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Abstract We introduce the notion of a dynamic delay equation, which in-
cludes differential and difference equations with possibly time-dependent back-
ward delays. After proving a basic global existence and uniqueness theorem
for appropriate initial value problems, we derive a criterion for the asymptotic
stability of such equations in case of bounded delays.
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1 Introduction and Preliminaries

In this paper we briefly introduce dynamic equations on measure chains (or
time scales), where time-dependent backward delays are present. Our ap-
proach provides a framework sufficiently flexible to include ordinary differ-
ential and difference equations without delays (£(t) = F(¢,z(t)) for t € R
and Axz(t) = F(t,z(t)) for t € Z, resp.), equations with constant delays
(&(t) = F(t,z(t),z(t —r)) for t € R, r > 0, and Ax(t) = F(t,z(t),z(t — 1))
for t,r € Z, r > 0, resp.), as well as equations with proportional delays, like,
e.g., the pantograph equation &(t) = A(t)x(t) + B(t)z(qt), ¢ € (0,1).

We prove an existence and uniqueness theorem for initial value problems
of such equations under global Lipschitz conditions, which basically extends
[Hil90, Section 5], who considers equations without delays. Section 3 contains
sufficient conditions for the exponential decay of solutions for semi-linear equa-
tions and bounded delays. On this occasion, the delay term is interpreted as
a perturbation of a linear delay-free dynamic equation, since we avoid the use
of a general variation of constants formula for linear delay equations.

From now on, Z stands for the integers, R for the reals and R, for the
nonnegative real numbers. Throughout this paper, Banach spaces X are all
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real or complex and their norm is denoted by ||-||]. The closed ball in X
with center 0 and radius r > 0 is given by B, = {x € X : ||z|| <r}. If T
is a topological space, then C(I,X) are the continuous functions between
I and X. Finally, we write D5 3)f for the partial Fréchet derivative of a
mapping f: Tx X x X — X w.r.t. the variables in X x X, provided it exists.

We also sketch the basic terminology from the calculus on measure chains
(cf. [Hil90, BP01]). In all the subsequent considerations we deal with a mea-
sure chain (T, =, ), i.e. a conditionally complete totally ordered set (T, <)
(see [Hil90, Axiom 2]) with growth calibration p : T x T — R (see [Hil90,
Axiom 3]). The most intuitive and relevant examples of measure chains are
time scales, where T is a canonically ordered closed subset of R and p is given
by p(t,s) =t —s. Continuing, o : T — T, o(t) := inf{s € T: t < s} de-
fines the forward jump operator and the graininess pu* : T — R is defined by
p*(t) := p(o(t),t). If T has a left-scattered maximum m, we set T* := T\ {m}
and T* := T otherwise. For 7,¢ € T we abbreviate T} := {s € T: 7 < s},
T, :={seT,s=7}and [r,t]; := {s € T: 7 <s=<t}. Any other notation
concerning measure chains is taken from [Hil90].

2 Dynamic Delay Equations

Let 8 : T* — T be a nondecreasing function satisfying 6(¢) < ¢ for all ¢t € T*.
Then we denote 0 as delay function and say an equation of the form

(1) = F(t,x(t), 2(0(1))) (W

is a dynamic delay equation with right-hand side F : T" x X x X — X. With
given 7 € T, we abbreviate C.(6) := C([0(7),7];,X). For ¢, € C.(6), a
continuous function v : I — X is said to solve the initial value problem (IVP)

xA (t) = F<t7 l‘(t)7 m(@(t))), (T> ¢T)7 (2)

if I is a T-interval with [0(7), 7], C I, v(t) = ¢-(t) for all t € [0(7),7];
and v2(t) = F(t,v(t),v(0(t)) for t € I, 7 < t holds, where v2(7) € X is
understood as right-sided derivative of v in case of a right-dense 7 € T. Any
solution satisfying the IVP (2) will be denoted by ¢ (+; 7, ¢ ).

A tool solely important for the proof of Theorem 2.4 is given by means of
the mapping F7/ : TZ x X x X — X, which is defined for a fixed 7 € T* by

F(t,z,y) fort <7, (z,y) € ¥ x X
Fl(t,z,y) = lim F(s,&,n) fort=1, (z,y) € X x X .
(S,E,n)gji'r,xyy)

Lemma 2.1. Suppose 0 : T" — T is a continuous delay function, let I be a
T-interval, T,r € I with T < r and define I, := [0(7), 7| UI. Then a function
v:I. — X is a (unique) solution of the IVP (2), if and only if



(i) v1:= V|- is a (unique) solution of the IVP (1)pn, (T,7),
(i) V|T:rmT is a (unique) solution of the IVP (1)p, (r, V1|[9(T)7T]T).
Proof. The proof is similar to [Hil90, Theorem 5.3] and omitted here. O

Lemma 2.2. Suppose 0 : T* — T is a continuous delay function and define
I :={a,bly for a,b €T, a <b. Moreover, let £: 1 — Ry be rd-continuous,

/b L(s)As < 1 (3)

and assume the rd-continuous mapping F : TF x X x X — X satisfies

or all x,y, T,y € X 4
- ’ f Y, T, (4)

|F(t,2,) — F(t,2,9)] < €(¢) H (x - ”f)

and t € I. Then, for any 7 € I and any ¢, € C.(0), the IVP (2) possesses
ezactly one solution v : [0(T), 7] Ul — X.

Proof. Let 7 € I and ¢, € C,(#). We define the T-interval I, := TU[0(7), 7]
and €(Ir, X) is complete w.r.t. the norm [[v[|g;  y) := maxeer, [[v(¢)]. Now
consider the operator 7, : C(I,, X) — C(I,, X),

o b (1) for (1) <t <7
T = { 6:(7) + [1 F(s,0(s),v(0(s))) As for 7 <t )

which is well-defined due to [Hil90, Theorem 4.4]. Then v € C(I;,X) is a
fixed point of 7, if and only if v solves the IVP (2).
Because of [Hil90, Theorem 4.3(iii)], and for v, € (I, X), one obtains

I - T @)@ C [ (s, v(6),v00() — F (5. 5). 50(5)) | A

(2 /;5(8) K,,JS% _ ZEZ)(S)))H o

b
< [ 0025l Pleg 2y Torallic LT

and by passing over to the least upper bound for t € I., we get

b
IT.0) = T leqr. 2 < / (5) As v = Plegr. -

Using (3), we know that 7; is a contraction on C(I,, X) and the contraction
mapping principle yields that 7, possesses exactly one fixed point v. O

To show, e.g., the continuous dependence of solutions on the initial func-
tions, we need a generalized version of Gronwall’s inequality.



Lemma 2.3. Let 7 € T, suppose 0 : T" — T is a continuous delay function,
C >0 and by, by : T:f — Ry, y: ']T;(T) — R4 are rd-continuous. Then

t

w0 <C+ [ b as+ [ b(ouO)As foratteTs (O

implies y(t) < Cep,4b, (t,7) for all t € TF with T < 6(t).

Proof. The function z : TT — R, 2(t) := f: b1(s)y(s)As + f: ba(s)y(6(s))As
satisfies z(7) = 0 and is nondecreasing. Furthermore, we have

A1) < ba(t)y(t) + ba(0)y(6(1))
' Cba(t) + ba(t)) + br(0)2 (1) + ba(0)=(0(0)
< C(bu(t) +ba(t)) + (b1 (£) + ba(£))2(t) for all £ € T, 7 < 8(¢)
and [BPO1, p. 255, Theorem 6.1] yields

A0 < C [ (.06 (b1(5) + ba(5)) As = C ety s (67) ~ 1

forallt € T}, 7 < 6(t). Hence the claim follows because of y(t) < C+2(t). O

Theorem 2.4 (global existence and uniqueness). Suppose 0 : T* — T is a
continuous delay function, L1, Lo : T® — R4 are rd-continuous, and that the
rd-continuous mapping F : T" x X x X — X satisfies the condition:

For each t € T" there exists a compact T-neighborhood Uy of t such that
[F(s,2,9) = F(s,2,y)|| < La(t) Iz - 2],
[F9(s, 2, y) = F(s,,9)[| < La(t) ly — 9
foralls e UF, x,Z,y,y € X hold.

(7)

Then, for any T € T* and ¢ € C-(0), the IVP (2) admits exactly one solution
(57 0r) ¢ T;'(T) — X. Moreover, for ¢,,¢, € C.(0) and t € T we have

et ¢7) — o(t; 7, 1) (®)
) et [o- =0l forr =60
S e ) (14 [ La(s) As) sup.ciogr o, 6+ (5) = de(s)]| for o) <7

Proof. Let 7 € T* and ¢, € C,(0) be given arbitrarily.
(I) To show the existence and uniqueness of solutions, we apply the induc-
tion principle (cf. [Hil90, Theorem 1.4(c)] for » € (T})" to the statement:

The IVP

A(r) : 2B (1) = FT(t,2(t), 2(0(t))), (1, 67) (9)

possesses exactly one solution v, : [0(7),r]; — X.



(¢): Obviously there exists a unique continuous mapping v, : [0(7), 7]y — X
satisfying v-(t) = ¢.(t) for t € [0(7), 7]y and v2(t) = F7(t, v, (1), v-(6(t)))
for all t € {7}" = 0.

(#4): Let r be a right-scattered point. Using the induction hypothesis A(r),
the IVP in (9) possesses exactly one solution v, : [0(7), 7]y — X. We define
its continuous extension v,y : [0(7), o (7)) — X as

B ve(t) for t € [0(7), 7]
Vo(r)(t) := { Vi (r) 4 1 (1) F (ry v (1), v (0(r))) for t = o(r) i

which, by Lemma 2.1, is the unique solution of the above IVP, since the
restriction on [§(7),r|; is the unique solution of (9) and the restriction on
[0(r), o (r)]y is the unique solution of (1)r, (7, vr|o(r).rm,) on [0(7), o ()]
(7i1): Let r be right-dense. Due to the induction hypothesis A(r) we have a
unique solution v, of (9). Let [a,,b.]y C U, be a compact T-neighborhood
of r, such that the function ¢ : T* — R, £(¢) := max{Lq(r), L2(r)} for all
t € [ay,by]p from Lemma 2.2 satisfies f;: 0(s)As = L(r)u(by,ar) < 1. Now
Lemma 2.2 guarantees that the IVP (1)pe), (7,v:](r),,) has exactly one
solution v : [0(r), s]; — X for any s € [a,, by];. Because of Lemma 2.1, the
function v; : [0(7), s|lp — X, defined by

[ v(t) fortef(r),]
vs(t) == { v(t) forte[r, sy o

is the unique solution of (9) for r = s. Hence, the statement A(s) holds for
all s € [ar,by]p N'T;.
(tv): Let r be left-dense and we choose a T-interval [a,, b,]; as in (iii). Then
there exists a s € [ar,by];, s < r. Using the induction hypothesis A(s),
as well as Lemma 2.2, one shows existence and uniqueness of the solution
v @ [0(1), 7]y — X of (9) exactly as in step (iii). Since on every interval
[6(T), 7]y, T 2 1, there exists exactly one solution v, there is one on T;(T)‘
(IT) It remains to prove the estimate (8). Thereto, let ¢, ¢, € C,(0). The
solution ¢(+; 7, ¢,) of (1)p satisfies the integral equation

t
p(t;7,6r) = ¢-(T) +/ F(s,¢(s;7,¢r),9(0(s); 7,¢7)) As for all t € TT,

T

yielding the estimate

ot m,60) — ot 7, 3)]| < || (7) = & ()]
+/mewwa@ww@n@mAs

+/LwWﬂﬂWﬂ@%wW$ﬂ@WA8



for all ¢ € T}, and with Lemma 2.3 we obtain
H@@; T, d)‘r) - @(t; T, QT)T)H < €L1+L; (th) ||¢T(T) - QZT(T)H
for all ¢t € T}, 7 < 6(t). On the other hand, in case of §(t) < 7, one has

ot 7, ¢7) — ot 7, 67) ||
< ||or () — o+ (7)) +/ La(s) [|6-(0(s)) — &-(0(s))|| As

T

t _
+/ Li(s) |o(s; 7, ¢-) — (557, 6-)|| As

< Hng(T) - q_ﬁT(T)H —|—/ Lo(s)As  sup ||¢T(s) — QZT(S)H

T SE[O(T),T]T
t
+/LwWﬂwWﬁme@MA8

and Gronwall’s Lemma (cf. [BP01, p. 256, Theorem 6.4]) implies the second
inequality in (8). This concludes the present proof. O

3 Linearized Asymptotic Stability

Throughout this section, let T be unbounded above. Moreover, C R(T,R) is
the set of rd-continuous functions a : T — R with 1+ p*(t)a(t) > 0 for ¢t € T.

Lemma 3.1. Let 7 € T, K > 1, a € €/, R(T,R), suppose § : T — T is
a continuous delay function, A : T — L(X) and f : Tx X x X — X are
rd-continuous. Consider the dynamic delay equation

2 (t) = Atz (t) + f(t.2(t), 2(6(t))) (10)

under the following assumptions:

(i) The transition operator of x™(t) = A(t)x(t) satisfies
|1Pa(t,s)|| < Keq(t,s) forallT <s=<t, (11)

(ii) f(t,0,0) =0 on T, and there exist reals L1, La > 0 such that we have

1t 2) — £ 29)] < Ln 1z — 2]
1ftz,y) — ft,z,9)| < L2 [y — 9
forallteT, x,z,y,y € X.
Then the solution ¢(-;7,¢,) of (10)s satisfies

(12)

lo(t; 7, o)l < Kea(t, 7) 6-(7)| for all t € TE, 7 < 0(t),  (13)
initial functions ¢, € C.(0), and a(t) := a(t) + K (L1 + Loeq(6(t),1)).



Proof. Let 7 € T. Due to our present assumptions, one can apply Theo-
rem 2.4 to the dynamical delay equation (10); and consequently all solutions
w(5 7, ¢-) with ¢, € C,(0) exist on T;(T). Furthermore, the variation of con-
stants formula (cf. [P6t02, p. 56, Satz 1.3.11]) implies the identity

t

Pt ¢r) = <I>A(t77)¢r(f)+/ Da(t,0(s))f(s,0(5:7,¢r), (0(5); 7, 0r)) As

T

for all ¢ € T}, and from f(¢,0,0) = 0 we obtain

(11)
lo(t; 7, 0:) I < Kealt,7) [|6-(7)]

FE [ ealt,o(s) 17059557, 6.), 9076 As

(12)
< Kea(t,r)\\¢r(r)ll+KL1/ ea(t,o(s)) llo(s; 7, 0-)| As

T

t
+ KLQ/ ea(t,o(s)) ||@(0(s); T, ¢, )| As for all t € T,

which, in turn, yields (cf. [Hil90, Theorem 6.2])

KL
1+ 1 (s)a(s)

+KL2/ ea(0(s),0(s))ea(r,0(s)) llp(0(s); 7, o7 )| As

t
lp(t; 7, ¢7)l €a(T: t) < K [|¢7(7)] +/ ea(7,8) [p(s: 7, 0-) || As

for all ¢ € T}. Then Lemma 2.3 gives us the desired estimate (13). O

Theorem 3.2. Let 7 € T, suppose 0 : T — T is a continuous delay function,
A: T — L(X) is rd-continuous, F : T X X x X — X is rd-continuous and
continuously differentiable w.r.t. the variables in X x X . Consider the dynamic
delay equation (10)¢ under the following assumptions:

(i) The transition operator of ™ (t) = A(t)x(t) satisfies the estimate (11)
with sup cp+a(s) <0 and sup -+ eq(0(s),s) < oo,

(i) f(t,0,0) =0 on T, and we have

lim  Ds) f(t,z,y) =0 uniformly int € T. (14)
(z,y)—(0,0)
Then there exists a p > 0 such that all solutions (-, T, ¢-) of (10) ¢ with initial
functions ¢ € C-(0), supse(o(r), -, [|6-(t)]| < p exist uniquely on 'H‘;(T) and
decay to 0 exponentially.



Proof. Let 7 € T. Due to hypothesis (i) there exists a L > 0 such that

KL(l + sup ea(9(s),s))< inf (—a(s)) (15)

seTt SeTi

holds, and the limit relation (14) guarantees that there is a p; > 0 with
||D(2,3)f(t, x, y)” < %L forallt € T, z,y € B,,. Now the mean value inequal-
ity implies ||f(t,z,y) — f(t,Z,9)] < %{ZH(;:;)H fort € T, z,z,y,y € B,,.
Using the radial retraction R, : X — B,, defined by R,(x) := « for ||z]| < p
and R,(x) := ﬁx for ||z|| > p, it is well-known that the modified mapping

FiTxXxX— X, f(t,:z:,y) = f(t,R,, (), Ry, (y)) coincides with f on the
set T x B,, x B,, and satisfies Hf(t,x,y) - f(t,:f,g)” <L H(;ig)” for all
teT, z,z,y,5y € X. Therefore, from Theorem 2.4 we get that all solutions
P57, 07), or € Cr(0), of (10)]; exist and are unique on T;(T). Furthermore,

from Lemma 3.1 we have the inequality

(13)
16(t; 7 d-)ll < Kea(t,7) [é-(7)| forallt € TT, 7 =6(t)  (16)

with a(t) := a(t) + KL(1 +e,(0(t), 1)) and (15) yields sup, -+ a(s) < 0. This
implies ||@(t; 7, ¢,)|| < K ||¢-(7)|| < p1 for all t € TF, 7 < 0(¢), ¢, € Bx,
1

T

and from Theorem 2.4 we additionally get

(8) t
18(t: 7, 60| < ert, ) <1+ / L(s)As) sup  [16:(9)l
T sSE|

0(7),7lr

for all t € T, 6(t) < 7, which yields the existence of a ps > 0 such that
|@(t;7,¢7)|| < p1 for all t € TS, ¢r € B,,. If we choose p := min {2, po },
then any solution @(+; 7, ;) of (10) 7 with ¢, € B, is also a solution of (10)
and together with (16) our assertion follows. O
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