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Abstract We introduce the notion of a dynamic delay equation, which in-
cludes differential and difference equations with possibly time-dependent back-
ward delays. After proving a basic global existence and uniqueness theorem
for appropriate initial value problems, we derive a criterion for the asymptotic
stability of such equations in case of bounded delays.
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1 Introduction and Preliminaries

In this paper we briefly introduce dynamic equations on measure chains (or
time scales), where time-dependent backward delays are present. Our ap-
proach provides a framework sufficiently flexible to include ordinary differ-
ential and difference equations without delays (ẋ(t) = F (t, x(t)) for t ∈ R
and ∆x(t) = F (t, x(t)) for t ∈ Z, resp.), equations with constant delays
(ẋ(t) = F (t, x(t), x(t − r)) for t ∈ R, r > 0, and ∆x(t) = F (t, x(t), x(t − r))
for t, r ∈ Z, r > 0, resp.), as well as equations with proportional delays, like,
e.g., the pantograph equation ẋ(t) = A(t)x(t) +B(t)x(qt), q ∈ (0, 1).

We prove an existence and uniqueness theorem for initial value problems
of such equations under global Lipschitz conditions, which basically extends
[Hil90, Section 5], who considers equations without delays. Section 3 contains
sufficient conditions for the exponential decay of solutions for semi-linear equa-
tions and bounded delays. On this occasion, the delay term is interpreted as
a perturbation of a linear delay-free dynamic equation, since we avoid the use
of a general variation of constants formula for linear delay equations.

From now on, Z stands for the integers, R for the reals and R+ for the
nonnegative real numbers. Throughout this paper, Banach spaces X are all
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real or complex and their norm is denoted by ‖·‖. The closed ball in X
with center 0 and radius r > 0 is given by B̄r := {x ∈ X : ‖x‖ ≤ r}. If I
is a topological space, then C(I,X ) are the continuous functions between
I and X . Finally, we write D(2,3)f for the partial Fréchet derivative of a
mapping f : T×X ×X → X w.r.t. the variables in X ×X , provided it exists.

We also sketch the basic terminology from the calculus on measure chains
(cf. [Hil90, BP01]). In all the subsequent considerations we deal with a mea-
sure chain (T,�, µ), i.e. a conditionally complete totally ordered set (T,�)
(see [Hil90, Axiom 2]) with growth calibration µ : T × T → R (see [Hil90,
Axiom 3]). The most intuitive and relevant examples of measure chains are
time scales, where T is a canonically ordered closed subset of R and µ is given
by µ(t, s) = t − s. Continuing, σ : T → T, σ(t) := inf {s ∈ T : t ≺ s} de-
fines the forward jump operator and the graininess µ∗ : T → R is defined by
µ∗(t) := µ(σ(t), t). If T has a left-scattered maximum m, we set Tκ := T\{m}
and Tκ := T otherwise. For τ, t ∈ T we abbreviate T+

τ := {s ∈ T : τ � s},
T−τ := {s ∈ T, s � τ} and [τ, t]T := {s ∈ T : τ � s � t}. Any other notation
concerning measure chains is taken from [Hil90].

2 Dynamic Delay Equations

Let θ : Tκ → T be a nondecreasing function satisfying θ(t) � t for all t ∈ Tκ.
Then we denote θ as delay function and say an equation of the form

x∆(t) = F
(
t, x(t), x(θ(t))

)
(1)F

is a dynamic delay equation with right-hand side F : Tκ×X ×X → X . With
given τ ∈ T, we abbreviate Cτ (θ) := C([θ(τ), τ ]T ,X ). For φτ ∈ Cτ (θ), a
continuous function ν : I → X is said to solve the initial value problem (IVP)

x∆(t) = F
(
t, x(t), x(θ(t))

)
, (τ, φτ ), (2)

if I is a T-interval with [θ(τ), τ ]T ⊆ I, ν(t) = φτ (t) for all t ∈ [θ(τ), τ ]T
and ν∆(t) = F

(
t, ν(t), ν(θ(t))

)
for t ∈ I, τ � t holds, where ν∆(τ) ∈ X is

understood as right-sided derivative of ν in case of a right-dense τ ∈ T. Any
solution satisfying the IVP (2) will be denoted by ϕ(·; τ, φτ ).

A tool solely important for the proof of Theorem 2.4 is given by means of
the mapping F τ ] : T−τ ×X × X → X , which is defined for a fixed τ ∈ Tκ by

F τ ](t, x, y) :=

 F (t, x, y) for t ≺ τ, (x, y) ∈ X × X
lim

(s,ξ,η)→(τ,x,y)
s≺τ

F (s, ξ, η) for t = τ, (x, y) ∈ X × X .

Lemma 2.1. Suppose θ : Tκ → T is a continuous delay function, let I be a
T-interval, τ, r ∈ I with τ � r and define Iτ := [θ(τ), τ ]T∪I. Then a function
ν : Iτ → X is a (unique) solution of the IVP (2), if and only if



(i) ν1 := ν|T−r ∩Iτ is a (unique) solution of the IVP (1)F r] , (τ, φτ ),

(ii) ν|T+
r ∩Iτ is a (unique) solution of the IVP (1)F , (r, ν1|[θ(r),r]T).

Proof. The proof is similar to [Hil90, Theorem 5.3] and omitted here.

Lemma 2.2. Suppose θ : Tκ → T is a continuous delay function and define
I := [a, b]T for a, b ∈ T, a ≺ b. Moreover, let ` : I → R+ be rd-continuous,∫ b

a

`(s) ∆s < 1 (3)

and assume the rd-continuous mapping F : Tκ ×X × X → X satisfies

‖F (t, x, y)− F (t, x̄, ȳ)‖ ≤ `(t)
∥∥∥∥(x− x̄y − ȳ

)∥∥∥∥ for all x, y, x̄, ȳ ∈ X (4)

and t ∈ I. Then, for any τ ∈ I and any φτ ∈ Cτ (θ), the IVP (2) possesses
exactly one solution ν : [θ(τ), τ ]T ∪ I → X .

Proof. Let τ ∈ I and φτ ∈ Cτ (θ). We define the T-interval Iτ := I ∪ [θ(τ), τ ]T
and C(Iτ ,X ) is complete w.r.t. the norm ‖ν‖C(Iτ ,X ) := maxt∈Iτ ‖ν(t)‖. Now
consider the operator Tτ : C(Iτ ,X )→ C(Iτ ,X ),

Tτ (ν)(t) :=
{

φτ (t) for θ(τ) � t ≺ τ
φτ (τ) +

∫ t
τ
F
(
s, ν(s), ν(θ(s))

)
∆s for τ � t , (5)

which is well-defined due to [Hil90, Theorem 4.4]. Then ν ∈ C(Iτ ,X ) is a
fixed point of Tτ , if and only if ν solves the IVP (2).

Because of [Hil90, Theorem 4.3(iii)], and for ν, ν̄ ∈ C(Iτ ,X ), one obtains

‖Tτ (ν)(t)− Tτ (ν̄)(t)‖
(5)

≤
∫ t

τ

∥∥F (s, ν(s), ν(θ(s))
)
− F

(
s, ν̄(s), ν̄(θ(s))

)∥∥ ∆s

(4)

≤
∫ t

τ

`(s)
∥∥∥∥( ν(s)− ν̄(s)
ν(θ(s))− ν̄(θ(s))

)∥∥∥∥ ∆s

≤
∫ b

a

`(s) ∆s ‖ν − ν̄‖C(Iτ ,X ) for all t ∈ Iτ , τ � t

and by passing over to the least upper bound for t ∈ Iτ , we get

‖Tτ (ν)− Tτ (ν̄)‖C(Iτ ,X ) ≤
∫ b

a

`(s) ∆s ‖ν − ν̄‖C(Iτ ,X ) .

Using (3), we know that Tτ is a contraction on C(Iτ ,X ) and the contraction
mapping principle yields that Tτ possesses exactly one fixed point ν.

To show, e.g., the continuous dependence of solutions on the initial func-
tions, we need a generalized version of Gronwall’s inequality.



Lemma 2.3. Let τ ∈ T, suppose θ : Tκ → T is a continuous delay function,
C ≥ 0 and b1, b2 : T+

τ → R+, y : T+
θ(τ) → R+ are rd-continuous. Then

y(t) ≤ C +
∫ t

τ

b1(s)y(s) ∆s+
∫ t

τ

b2(s)y(θ(s)) ∆s for all t ∈ T+
τ (6)

implies y(t) ≤ Ceb1+b2(t, τ) for all t ∈ T+
τ with τ � θ(t).

Proof. The function z : T+
τ → R, z(t) :=

∫ t
τ
b1(s)y(s)∆s +

∫ t
τ
b2(s)y(θ(s))∆s

satisfies z(τ) = 0 and is nondecreasing. Furthermore, we have

z∆(t) ≤ b1(t)y(t) + b2(t)y(θ(t))
(6)

≤ C(b1(t) + b2(t)) + b1(t)z(t) + b2(t)z(θ(t))

≤ C(b1(t) + b2(t)) + (b1(t) + b2(t))z(t) for all t ∈ T+
τ , τ � θ(t)

and [BP01, p. 255, Theorem 6.1] yields

z(t) ≤ C
∫ t

τ

eb1+b2(t, σ(s))(b1(s) + b2(s)) ∆s = C [eb1+b2(t, τ)− 1]

for all t ∈ T+
τ , τ � θ(t). Hence the claim follows because of y(t) ≤ C+z(t).

Theorem 2.4 (global existence and uniqueness). Suppose θ : Tκ → T is a
continuous delay function, L1, L2 : Tκ → R+ are rd-continuous, and that the
rd-continuous mapping F : Tκ ×X × X → X satisfies the condition:

For each t ∈ Tκ there exists a compact T-neighborhood Ut of t such that∥∥F t](s, x, y)− F t](s, x̄, y)
∥∥ ≤ L1(t) ‖x− x̄‖ ,∥∥F t](s, x, y)− F t](s, x, ȳ)
∥∥ ≤ L2(t) ‖y − ȳ‖

(7)

for all s ∈ Uκt , x, x̄, y, ȳ ∈ X hold.

Then, for any τ ∈ Tκ and φτ ∈ Cτ (θ), the IVP (2) admits exactly one solution
ϕ(·; τ, φτ ) : T+

θ(τ) → X . Moreover, for φτ , φ̄τ ∈ Cτ (θ) and t ∈ T+
τ we have∥∥ϕ(t; τ, φτ )− ϕ(t; τ, φ̄τ )

∥∥ (8)

≤

{
eL1+L2(t, τ)

∥∥φτ (τ)− φ̄τ (τ)
∥∥ for τ � θ(t)

eL1(t, τ)
(

1 +
∫ t
τ
L2(s) ∆s

)
sups∈[θ(τ),τ ]T

∥∥φτ (s)− φ̄τ (s)
∥∥ for θ(t) � τ

Proof. Let τ ∈ Tκ and φτ ∈ Cτ (θ) be given arbitrarily.
(I) To show the existence and uniqueness of solutions, we apply the induc-

tion principle (cf. [Hil90, Theorem 1.4(c)] for r ∈ (T+
τ )κ to the statement:

A(r) :


The IVP

x∆(t) = F r]
(
t, x(t), x(θ(t))

)
, (τ, φτ )

possesses exactly one solution νr : [θ(τ), r]T → X .

(9)



(i): Obviously there exists a unique continuous mapping ντ : [θ(τ), τ ]T → X
satisfying ντ (t) = φτ (t) for t ∈ [θ(τ), τ ]T and ν∆

τ (t) = F τ ]
(
t, ντ (t), ντ (θ(t))

)
for all t ∈ {τ}κ = ∅.
(ii): Let r be a right-scattered point. Using the induction hypothesis A(r),
the IVP in (9) possesses exactly one solution νr : [θ(τ), r]T → X . We define
its continuous extension νσ(r) : [θ(τ), σ(r)]T → X as

νσ(r)(t) :=
{

νr(t) for t ∈ [θ(τ), r]T
νr(r) + µ∗(r)F

(
r, νr(r), νr(θ(r))

)
for t = σ(r) ,

which, by Lemma 2.1, is the unique solution of the above IVP, since the
restriction on [θ(τ), r]T is the unique solution of (9) and the restriction on
[θ(r), σ(r)]T is the unique solution of (1)F , (r, νr|[θ(r),r]T) on [θ(r), σ(r)]T.
(iii): Let r be right-dense. Due to the induction hypothesis A(r) we have a
unique solution νr of (9). Let [ar, br]T ⊆ Ur be a compact T-neighborhood
of r, such that the function ` : Tκ → R+, `(t) := max {L1(r), L2(r)} for all
t ∈ [ar, br]T from Lemma 2.2 satisfies

∫ br
ar
`(s) ∆s = `(r)µ(br, ar) < 1. Now

Lemma 2.2 guarantees that the IVP (1)F s] , (r, νr|[θ(r),r]T) has exactly one
solution ν : [θ(r), s]T → X for any s ∈ [ar, br]T. Because of Lemma 2.1, the
function νs : [θ(τ), s]T → X , defined by

νs(t) :=
{
νr(t) for t ∈ [θ(τ), r]T
ν(t) for t ∈ [r, s]T

,

is the unique solution of (9) for r = s. Hence, the statement A(s) holds for
all s ∈ [ar, br]T ∩ T+

r .
(iv): Let r be left-dense and we choose a T-interval [ar, br]T as in (iii). Then
there exists a s ∈ [ar, br]T, s ≺ r. Using the induction hypothesis A(s),
as well as Lemma 2.2, one shows existence and uniqueness of the solution
νr : [θ(τ), r]T → X of (9) exactly as in step (iii). Since on every interval
[θ(τ), r]T, τ � r, there exists exactly one solution νr, there is one on T+

θ(τ).
(II) It remains to prove the estimate (8). Thereto, let φτ , φ̄τ ∈ Cτ (θ). The

solution ϕ(·; τ, φτ ) of (1)F satisfies the integral equation

ϕ(t; τ, φτ ) = φτ (τ) +
∫ t

τ

F (s, ϕ(s; τ, φτ ), ϕ(θ(s); τ, φτ )) ∆s for all t ∈ T+
τ ,

yielding the estimate

∥∥ϕ(t; τ, φτ )− ϕ(t; τ, φ̄τ )
∥∥ (7)

≤
∥∥φτ (τ)− φ̄τ (τ)

∥∥
+
∫ t

τ

L1(s)
∥∥ϕ(s; τ, φτ )− ϕ(s; τ, φ̄τ )

∥∥ ∆s

+
∫ t

τ

L2(s)
∥∥ϕ(θ(s); τ, φτ )− ϕ(θ(s); τ, φ̄τ )

∥∥ ∆s



for all t ∈ T+
τ , and with Lemma 2.3 we obtain∥∥ϕ(t; τ, φτ )− ϕ(t; τ, φ̄τ )

∥∥ ≤ eL1+L2(t, τ)
∥∥φτ (τ)− φ̄τ (τ)

∥∥
for all t ∈ T+

τ , τ � θ(t). On the other hand, in case of θ(t) � τ , one has∥∥ϕ(t; τ, φτ )− ϕ(t; τ, φ̄τ )
∥∥

≤
∥∥φτ (τ)− φ̄τ (τ)

∥∥+
∫ t

τ

L2(s)
∥∥φτ(θ(s))− φ̄τ (θ(s))

∥∥ ∆s

+
∫ t

τ

L1(s)
∥∥ϕ(s; τ, φτ )− ϕ(s; τ, φ̄τ )

∥∥ ∆s

≤
∥∥φτ (τ)− φ̄τ (τ)

∥∥+
∫ t

τ

L2(s) ∆s sup
s∈[θ(τ),τ ]T

∥∥φτ (s)− φ̄τ (s)
∥∥

+
∫ t

τ

L1(s)
∥∥ϕ(s; τ, φτ )− ϕ(s; τ, φ̄τ )

∥∥ ∆s

and Gronwall’s Lemma (cf. [BP01, p. 256, Theorem 6.4]) implies the second
inequality in (8). This concludes the present proof.

3 Linearized Asymptotic Stability

Throughout this section, let T be unbounded above. Moreover, C+
rdR(T,R) is

the set of rd-continuous functions a : T→ R with 1 + µ∗(t)a(t) > 0 for t ∈ T.

Lemma 3.1. Let τ ∈ T, K ≥ 1, a ∈ C+
rdR(T,R), suppose θ : T → T is

a continuous delay function, A : T → L(X ) and f : T × X × X → X are
rd-continuous. Consider the dynamic delay equation

x∆(t) = A(t)x(t) + f
(
t, x(t), x(θ(t))

)
(10)f

under the following assumptions:

(i) The transition operator of x∆(t) = A(t)x(t) satisfies

‖ΦA(t, s)‖ ≤ Kea(t, s) for all τ � s � t, (11)

(ii) f(t, 0, 0) ≡ 0 on T, and there exist reals L1, L2 ≥ 0 such that we have

‖f(t, x, y)− f(t, x̄, y)‖ ≤ L1 ‖x− x̄‖ ,
‖f(t, x, y)− f(t, x, ȳ)‖ ≤ L2 ‖y − ȳ‖

(12)

for all t ∈ T, x, x̄, y, ȳ ∈ X .

Then the solution ϕ(·; τ, φτ ) of (10)f satisfies

‖ϕ(t; τ, φτ )‖ ≤ Keā(t, τ) ‖φτ (τ)‖ for all t ∈ T+
τ , τ � θ(t), (13)

initial functions φτ ∈ Cτ (θ), and ā(t) := a(t) +K (L1 + L2ea(θ(t), t)).



Proof. Let τ ∈ T. Due to our present assumptions, one can apply Theo-
rem 2.4 to the dynamical delay equation (10)f and consequently all solutions
ϕ(·; τ, φτ ) with φτ ∈ Cτ (θ) exist on T+

θ(τ). Furthermore, the variation of con-
stants formula (cf. [Pöt02, p. 56, Satz 1.3.11]) implies the identity

ϕ(t; τ, φτ ) = ΦA(t, τ)φτ (τ) +
∫ t

τ

ΦA(t, σ(s))f(s, ϕ(s; τ, φτ ), ϕ(θ(s); τ, φτ )) ∆s

for all t ∈ T+
τ , and from f(t, 0, 0) ≡ 0 we obtain

‖ϕ(t; τ, φτ )‖
(11)

≤ Kea(t, τ) ‖φτ (τ)‖

+K

∫ t

τ

ea(t, σ(s)) ‖f(s, ϕ(s; τ, φτ ), ϕ(θ(s); τ, φτ ))‖ ∆s

(12)

≤ Kea(t, τ) ‖φτ (τ)‖+KL1

∫ t

τ

ea(t, σ(s)) ‖ϕ(s; τ, φτ )‖ ∆s

+KL2

∫ t

τ

ea(t, σ(s)) ‖ϕ(θ(s); τ, φτ )‖ ∆s for all t ∈ T+
τ ,

which, in turn, yields (cf. [Hil90, Theorem 6.2])

‖ϕ(t; τ, φτ )‖ ea(τ, t) ≤ K ‖φτ (τ)‖+
∫ t

τ

K1L

1 + µ∗(s)a(s)
ea(τ, s) ‖ϕ(s; τ, φτ )‖ ∆s

+KL2

∫ t

τ

ea(θ(s), σ(s))ea(τ, θ(s)) ‖ϕ(θ(s); τ, φτ )‖ ∆s

for all t ∈ T+
τ . Then Lemma 2.3 gives us the desired estimate (13).

Theorem 3.2. Let τ ∈ T, suppose θ : T→ T is a continuous delay function,
A : T → L(X ) is rd-continuous, F : T × X × X → X is rd-continuous and
continuously differentiable w.r.t. the variables in X×X . Consider the dynamic
delay equation (10)f under the following assumptions:

(i) The transition operator of x∆(t) = A(t)x(t) satisfies the estimate (11)
with sups∈T+

τ
a(s) < 0 and sups∈T+

τ
ea(θ(s), s) <∞,

(ii) f(t, 0, 0) ≡ 0 on T, and we have

lim
(x,y)→(0,0)

D(2,3)f(t, x, y) = 0 uniformly in t ∈ T. (14)

Then there exists a ρ > 0 such that all solutions ϕ(·, τ, φτ ) of (10)f with initial
functions φτ ∈ Cτ (θ), supt∈[θ(τ),τ ]T

‖φτ (t)‖ ≤ ρ exist uniquely on T+
θ(τ) and

decay to 0 exponentially.



Proof. Let τ ∈ T. Due to hypothesis (i) there exists a L > 0 such that

KL
(

1 + sup
s∈T+

τ

ea(θ(s), s)
)
< inf
s∈T+

τ

(−a(s)) (15)

holds, and the limit relation (14) guarantees that there is a ρ1 > 0 with∥∥D(2,3)f(t, x, y)
∥∥ ≤ 1

2L for all t ∈ T, x, y ∈ B̄ρ1 . Now the mean value inequal-
ity implies ‖f(t, x, y)− f(t, x̄, ȳ)‖ ≤ 1

2L
∥∥( x−x̄

y−ȳ
)∥∥ for t ∈ T, x, x̄, y, ȳ ∈ B̄ρ1 .

Using the radial retraction Rρ : X → B̄ρ, defined by Rρ(x) := x for ‖x‖ ≤ ρ
and Rρ(x) := ρ

‖x‖x for ‖x‖ ≥ ρ, it is well-known that the modified mapping

f̃ : T×X ×X → X , f̃(t, x, y) := f(t, Rρ1(x), Rρ1(y)) coincides with f on the
set T × B̄ρ1 × B̄ρ1 and satisfies

∥∥f̃(t, x, y) − f̃(t, x̄, ȳ)
∥∥ ≤ L

∥∥( x−x̄
y−ȳ

)∥∥ for all
t ∈ T, x, x̄, y, ȳ ∈ X . Therefore, from Theorem 2.4 we get that all solutions
ϕ̃(·; τ, φτ ), φτ ∈ Cτ (θ), of (10)f̃ exist and are unique on T+

θ(τ). Furthermore,
from Lemma 3.1 we have the inequality

‖ϕ̃(t; τ, φτ )‖
(13)

≤ Keā(t, τ) ‖φτ (τ)‖ for all t ∈ T+
τ , τ � θ(t) (16)

with ā(t) := a(t) +KL(1 + ea(θ(t), t)) and (15) yields sups∈T+
τ
ā(s) < 0. This

implies ‖ϕ̃(t; τ, φτ )‖ ≤ K ‖φτ (τ)‖ ≤ ρ1 for all t ∈ T+
τ , τ � θ(t), φτ ∈ B̄ K

ρ1
,

and from Theorem 2.4 we additionally get

‖ϕ̃(t; τ, φτ )‖
(8)

≤ eL(t, τ)
(

1 +
∫ t

τ

L(s) ∆s
)

sup
s∈[θ(τ),τ ]T

‖φτ (s)‖

for all t ∈ T+
τ , θ(t) � τ , which yields the existence of a ρ2 > 0 such that

‖ϕ̃(t; τ, φτ )‖ ≤ ρ1 for all t ∈ T+
τ , φτ ∈ B̄ρ2 . If we choose ρ := min

{
ρ1
K , ρ2

}
,

then any solution ϕ̃(·; τ, φτ ) of (10)f̃ with φτ ∈ B̄ρ is also a solution of (10)f
and together with (16) our assertion follows.
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