,

note that z0 ∈ R(θ)τ ∩ S+(x0, θ)τ if and only if z0 = P (τ)z0 + r(τ, P (τ)z0; θ) and z0 =
Q(τ)z0 + s+(τ,Q(τ)z0, x0; θ), which is equivalent to

(3.21) Q(τ)z0 = r(τ, P (τ)z0; θ) and P (τ)z0 = s+(τ,Q(τ)z0, x0; θ).

Due to Theorem 2.2(b2) and Proposition 3.2(a2) we know from (3.20) that Lip2 r·Lip2 s
+ < 1

and [GD03, p. 19, (A.13)] applies to the equations (3.21). Thus, there exist two unique
functions qτ : X ×Θ→ R(Q(τ)), pτ : X ×Θ→ R(P (τ)) satisfying (3.21), i.e.,

(3.22) qτ (x0, θ) ≡ r(τ, pτ (x0, θ); θ) and pτ (x0, θ) ≡ s+(τ, qτ (x0, θ), x0; θ) on X ×Θ.

Therefore, π+(τ, x0; θ) := pτ (x0; θ) + qτ (x0; θ) is the unique element in the intersection
R(θ)τ ∩ S+(x0, θ)τ . As preparation for later use we deduce two estimates. From (3.22) and
Theorem 2.2(b1) one has

‖qτ (x0, θ)‖
(2.9)

≤ `(θ) ‖pτ (x0, θ)‖
and also

‖pτ (x0, θ)‖
(3.13)

≤ ‖P (τ)x0‖+ `(θ) ‖qτ (x0, θ)− x0‖
(2.5)

≤ K2 (1 + `(θ)) ‖x0‖+ `(θ)2 ‖pτ (x0, θ)‖ ,

which implies (note Remark 3.2)

‖pτ (x0, θ)‖ ≤
K2

1− `(θ)
‖x0‖ , ‖qτ (x0, θ)‖ ≤

K2`(θ)
1− `(θ)

‖x0‖ .(3.23)

Now we can show (3.17) and neglect the dependence on θ. Since by definition, π+(τ, x0) ∈
S+(x0)τ for x0 ∈ X , it follows from Lemma 3.1(a) that ϕ(·; τ, x0) − ϕ(·; τ, π+(τ, x0)) =
ψ∗τ (Q(τ)π+(τ, x0), x0) and Lemma 3.1 together with (3.9) implies∥∥ϕ(t; τ, x0)− ϕ(t; τ, π+(τ, x0))

∥∥+

τ,c
≤ K1

1− L(θ)
‖qτ (x0)− x0‖ ;

so the triangle inequality implies (3.17). Theorem 2.2(b) and Proposition 3.2(a1), together
with the uniform contraction principle (cf. [GD03, p. 18, (A.4)]) easily yield that the func-
tions pτ (x0, θ), qτ (x0, θ) are continuous in (τ, x0, θ); thus also π+ : T × X × Θ → X shares
this property.

(a1) It remains to derive the estimate (3.19), which is an easy consequence of the above
inequalities for ‖pτ (x0, θ)‖ and ‖qτ (x0, θ)‖, respectively.

(a2) The (forward) invariance of R(θ) and S+(x0, θ)τ implies

ϕ(t; τ, π+(τ, x0))
(3.18)
∈ ϕ(t; τ,R(θ)τ ∩ S+(x0)τ ) ⊆ ϕ(t; τ,R(θ)τ ) ∩ ϕ(t; τ, S+(x0)τ )

(3.11)

⊆ R(θ)τ ∩ S+(ϕ(t; τ, x0))τ
(3.18)

=
{
π+(τ, ϕ(t; τ, x0))

}
for all t ∈ T+

τ .

(b) Since equation (2.3) is supposed to be regressive on Θ, we can construct pseudo-
unstable fibers R−(x0, θ)τ by virtue of Proposition 3.2(b). With an analogous argumentation
one shows that the intersection of S(θ)τ and R−(x0, θ)τ consists of a single point π−(τ, x0; θ)
and proceeds as in the proof of assertion (a).

This finishes our proof. �
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Before we continue to the more applied part of this work, let us conclude and give a
geometrical interpretation of the results obtained until now (we keep θ ∈ Θ fixed):

Under Hypothesis 2.1 the semi-linear dynamic equation (2.3) possesses a pseudo-unstable
fiber bundle R(θ) ⊆ T × X . In case a C 0 and for sufficiently small Lipschitz constant of
the nonlinearity Hθ, we can choose c C 0 and R(θ) contains all solutions to (2.3) which
exist in backward time and tend away from the origin at an exponential rate (they are
c−-quasibounded). The pseudo-unstable fiber bundle R(θ) is invariant, i.e., for any solution
ν : T+

τ → X of (2.3) with ν(τ) ∈ R(θ)τ one has ν(t) ∈ R(θ)t for all t ∈ T+
τ , consequently

(cf. (2.8))
ν(t) ≡ P (t)ν(t) + r(t, P (t)ν(t); θ) on T+

τ

and the projection ν0(t) := P (t)ν(t) solves the reduced equation

(3.24) p∆ = A(t)p+ P (t)Hθ(t, p+ r(t, p; θ)).

This is a dynamic equation evolving in the lower-dimensional set {(t, x) ∈ T×X : t ∈ T, x ∈
R(P (t))}, i.e., any solution ν0 of (3.24) satisfies ν0(t) ∈ R(P (t)) for all t ∈ T+

τ (see (2.2)),
provided ν0(τ) ∈ R(P (τ)).

Conversely, the solutions of (3.24) are related to the solutions of (2.3) starting on R(θ)
via the relation

(3.25) ϕ
(
t; τ, ν0(τ) + r(τ, ν0(τ); θ); θ

)
≡ ν0(t) + r(t, ν0(t); θ) on T+

τ .

Then Theorem 3.3(a) states that for every solution ν : T+
τ → X of (2.3) there exists a

solution ν0 of (3.24) such that the difference ν−ϕ(·; τ, ν0(τ)+r(τ, ν0(τ); θ); θ) is exponentially
decaying as t→∞. The initial value for ν0 is given by ν0(τ) = P (τ)π+(τ, ν(τ); θ).

Dual considerations also hold for the pseudo-stable fiber bundle S(θ) and its asymptotic
(backward) phase π−, if (2.3) is regressive.

4. Stability in Critical Cases

So far the present paper had an abstract and quite technical flavor since our main concern
was to provide general existence results for invariant foliations. Nevertheless, the harvest of
these considerations will be a version of Pliss’s reduction principle from the introduction for
a quite general class of nonautonomous dynamic equations on measure chains. Here we can
restrict to the parameter-free situation and consider (2.3) for θ = 0, i.e. the system

(4.1) x∆ = A(t)x+ F1(t, x)

to deduce the subsequent center manifold theorem:

Theorem 4.1 (reduction principle). Let K1,K2 ≥ 1 be reals, a, b ∈ C+
rdR(T,R) growth rates

with a C b, a C 0, assume T is unbounded below and let U ⊆ X be an open neighborhood of
0. Moreover, suppose

(i) Exponential dichotomy: There exists a regular invariant projector P : T→ L(X ) of
(2.1) such that the estimates

‖ΦA(t, s)Q(s)‖ ≤ K1ea(t, s),
∥∥Φ̄A(s, t)P (t)

∥∥ ≤ K2eb(s, t) for all t � s(4.2)

are satisfied, with the complementary projector Q(t) := IX − P (t).
(ii) o(x)-perturbation: The identity F1(t, 0) ≡ 0 on T holds and one has

(4.3) lim
x,y→0

F1(t, x)− F1(t, y)
‖x− y‖

= 0 uniformly in t ∈ T.
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Then for all λ > 0 there exists a ρ > 0 and a continuous mapping r0 : T× Bρ → Bρλ ⊆ X
with

(4.4) r0(τ, x0) = r0(τ, P (τ)x0) ∈ R(Q(τ)) for all τ ∈ T, x0 ∈ Bρ
and the following properties:

(a) r0(τ, 0) ≡ 0 on T and Lip2 r0 ≤ λ,
(b) the graph R0 := {(τ, y0 + r0(τ, y0)) ∈ T×X : y ∈ R(P (τ)) ∩Bρ} is locally invariant

w.r.t. (4.1), i.e. for all (τ, x0) ∈ R0 one has the inclusion (t, ϕ(t; τ, x0)) ∈ R as long
as ϕ([τ, t]T ; τ, x0) ⊆ Bρ,

(c) if the zero solution of the reduced equation

(4.5) p∆ = A(t)p+ P (t)F1(t, p+ r0(t, p))

is stable (uniformly stable, asymptotically stable, uniformly asymptotically stable or
unstable, resp.), then the zero solution of (4.1) is stable (uniformly stable, asymp-
totically stable, uniformly asymptotically stable or unstable, resp.).

Proof. Let λ > 0 be given.
Thanks to our assumption (ii) we can choose a fixed ρ > 0 so small that beyond Bρ ⊆ X

also the Lipschitz condition

‖F1(t, x)− F1(t, x̄)‖ ≤ L1
2 ‖x− x̄‖ for all t ∈ T, x, x̄ ∈ Bρ

holds with L1 := min
{

min{b−ac,bb−ac}
8(K1+K2+K1K2 max{K1,K2}) , λ

K1+K2
K1K2

}
. On the other hand, it is well-

known that the radial retraction χ : X → B1,

χ(x) :=
{

x for ‖x‖ ≤ 1
x
‖x‖ for ‖x‖ > 1

is globally Lipschitz with Lipχ ≤ 2. Then the globally extended nonlinearity F̃1 : T×X →
X , F̃1(t, x) := F1

(
t, ρχ

(
x
ρ

))
satisfies F̃1(t, x) ≡ F1(t, x) on T × Bρ and Lip2 F̃1 ≤ L1.

Therefore, due to our choice of L1, Theorem 2.2(b) guarantees that the extended system

(4.6) x∆ = A(t)x+ F̃1(t, x)

possesses a (global) pseudo-unstable fiber bundle R̃ ⊆ T×X given as graph of a continuous
mapping r̃ : T×X → X satisfying (2.7). Furthermore, the growth rate c ∈ Γ can be chosen
so that c C 0. We now define the continuous restriction r0 := r̃|T×Bρ

and verify that it has
all the desired properties claimed in Theorem 4.1. Above all, (4.4) is a direct consequence
of (2.7).

(a) While r0(τ, 0) ≡ 0 on T follows from Theorem 2.2(b1), we get the Lipschitz estimate
from (2.9) and our choice for L1. Combining this, we also have ‖r0(t, x)‖ ≤ λ ‖x‖ ≤ λρ for
all t ∈ T, x ∈ Bρ.

(b) The invariance of R̃ from Theorem 2.2(b) immediately gives us local invariance of R0.
(c) If the zero solution of the reduced equation (4.5) is unstable, then by invariance of

R0, also the zero solution of (4.1) is unstable (cf. (3.25)). Now, let ε > 0, τ ∈ T be given,
but w.l.o.g. ε ≤ 2(1 + λ)ρ. We suppose the zero solution of (4.5) is stable, i.e., there exists
a δ ∈ (0, ρ) so that

(4.7) ‖ν0(t)‖ < ε
2(1+λ) for all t ∈ T+

τ

and any solution ν0 : T+
τ → X of (4.5) with ν0(τ) ∈ R(P (τ)) ∩ Bδ. In the following, let

ν : T+
τ → X be an arbitrary solution of (4.1) with ‖ν(τ)‖ < min

{
δ 1−`(0)

K2
, ε2

(1−`(0))(1−L(0))
K1(1+(K2−1)`(0))

}
.
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From Theorem 3.3(a) we know that there exists a solution ν̃0 : T+
τ → X of p∆ = A(t)p +

P (t)F̃1(t, p+ r̃(t, p)) with∥∥ϕ̃(t; τ, ν(τ))− ϕ̃
(
t; τ, ν̃0(τ) + r̃(τ, ν̃0(τ))

)∥∥ (3.17)

≤ K1

1− L(0)
1 + (K2 − 1)`(0)

1− `(0)
‖ν(τ)‖ ec(t, τ)

for all t ∈ T+
τ , where ϕ̃ denotes the general solution of (4.6). We have from Theorem 3.3(a)

‖ν̃0(τ)‖ =
∥∥P (τ)π+(τ, ν(τ))

∥∥ (3.23)

≤ K2

1− `(0)
‖ν(τ)‖ < δ

and consequently (4.7) gives us ‖ν̃0(t)‖ < ε
2(1+λ) for all t ∈ T+

τ . But this yields (note that
we have ec(t, τ) ≤ 1 for t ∈ T+

τ ) with the triangle inequality

‖ϕ̃(t; τ, ν(τ))‖ ≤
∥∥ϕ̃(t; τ, ν(τ))− ϕ̃

(
t; τ, π+(τ, ν(τ))

)∥∥+
∥∥ϕ̃(t; τ, π+(τ, ν(τ))

)∥∥
≤ K1

1− L(0)
1 + (K2 − 1)`(0)

1− `(0)
‖ν(τ)‖ ec(t, τ) + ‖ν̃0(t) + r̃(t, ν̃0(t))‖

≤ K1

1− L(0)
1 + (K2 − 1)`(0)

1− `(0)
‖ν(τ)‖+ (1 + λ) ‖ν̃0(t)‖ < ε for all t ∈ T+

τ

and 0 is a stable solution of (4.6). However, since the systems (4.1) and (4.6) coincide on
T × Bρ, and due to ϕ̃(t; τ, ν(τ)) ∈ Bρ for all t ∈ T+

τ , it is ν = ϕ̃(·; τ, ν(τ)). Thus, the
zero solution is also stable w.r.t. (4.1). Keeping in mind that R0 is uniformly exponentially
attracting (cf. (3.17)), a similar reasoning gives us the assertion on the remaining stability
properties. �

In our concluding example we make use of the “Hilger discs” given by

H0 := {z ∈ C : <z < 0} , Hh :=
{
z ∈ C :

∣∣z + 1
h

∣∣ < 1
h

}
for all h > 0,

which are crucial for a stability analysis on general measure chains.

Example 4.1. In a population-dynamical framework, Rosenzweig (see [Ros71]) studied an
autonomous version of the following planar ODE

(4.8)
{
ẋ1 = −x1 (1− x1)− b(t)x2 (1− e−x1)
ẋ2 = c(t)x2 (1− e−x1)− 2x2

,

whereas we allow an explicit time-dependence in form of the bounded continuous functions
b, c : R → R. In its equilibrium (0, 0) the above system has the linearization

(−1 0
0 −2

)
and

by the principle of linearized stability the zero solution is asymptotically stable. Now we
want to study the time scale version of (4.8) on time scales T satisfying µ∗(T) ⊆ [h,H] for
0 ≤ h ≤ H. This system can be represented in the form (4.1) with X = R2 and

A(t) ≡
(
−1 0
0 −2

)
, F1(t, x) =

(
x2

1 − b(t)x2 (1− e−x1)
c(t)x2 (1− e−x1)

)
.

Hence, A = A(t) has the spectrum Σ(A) = {−2,−1} and concerning the stability properties
for the trivial solution of (4.1), the following can be stated:

• For Σ(A) ⊆ HH the zero solution is asymptotically stable.
• For Σ(A) 6⊆ Hh the zero solution is unstable, since (4.1) possesses an unstable fiber

bundle consisting of solutions tending exponentially away from 0.
The interesting situation is given when, for instance, on the homogeneous time scale T = Z
the constant matrix A has eigenvalues on the boundary of H1. The principle of linearized
stability does not apply, but we can use Theorem 4.1: Its assumption (i) is fulfilled with
K1 = K2 = 1, constant functions a(t) ≡ α, b(t) ≡ β with −1 < α < β < 0 and an invariant
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projector P (t) = ( 0 0
0 1 ). Due to limx→0D2F1(t, x) = 0 uniformly in t ∈ T also assumption

(ii) holds. Thus, if we choose λ = 1, there exists a function r0 : T × (−ρ, ρ) → (−ρ, ρ)
with r0(t, 0) ≡ 0, such that the stability of the zero solution of the planar system (4.1) is
determined by the stability of the trivial solution for the scalar equation

x∆
2 = −2x2 + c(t)x2

(
1− e−r0(t,x2)

)
.

Nevertheless, due to our limited space the stability analysis of this equation is beyond the
scope of the paper. Such methods, in particular a procedure to obtain approximations of
the mapping r0, have been developed in [PR05].
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[Pöt02] C. Pötzsche, Langsame Faserbündel dynamischer Gleichungen auf Maßketten (in german), Ph.D.
Thesis, Univ. Augsburg, 2002.

[Pöt06] , Extended hierarchies of invariant fiber bundles for dynamic equations on measure chains,
submitted.
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