A LIMIT SET TRICHOTOMY
FOR ORDER-PRESERVING SYSTEMS ON TIME SCALES

CHRISTIAN POTZSCHE AND STEFAN SIEGMUND

ABSTRACT. In this paper we derive a limit set trichotomy for abstract order-
preserving 2-parameter semiflows in normal cones of strongly ordered Banach
spaces. Additionally, to provide an example, Miiller’s theorem is generalized
to dynamic equations on arbitrary time scales and applied to a model from
population dynamics.

1. INTRODUCTION

In certain relevant situations it happens that a dynamical system preserves a
(partial) order relation on its state space. These systems are called order-preserving
or monotone and the ground for their qualitative theory was laid by Krasnoselskii in
his two books [Kra64, Kra68]. Meanwhile many others made further important con-
tributions for different types of such dynamical systems like (semi-)flows of ordinary
differential equation [Hir82, Hir84, Hir85, Smi86], functional differential equations
[Smi87, AB90], semilinear parabolic equations [Hir88, Tak91], ordinary difference
equations [Hir85, Tak90], [KN93, KR92], [PT91, HP93|, random dynamical sys-
tems [AC98] or general skew-product flows [Chu01]; compare also the monographs
[Smi96] and [Chu02] for numerous examples and applications.

The essential property of order-preserving dynamical systems is that they pos-
sess a surprisingly simple asymptotic behavior. In fact Krause et al. [KN93, KR92]
proved a so-called limit set trichotomy (cf. also [Nes99] for nonautonomous differ-
ence equations or [ACO01] for random dynamical systems), describing the only three
asymptotic scenarios of such systems under a certain kind of concavity.

In this paper we prove such a limit set trichotomy for a general model of non-
expansive dynamical processes, namely 2-parameter semiflows in normal cones on
time scales. They include the solution operators of dynamic equations on time
scales (cf. [Hil90, BP01]) and in particular of nonautonomous difference and differ-
ential equations. Beyond the unification aspect, dynamic equations on time scales
are predestinated to describe the interaction of biological species with hibernation
periods. The crucial point is that we provide sufficient criteria for the nonexpansive-
ness of such solution operators in terms of concavity and cooperativity conditions
on the right-hand sides of the corresponding equations.
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On this occasion we generalize the classical theorem of Miiller (cf., e.g., [Miil26])
to dynamic equations in real Banach spaces. Thereby we closely follow the argu-
ments of [Wal01], who considers finite-dimensional ordinary differential equations
and orderings w.r.t. arbitrary cones. However, although our state spaces are al-
lowed to be infinite-dimensional, we have to make the assumption that cones have
nonempty interior. The use of arbitrary order cones instead of Ri even in finite
dimensions has the advantage that certain equations are cooperative (see Defini-
tion 5.6) w.r.t. an ordering different from the component-wise.

2. PRELIMINARIES

Let T be an arbitrary time scale, i.e., a canonically ordered closed subset of the
real axis R. Since we are interested in the asymptotic behavior of systems on such
sets T, it is reasonable to assume that T is unbounded above in the whole paper.
Moreover, T is called homogeneous, if T =R or T = hZ, h > 0. A T-interval is the
intersection of a real interval with the set T, for a,b € R we write [a, b]; := [a,b)]NT
and (half-)open intervals are defined analogously. (X,d) denotes a metric space
from now on.

Definition 2.1. A mapping ¢ : {(t,T) €T?: 7 < t} x X — X is denoted as a
2-parameter semiflow on X, if the mappings p(t,7,) = o(t,7) : X — X, 7 < ¢,
satisfy the following properties:
(i) p(r,m)z=xforallTe T,z € X,
(i) @(t,s)e(s,7) =p(t,7) forall 7,s,t € T, 7 < s < ¢,
(iii) (-, ")z : {(t,7) € T?: 7 <t} — X is continuous for all z € X. ]

Remark 2.2. (1) Sometimes 2-parameter semiflows are also called (evolutionary)
processes (cf., e.g., [HLI3, p. 100, Definition 1.1]).

(2) To provide some concepts from classical (1-parameter) semiflows, we denote a
point zg € X as an equilibrium of ¢, if p(t, 7)xg = xo for all 7 < t holds. Moreover,
for 7 € T and = € X, the orbit emanating from (,x) is

vi(x) = {pt,T)r e X : T <t}

and the w-limit set of (7, x) is given by

wi(z) = ncl{go(s,T):EGX: t<s}.

T<t

Equivalently, w} (x) consists of all the points z* € X such that there exists a
sequence t,, — oo in T with z* = lim,, o @(t,, 7). A subset U C X is denoted as
forward invariant, if o(t, 7)U C U holds for 7 < ¢. n

Example 2.3. (1) For homogeneous time scales T, any strongly continuous discrete
(T := hZ, h > 0) or continuous (T := R) I-parameter semiflow {¢;},, evidently
generates a 2-parameter semiflow ¢ via p(t,7) := ¢—,. -

(2) Let X be some Banach space V and f : T x V — V. Then the standard
examples for 2-parameter-semiflows are the solution operators p(t,7,-) : V. — V|
7 < t, of nonautonomous difference equations v(t + 1) = f(¢,v(t)), t € T :=Z, or
of nonautonomous ordinary differential equations v(t) = f(¢,v(t)), t € T := R in
V', provided that in the ODE case, f is e.g. measurable in ¢, (locally) Lipschitzian
in v, and satisfies a certain growth condition to exclude finite escape times. The
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general situation, where T is an arbitrary closed subset of the reals, occurs in the
context of dynamic equations v® = f(¢,v) on time scales (see Section 5).

(3) Let r > 0 be real, X := C([-r,0],R?) the space of continuous functions
endowed with the sup-norm, and f : R x X — RY be continuous and (locally)
Lipschitzian in the second argument. Then, if no finite escape times appear, the
solution v(-,7,v°) : [r,00) — R? of the retarded functional differential equation

0(t) = f(t,ve), v(0) ;== v(t+6) forall 6 €[—r,0]

satisfying the initial condition v, = v° for 7 € R, v° € X, defines a 2-parameter
semiflow on X with T = R via o(t, 7)v° := v,(-, 7,0°) (cf. [HLI3]).

(4) Criteria for more abstract nonautonomous evolutionary equations to generate
a 2-parameter semiflow can be found in [AM96] and the references therein. (]

We need some further terminology. A self-mapping ® : X — X will be called
nonezpansive (on (X,d)), if d(®z, ®z) < d(z,z) for all z,Z7 € X, and ® will be
called contractive, if d(®x, ®Z) < d(x,Z) for all 2,z € X, x # Z. If P is a nonempty
set, then a family of parameter-dependent self-mappings ®(p) : X — X, p € P, is
called uniformly contractive, if there exists a continuous function ¢ : X x X — R,
such that the following two conditions are fulfilled (cf. [Nes99]):

(i) e(x,z) < d(x,z) for all 2,7 € X, x # Z,
(ii) d(®(p)z, ®(p)Z) < ¢(x,Z) for all p e P, x,z € X.

Assume from now on that the metric space X is a cone V. in a real Banach space
(V,]-I)- Recall that a cone is a nonempty closed convex set V. C V such that
aVy C V4 for a > 0 and Vi N(=V,) = {0}. Moreover, define V¥ := V. \ {0}. Any
cone defines a partial order relation on V via u < v, if v—u € V., which is preserved
under addition and scalar multiplication with nonnegative reals. Furthermore, we
write v < v when v < v and v # v. If Vi has nonempty interior int V, we
say that V is strongly ordered and write v < v, if v —u € int V. A cone V. is
called normal, if there exists a real number M > 0 such that ||u|] < M ||v|| for all
u,v € Vi with v <. In fact, without loss of generality, one can assume the norm
|I]| to be monotone, i.e., ||ul] < ||v||, if u < v; otherwise an equivalent norm on V'
can be found for which M = 1 (cf. [Sch71]). Finally we define the order interval
[u,v] = {w eV :u<w<wv} for u,v € V, u < v. Explicit examples of normal
cones and strongly ordered Banach spaces can be found in, e.g., [Dei85, pp. 219ff].

Although forthcoming results on the boundedness of orbits are stated in the
norm topology on V., , our contractivity condition for 2-parameter semiflows will be
formulated in a different metric topology:

Definition 2.4. (i) The equivalence classes under the equivalence relation de-
fined by u ~ v, if there exists o > 0 such that a~'u < v < au on the cone
V, are called the parts of V.
(ii) Let C be a part of V. Then p: C x C — Ry,

p(u,v) ;= inf {loga catu<o < au} for all u,v € C,
defines a metric on C called the part metric of C. m

Remark 2.5. (1) u and v lie in the same part, if and only if p(u,v) < co.

(2) Clearly int V. is a part and the closure of every part is also a convex cone in
the Banach space V. For a proof of the fact that p is a metric on C' and for other
properties of the part metric we refer to [BB69] or [Chu02, pp. 83-86].
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(8) If the cone V. is normal, then int V is a complete metric space w.r.t. the
part metric p (cf. [Tho63]). L]
Norm distance and the part metric are related by the following inequality:

Lemma 2.6. (a) If Vi is normal with monotone norm, then

o — 3| < (erW) _ep(00) 1) min {|Jo[|, |||} for all v, € V7,

(b) plint Vi xint vy 18 continuous in the norm topology on int V. X int V. [ ]
Proof. See [KN93, Lemma 2.3] for (a), while assertion (b) can be found in [Nes99,
Proof of Theorem 2]. O

3. A LimiT SET TRICHOTOMY

The following theorem is a clear manifestation of the general experience that
contractivity drastically simplifies the possible long-term behavior of a dynamical
system. It is the main result in the abstract part of this paper.

In the autonomous discrete time case a limit set trichotomy was discovered (and
so named) by Krause and Ranft [KR92] and generalized in [KN93] to infinite-
dimensional autonomous difference equations; in addition, [Nes99] considers such
nonautonomous systems.

Theorem 3.1 (Limit Set Trichotomy). Let V. C V be a normal cone, int V. # ()
and assume that ¢ is a 2-parameter semiflow on Vi with the following properties:

(i) There exists a real T > 0 such that for all t,7 € T satisfying T <t— 1, one
has ©(t,7)VE Cint Vi and that the mapping o(t,T)|ins v, is nonexpansive,
(ii) for all (t,v) € T x Vi every bounded orbit v} (v) is relatively compact in
the norm topology.
Then for every 7 € T the following trichotomy holds, i.e., precisely one of the
following three cases applies:

(a) For allv € V the orbits v} (v) are unbounded in norm,
(b) for all v € Vi the orbits v (v) are bounded in norm and for all v € V} we
have lim;_, ||@(t, T)v]| = 0,
(c) for allv € Vi the orbits v (v) are bounded in norm, the w-limit sets w} (v)
are nonempty and for all v € Vi they have a nontrivial accumulation point.
If, moreover, wi (v) C int Vi U{0} for all v € Vi and the mappings p(t,T)|ins v,
are uniformly contractive for all t,7 € T with T <t — T, then in case (c) we have

tlim lp(t, T)vr — p(t, T)v2] =0 for all vi,ve € V. (3.1)
"

Remark 3.2. (1) Condition (3.1) implies that all w-limit sets w} (v), v € V}, are
identical, and it excludes the existence of two different equilibria of . In fact, if
¢ possesses an equilibrium vy € V', then (3.1) guarantees wi(v) = {vo} for all
v € V. In the “autonomous” situation of a homogeneous time scale T and a 2-
parameter semiflow induced by a l-parameter semiflow (cf. Example 2.3(1)), the
assumption w; (v) C int V3 U{0} becomes superfluous. This yields by the invariance
of wl (v) and hypothesis (ii), i.e., w} (v) = ¢(t, 7)wl (v) Cint Vy for T <t — 7.

(2) One can show a stronger limit set trichotomy, if ¢ is induced by a dis-
crete 1-parameter semiflow (cf. [KN93, Theorem 3.1]). More results in the finite-
dimensional situation V; = R% can be found in [KR92, Theorems 1, 2] and related
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topics are contained in [Tak90, Theorem 1.1] or [PT91, Theorem 4.1]. Furthermore,
[Nes99, Lemma 4] provides sufficient conditions for the right-hand side of nonau-
tonomous difference equations to generate a uniformly contractive 2-parameter
semigroup. On general time scales, stronger limit set trichotomies can be found
in [P6t04] under the assumption that ¢ is uniformly ascending.

(8) We also briefly comment the situation when ¢ comes from an ordinary differ-
ential equation (T = R). For autonomous cooperative systems in R?, a prototype
result has been given by [Hir82, Theorem 2.3]. If ¢ comes from a time-periodic
equation, [Smi86, Theorem 3.1] proved a “limit set dichotomy” under certain as-
sumptions on the Floquet multipliers. Similar results are given by [KR92, The-
orems 3, 4]; [Hir88, Theorem 6.8] considers general continuous 1-parameter semi-
flows, and [Chu01, Theorem 3.1] proves a limit set trichotomy for order-preserving
skew-product flows.

(4) Finally, the case of random dynamical systems is considered in [AC01, The-
orem 4.2] and [Chu02, pp. 123-124, Theorem 4.4.1]. m

Proof. Let 7 € T be arbitrary, but fixed. If (a) holds, then obviously (b) and (c)
cannot hold. If (a) does not hold, then there exists a v; € V such that the orbit
v+ (v1) is bounded, i.e., ||¢(t,7)vi| < M for some M > 0 and all t > 7. Now we
show that in this case every orbit v, (v), v € V., is bounded in norm. Let the vector
ve € V4 be arbitrary. Then either (i) v, (v2) is bounded or (ii) there exists a t’ € T
with T < ¢’ — 7 such that p(t',7)ve # 0. In case (ii) it follows from assumption (i)
that (¢, 7)v1, o(t, 7)ve € int V4 for ¢ > t'. The Remarks 2.5 (1) and (2) imply
K = p(e(t',7)v1, (', T)va) < co. Using the 2-parameter semiflow property of ¢
(cf. Definition 2.1(ii)) together with the fact that the mappings (¢, '), t > t' + T,
are nonexpansive, we obtain

plp(t, T)v1, p(t, T)ve) < K fort >t +T.
Consequently, Lemma 2.6(a) provides the estimate
lo(t, Tyvall < ot Tyva = @(t, )orll + llp(t, T)or ]| < 25 M

for all t > ' + T, proving that v (vs) is bounded.

Now we show that either (b) or (c¢) holds. By assumption (ii) the orbits v (v),
v € V4, are relatively compact and therefore w} (v) # ), moreover, the relation
wit(v) = {0} is equivalent to lim;—_,o, ¢(t, 7)v = 0. We show that

wi(vy) = {0} for asinglev; € V; = wi(v)={0} for any v € V.

To this end, we assume that there exist vi,ve,v35 € V}* with w) (v;) = {0} and
v3 € wi(vz) \ {0}. Then there exists a sequence t,, — oo in T with

lim o(tn,7)vy =0 and lim (ty, T)vs =03 ,

n—oo n—oo
where we assume w.l.o.g. that to = 7 and t,,11 —t,, > 7T, which implies by assump-
tion (i) that o(t,,7)v; € intV, for ¢ = 1,2 and n € N. Using the 2-parameter
semiflow property and the fact that the mappings ¢(t,+1,tn), n € N, are nonex-
pansive, we get

P(p(tn, T)v1, p(tn, T)v2) < - < p(p(ts, 7)vr, (1, T)ve) < p(v1,v2)
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for n € N. Choosing N € N such that ||p(t,, T)vi]] < [|@(tn, T)ve| for n > N,
Lemma 2.6(a) implies the contradiction

[ (tns T)va — @(tn, T)v1 I + I (tn, T)va ||
3ep(”1’”2)|\<p(tn,7')vl|| —0 for n — oo,

lp(tn, T)va|| - <
<

proving that either (b) or (c) is true.

It remains to show (3.1) under the additional assumptions that the mappings
o(t,s), T <t— s, are uniformly contractive, and that w}(v) € int Vi U {0} for all
v € V. Assume that (3.1) does not hold. Then there exists vi,v2 € V}, an € > 0
and a sequence t,, — oo in T with

lp(tn, T)v1 — @(tn, T)v2]| > ¢ for allm € N, (3.2)

where we assume w.lo.g. t4 > 7+ T and ¢,4+1 —t, > T, which implies that
©(tn, T)v; # 0 for i = 1,2 and n € N. Since the orbits v, (v1) and v (ve) are rela-
tively compact there exists a subsequence of (t,)necn, which we denote by (¢, )nen
again, such that the limits
v} == lim @(t,, 7)1 and vy = lim @(ty, T)va
n—oo

n—oo

exist. By assumption vf, v3 € int V4 U {0} and by (3.2) vj # vi. We can also rule
out that v; = 0 and v3 € intV,, since in this case, choosing N € N such that
lp(tn, T)v1]l < |l@(tn, T)v2]| for n > N, Lemma 2.6(a) would imply

le(tn, T)v2 = @(tn, T)vrll + ll(tn, T)or
3ePletrmvne(tunv) o Yy || — 0 for n — oo,

l(tn, T)vz]|

ININ

contradicting vi # v5. Hence we have vi,v; € intVy. The 2-parameter semi-
flow property and the fact that the mappings ¢(t,41,t,), n € N, are uniformly
contractive, imply the estimates

p(p(tn, 701, @(tn, T)v2) < c(@(tn, T)v1, @(tn, T)v2) < ...
< plp(ts, T)v, p(ts, T)va) < c(p(ts, T)vi, p(t1, T)v2) -

Since monotone and bounded sequences converge and the mappings p and ¢ are
continuous in (v],v3) by Lemma 2.6(b) and assumption, respectively, we get

p(v1,v3) = e(v1, v3)

in contradiction to c(vf,v3) < p(vf,v3), thus proving that (3.1) holds. O

4. SUBHOMOGENEOUS ORDER-PRESERVING SEMIFLOWS

The results of Section 3 are only helpful, if one has verifiable conditions which
guarantee that a 2-parameter semiflow is nonexpansive w.r.t. the part-metric. Suf-
ficient conditions will be given by the following notions.

Definition 4.1. Let U C V. A 2-parameter semiflow ¢ on V is said to be

(i) order-preserving on U if
uvelU u<v =  pt,7)u<p(tr)v foral 7 <t
(ii) strictly order-preserving on U, if it is order-preserving on U and

wwelu<v = o, 7)u<e(t,7)v forall T <t
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(iii) strongly order-preserving on U, if int V. # 0, if ¢ is order-preserving on U
and

uww el ugv = ot 7u<Ke(t,m)v foralr <t
n

We now introduce a class of order-preserving 2-parameter semiflows which pos-
sess a certain concavity property we call subhomogeneity (sometimes also named
sublinearity). Subhomogeneity means concavity for the particular case in which
one of the reference points is 0, hence asks less and is thus more general than classi-
cal concavity. The autonomous version of this property plays an important role in
many studies and applications, see [Kra64, Kra68], [KN93, KR92|, [Smi86, Tak90]
and the references therein.

Definition 4.2. A 2-parameter semiflow ¢, which is order-preserving on V,, is
said to be

(i) subhomogeneous, if for any v € V and for any « € (0,1) we have

ap(t,T)v < @(t,T)av for all T < t; (4.1)

(ii) strictly subhomogeneous, if we have in addition for any v € int V. the strict
inequality

ap(t,T)v < (t,T)av for all T <. (4.2)

u

Remark 4.3. Inequality (4.1) holds automatically for ¢t = 7 and for « € {0, 1}; it
can be equivalently rewritten as follows: For any v € V. and for any a > 1 we have

p(t, T)av < ap(t,7)v foral 7 <t (4.3)
and ¢(t, 7)av < ap(t, 7)v instead of (4.2), respectively. n

Lemma 4.4. Let ¢ be a subhomogeneous 2-parameter semiflow on V., which is
order-preserving on V.. Then

(a) @ preserves the equivalence relation from Definition 2.4 (i) and is nonexpan-
sive under the part metric on every part C' of V.

(b) If, moreover, ¢ is strictly subhomogeneous on a part C' of V., it is contrac-
tive under the part metric on C. [

Remark 4.5. It is easy to see that a contractive 2-parameter semiflow possesses
at most one equilibrium in C. =

Proof. (a) It follows from (4.1) and (4.3) that, if for v,v € C and some « > 1 the
estimate o 'v < ¥ < a® implies

a to(t, T)v < o(t, 7)o < agp(t,T)v for all T <t
and hence by the definition of the part metric
p(o(t, T)v, o(t, 7)) < p(v,v) for all 7 < t.
(b) Analogously, under the assumption (4.2), it follows
atot, T)v < p(t, )0 < agp(t, v forall t > 7

and this leads to the contractivity of ¢. ]
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5. ORDER-PRESERVING DYNAMIC EQUATIONS

Supplementing our explanations from Section 2, we need some further terminol-
ogy. Iy denotes the identity map on V. The dual cone V] of V, is the set of all
linear and continuous mappings v’ : V. — R such that (v,v") > 0 for all v € V.,
where (v,v’) := v(v) is the duality mapping. If V' is a Hilbert space, then V| can be
identified with a subset of V' through the Riesz representation theorem (cf. [Lan93,
p. 104, Theorem 2.1]). The elements of V} := V| \ {0} are called supporting forms
and we define L(Vy) :={T € L(V): T(V}) C V4}. Any such operator T € L(V})
is called positive, and strictly positive, if Tv = 0 implies v = 0 for any v € V..

First of all, we can characterize the (interior) points of a cone in terms of linear
functionals.

Lemma 5.1. For any v € V the following holds:
(a) ve Vi & (v,0') 20 for allv' € VF,
(b) v eintVy & (v,v') >0 for all v € V. m

Proof. See [Dei85, p. 221, Proposition 19.3]. O

At this point we introduce some further notation concerning the calculus on
time scales (see also [BP01]). Remember that T is a closed subset of R which is
assumed to be unbounded above. o(t) := inf {s € T: t < s} defines the forward
gump operator o : T — T and u(t) := o(t) — t the graininess of T. A point t € T
is called right-dense, if o(t) =t and otherwise right-scattered. Analogously, in case
sup{s € T: s <t} = t, the point ¢t € T is said to be left-dense. It is worth to
mention that all the results of this paper remain true with obvious modifications,
if the time scale T is replaced by a general measure chain (cf. [Hil90]).

Now we will discuss dynamic equations in real Banach spaces of the form

vA = f(t,v), (5.1)

where the right-hand side f: T x V — V satisfies the following assumptions:

(Hp) V is a strongly ordered Banach space with cone V., i.e., int Vi # 0,

(Hy) f:TxV — V is rd-continuously differentiable w.r.t. the second variable,
i.e., the partial derivative Dof : T x V — V is assumed to exist and,
furthermore, is rd-continuous,

(H3) for any 7 € T and v € V the solution t — @(t, 7,v) of (5.1) starting at time
7 in v exists for all 7 < ¢.

Under the condition (H;p) the solutions of (5.1) exist and are unique locally in
forward time (cf. [BPO1, p. 324, Theorem 8.20]), with continuous partial derivatives
Dsp(t,7,v) € LIV), 7 <t,v eV (cf. [P6t02, pp. 47-48, Satz 1.2.22]) and by the
absence of finite escape times, obviously ¢ defines a 2-parameter semiflow on V
(cf. [P6t02, p. 42, Korollar 1.2.19]), where all the results from the previous sections
apply to ¢ under certain assumptions on f.

Lemma 5.2 (Characterization of Forward Invariance). The following three state-
ments are equivalent.
(a) The cone Vi is forward invariant for (5.1).
(b) For every right-dense to € T, any v € OV, v' € VI such that (v,v") = 0
satisfy (f(to,v),v") > 0, and, for every right-scattered to € T any v € Vi
satisfies v+ p(to) f(to,v) € V.
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(¢c) For every to € T it holds
dist(v + hf(to, v), V4)

lim =0, 5.2
hN\p(to) h (5:2)
if v € OV and tg is right-dense, or, v € Vi and tgy is right-scattered. m

Remark 5.3. The condition (5.2) provides a descriptive geometric interpretation:
In a right-scattered point ¢y € T it simply means that v + u(t) f(t,v) € Vi, if
v € V. In a right-dense point ¢y € T, and at a boundary point v(¢y) € 9V, with a
tangent, f(to,v(tp)) and hence the vector v (ty) have to be directed to the interior
of V, i.e., this vector does not point into the outer half space. Both conditions
force the solutions to remain in V. L]

Proof. Let ty € T be arbitrary. We proceed in four steps:

(I) In case of a right-dense ¢y the equivalence of (b) and (c) is shown in [Dei77,
p. 51, Example 4.1]. In a right-scattered to the relation (5.2) obviously holds, if
and only if v + p(to) f(to,v) € Vi, since Vy is closed.

(II) We show that the forward invariance of V. implies (b). Thereto let ¢y € T,
v € V4 be arbitrary and let v be the solution of (5.1) with v(tp) = v. In a right-
scattered ty the invariance of V implies

v+ plto) f(to, v) = v(to) + pulto) f(to, v(to)) = v(a(te)) € Vi .
On the other hand, if ¢, is right-dense and v € 0V, choose v' € V} such that
(v,v") = 0 (cf. Lemma 5.1). Then the assumption (f(to,v),v’) < 0 would imply
the existence of a right-sided T-neighborhood N of ¢y with (v(¢),v") < 0 for t € N
and hence the contradiction v(t) € V; (cf. Lemma 5.1(a)).

(III) In the remaining two steps we show the forward invariance of V; under the
condition (b). For the present, we strengthen (b) to the hypothesis that for any
right-dense point o, every v € 0V, and every v’ € V} such that (v,v") = 0, one
has (f(to,v),v") > 0. Thus, let v denote a solution of (5.1) starting at 7 € T in
v(7) € int V.. If the claim were false, then there exists a finite t* € T given by

t* :=supT, T:={t>71:v(s)eVyforall selrtlr}.

Since the cone V. is closed we have v(t*) € V. The point t* is right-dense, because
otherwise v(o(t*)) = v(t*) + p(t*) f(t*,v(t*)) € V4 would yield the contradiction
t* < o(t*) € T. Moreover, v(t*) € 0V, because the assumption v(t*) € int V4
would imply the existence of a neighborhood U C Vj of v(t*) and a T-neighborhood
N of t* with v(t) € U for t € N, since v is continuous as the solution of (5.1).
This again contradicts the definition of ¢*. Now by Lemma 5.1(b) there exists a
supporting form v’ € V such that (v(t*),v') = 0 and by definition ¢* is the time
when the solution v leaves V,, which by Lemma 5.1(a) gives us (v(t),v’) < 0 for

t from a right-sided neighborhood of ¢*. One finds <%, v’> < 0 and in the

limit ¢\, t*, we therefore obtain the contradiction
0> (W2(t"),v") = (f(t", v(t)),v) > 0

with a view to the above (strengthened) hypothesis.

(IV) The verification of the assumption under the general hypothesis yields as
follows: For arbitrary reals e > 0 and some fixed e € int V. one can apply the above
step (III) to the solution v, of the dynamic equation

v® = f(t,v) +ce
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and consequently, for any 7 € T and vy € V4 one obtains v.(t) € V; for 7 < ¢,
provided that v.(7) € V4. Now let v denote the solution of (5.1) satisfying v(7) =
Ve(7). One should bear in mind that v, () is continuous in (e,t) (cf. [P6t02, p. 39,
Satz 1.2.17]) and consequently uniformly continuous on the set K x [0, g], where
K C [r,00) is a compact T-interval and g > 0 arbitrary. By a standard argument,
the solutions v, converge to v uniformly on K as ¢ \, 0. O

Corollary 5.4. Let V. CV be a normal cone and assume that
(H3) in any left-dense to € T there exists a left-sided T-neighborhood Ny(to) of
to such that f(s,0) € Vi for all s € No(to).
Then V7 is forward invariant for (5.1), if and only if every right-dense to € T,
any v € OV, v' € VI such that (v,v") = 0 satisfy (f(to,v),v") >0, and, for every
right-scattered to € T any v € V' satisfies v + p(to) f(to,v) € V. n

Proof. We have to show two directions:
(=) If V} is a forward invariant set, then the assertion can be shown analogously
to step (II) in the proof of Lemma 5.2.
(«<=) Using the induction principle (cf. [BPO01, p. 4, Theorem 1.7]) we deduce the
statement
Alt):v#0 =  (t,7)v#0 forall T <t
Above all, choose v € V arbitrarily.
e A(7) obviously holds since (7, 7)v = v.
e Let t > 7 be right-scattered and A(¢) be true. Then by the 2-parameter
semiflow property and the assumption one immediately gets

p(o(t), T)v = @(t, 7)v+ u(t) f(t,o(t, T)v) # 0
i.e., A(c(t)) holds.

e Let ¢ > 7 be right-dense and assume that A(t) is valid. Then ¢(t,7)v # 0
implies that (s, 7)v # 0 in a right-sided T-neighborhood N of ¢. Hence
A(t) yields (s, 7)v # 0 for s € N.

e Let t > 7 be left-dense and A(s) be true for s < t. We want to show A(t)
and proceed indirectly, i.e., assume that we have (¢, 7)vg = 0 for some
vo € V. Since (H3) holds, we get from Lemma 5.2 that

0 < w(s,T)voz—/ F(psp(p,T)ve) Ap <

< [ U0~ fpplp )] Bp for all s € No(t)

and Hypothesis (H;) implies that C(p) := supyejo 11 [[D2f (p, heo(p, 7)vo) |l
exists as an rd-continuous function in p € Ny(t). By assumption the cone
V4 is normal and therefore

lo(s, 7)ol < /Wuwn»—ﬂmwmmwwnApé

< 7/ C(p) lle(p, Tvo|| Ap  for all s € Ny(t).
t

Due to the limit relation lim, ~ ;(t) = 0 one can choose a left-sided T-neigh-
borhood N C Ny(t)N|r, t]y such that we have C(p)u(p) < 1 for p € N\{t}.
Thus —C(p) is positively regressive on N\ {¢} and from the Gronwall lemma
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(cf. [BPO1, p. 256, Theorem 6.4]) we obtain ¢(s,7)vg = 0 for s € N. This
contradicts A(s).

Hence the proof of Corollary 5.4 is complete. O

Before stating the next result we refer to [P6t02, p. 54, Definition 1.3.5] for the
definition of the transition operator ®4(t,7) € L(V) of a linear dynamic equation

v® = A(t)v (5.3)

in the nonregressive case. Now the forward invariance of V w.r.t. (5.3) is a neces-
sary and sufficient condition for the positivity of ® 4 (¢, 7).

Corollary 5.5. Let A : T — L(V) be rd-continuous and t,7 € T. Then the
following statements are equivalent:

(a) ®a(t,7) € L(VL) for 7 <.

(b) For every right-dense t > 7, v € OV, and v' € VI satisfying (v,v") = 0,
the inequality (A(t)v,v") > 0 holds, and, moreover, for every right-scattered
t>71,veVy the inclusion v + u(t)A(t)v € Vi holds.

(¢) For every t > 7 it holds

dist(v + hA(t)v, V)

lim =0
h\lu(t) h 7
if v e dVy and t is right-dense, or, v € Vi and t is right-scattered. [

Proof. Evidently Lemma 5.2 applies to (5.3) and therefore V. is forward invariant
w.r.t. (5.3), which, in turn, yields ®4 (¢, 7))V} C V; for 7 < t. O

Adopting terminology introduced in [Hir82], we denote a nonvoid subset U C V/
as V -conver, if for any u,v € U such that u < v, the whole line segment between
w and v is contained in U, i.e., u+ h(v —u) € U for h € [0,1]. Evidently the cone
V, itself is Vi-convex. With all the above preliminaries at hand, we can proceed
to an appropriate definition of cooperativity.

Definition 5.6. Let U C V be Vi-convex. A dynamic equation of the form (5.1)
is called

(i) Vi-cooperative on U, if for all right-dense t € T, u € U, v € 9V, and
v" € VI such that (v,v') = 0, the inequality (v', Do f(t,u)v) > 0 holds and,
moreover, if for every right-scattered t € T, u € U, v € V, the inclusion
v+ p(t)Daf(t, u)v € V4 holds,

(ii) strictly V. -cooperative on U, if (5.1) is Vi -cooperative on U, satisfies (H3),
and if for every right-scattered t € T, u € U, v € V, the implication
v+ p(t)Daf(t,u)v =0 = v =0 holds. ]

Remark 5.7. Fix 7 € T and v € U arbitrarily.

(1) Since the partial derivative Dsp(-,7,u) : [1,00)p — L(V) solves the varia-
tional equation

X2 = Dof(t,p(t, 7,u) X (5.4)

to the initial condition X (7) = Iy on [1,00) (cf. [P6t02, pp. 47-48, Satz 1.2.22]),
by Corollary 5.5 the dynamic equation (5.1) is V-cooperative on the set U, if and
only if Dsp(t,7,u) € L(V,) holds for 7 < ¢ and u € U.

(2) Assume that V. is normal and that (5.1) satisfies (H3). By using Corol-
lary 5.4 instead of Lemma 5.2 in the proof of Corollary 5.5, it is not difficult to
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see that (5.1) is strictly Vi -cooperative on U, if and only if D3p(t, 7, u) is strictly
positive for 7 < t and v € U. [

Example 5.8. Let V}, = Ri be the nonnegative orthant in the Banach space
V =R Then £(V,) is (isomorphic to) the set R‘iXd of nonnegative matrices. A
mapping f : T x R — R? is Ri—cooperative, if in each right-dense point t the
off-diagonal elements of Dof(t,u) € R?*? are nonnegative and, if in each right-
scattered point ¢t the matrix Ipa + p(t)Daf(t,u) is nonnegative for every u € U.
In the case of ordinary differential equations, where T = R consists of right-dense
points, this definition coincides with the one from [Hir82].

Remark 5.9 (Euler discretization of cooperative ODEs). Consider an R%-coop-
erative ordinary differential equation © = f(¢,v). Then according to Example 5.8
its Euler discretization v(t,+1) = v(tn) + (tny1 — tn) f(tn, v(ts)) on a discrete time
scale T = {t"}neNo with ¢,41 > t,, is also ]Rff_—cooperative if the matrix Iga +
(tnt1 — tn)Daf (tn,w) is nonnegative. Since the off-diagonal elements of Dy f(t, u)
are nonnegative, this is true, if the diagonal entries a;;(t,,u), ¢ = 1,...,d, of
the matrix Dsf(t,,u) satisfy the condition a;;(t,,u) > M% with the stepsize
w(ty) = tny1 — ty, of the Euler discretization.

Theorem 5.10 (Miiller’s Theorem). Let U C V be V. -convez.
(a) If (5.1) is Vi-cooperative on U, then ¢ is order-preserving on U.
(b) Conversely, if ¢ is order-preserving on U, then the dynamic equation (5.1)
1s V. -cooperative on U. [

Proof. (a) Choose u,v € U with u < v and because of the V-convexity of U one
has u + h(v —u) € U for h € [0,1]. Then the mean value theorem (cf. [Lan93,
p. 341, Theorem 4.2]) yields

1
o(t,7,v) —p(t, T,u) = / Dso(t, 7, u+ h(v—u))(v —u)dh forall 7 <t
0

and since Dsp(t, 7,w) € L(V4), w € U, we obtain Dsp(t,7,w)(v —u) € V4. Now
convexity of the integral implies the claim ¢(¢, 7,v) < @(t, 7, u).

(b) Using the fact that Dsp(t, 7,v) solves the dynamic equation (5.4) in £(V.),
we get the assertion (b) with a view to Corollary 5.5. O

The next part of this section is dedicated to sufficient conditions for strictly and
strongly order-preserving mappings. Since we have not assumed regressivity of f
(cf. [BPO1, pp. 321-322, Definition 8.14(ii)]) the mapping ¢(¢,7) : V. — V, 7 < ¢,
needs not to be a homeomorphism. Hence the arguments of [Smi96, pp. 32-33,
Proof of Proposition 1.1] do not apply directly.

Corollary 5.11. Let U C V be Vi -convex. If for a Vi-cooperative system (5.1)
on U one of the following conditions

(i) Iv + u(t)f(t,:) : V — V in one-to-one on U for anyt € T,

(ii) Iy + p(t)f(t,:) : V = V is strictly order-preserving on U for any t € T
holds, then ¢ 1is strictly order-preserving on U. ]
Proof. We proceed in two steps:

(I) To show that (i) implies (ii), fix arbitrary ¢t € T, v € U and abbreviate
F(u) :==u+ u(t)f(t,u). Observing the fact

p(o(t), hu=u+pt)f(t,u) = F(u), (5:5)
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it is evident that F' is strictly order-preserving on U.
(II) We apply the induction principle (cf. [BP01, p. 4, Theorem 1.7]) to the
statement

Aty :u<v = ¢, T)u <@, 7)v forall 7 <t.
First of all, choose u,v € U, u < v arbitrarily.
o A(7) is clearly satisfied since (7, 7)u = u.

e Lett > 7 beright-scattered and A(t) be true. Then by 2-parameter semiflow
property and (ii) one obtains

(3:5) ot T)u 4 p(t) f(t, o(t, 7)u) <

< et o+ p®)f(t et m)v) =" e(o(t), v,

i.e., A(c(t)) holds.

e Let t > 7 be right-dense and assume that A(¢) is valid. Then there exists a
T-neighborhood N of ¢ such that ¢(s,t) : V' — V is a homeomorphism for
s € N and in particular one-to-one. Hence A(t) yields (s, T)u < ¢(s,T)v
for s € N.

e Let t > 7 be left-dense and A(s) be true for s < ¢. Similar to the above we
get that (¢, s) : V — V is a homeomorphism for s in some T-neighborhood
of ¢, which gives us (¢, T)u < @(t,T)v, i.e., A(t) is valid.

p(o(t), m)u

Thus the proof is complete. (|

Corollary 5.12. Let U C V be Vi -convex. If for a Vi-cooperative system (5.1)
on U one of the following conditions

(1) Iy + p(t)Daf(t,u) € L(V) is onto for any uw € U and any t € T,

(ii) Iv + p(t)f(t,-) : V — V is strongly order-preserving on U for anyt € T

holds, then ¢ is strongly order-preserving on U. ]

Remark 5.13. In the case of ordinary differential equations, where T = R consists
of right-dense points, we have p(t) = 0 on T, and both conditions (i) and (ii) in
Corollary 5.11 and 5.12 are dispensable. Therefore, solutions of V. -cooperative
ODEs are always strictly and strongly order-preserving. L]

Proof. We proceed in two steps again:

(I) To show that (i) implies (ii) fix arbitrary ¢t € T, u,v € U with v < v and
use the notation from the proof of Corollary 5.11. Then Theorem 5.10(a) yields
that F' maps the order-interval [u,v] into the order-interval [F(u), F(v)]. Now we
prove that the latter set has nonempty interior, which guarantees F(u) < F(v).
To do so, pick some w € int[u,v] arbitrarily. Using the hypothesis (i) we see
that F must be locally open in a neighborhood of w by the Surjective Mapping
Theorem (cf. [Lan93, p. 397, Theorem 3.5]). Consequently, we obtain the inclusion
F(w) € int[F(u), F(w)] and F is strongly order-preserving.

(II) We apply the induction principle (cf. [BP01, p. 4, Theorem 1.7]) to the
statement

A)ru<gv = e, nu<p(t,7)v forall 7 <t.

First of all, choose u,v € U, u < v arbitrarily.

o A(7) is clearly satisfied since (7, 7)u = u.
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e The implication A(t) = A(o(t)) for right-scattered ¢ > 7 results as in
the corresponding part of the proof of Corollary 5.11 with the relation <
replaced by <.

o Let t > 7 be right-dense and assume that A(¢) is valid. Then there exists
a T-neighborhood N of ¢ such that ¢(s,t) : V' — V is a homeomorphism
for s € N. Since [p(t, T)u, p(t, 7)v] has nonempty interior by the induction
hypothesis A(t), also int[p(s, 7)u, ¢(s,7)v] # 0@ holds for s € N, which is
equivalent to ¢(s, T)u < @(s,T)v.

e Let t > 7 be left-dense and A(s) be true for s < t. Similar to the above we
get that ¢(¢,s) : V — V is a homeomorphism for s in some T-neighborhood
of ¢, which, in turn, yields ¢(t, 7)u < @(t, 7)v, i.e., A(t) is valid.

Thus the proof is complete. O

So far, Theorem 5.10 provides a criterion that the solution operator ¢ of (5.1) is
order-preserving. In order to apply Theorem 3.1, and in reference to Lemma 4.4,
we need additional conditions for the subhomogeneity of ¢.

Lemma 5.14. Let (5.1) be Vy-cooperative on V. Then

(a) @ is subhomogeneous, if and only if
Dsp(t,T,v)v < @(t,7,v) forallT <t,ve Vi (5.6)
(b) ¢ is strictly subhomogeneous, if

Dsp(t, 7, v)v < p(t,1,v) forallT <t , veV].

Proof. (a) Let 7 <t be fixed in T. Consider for v' € V} and v € V4 the function
Gvrw : (0,00) = R, ¢y () := L (p(t,7)aw,v’). We show that ¢ is subhomoge-
neous, if and only if ¢, , is decreasing for all v" € V¥, v € V:

(=) If  is subhomogeneous, then for arbitrary 0 < « < 3 there holds the inequality
Fe(t,7)Bv < p(t,T)aw, ie., we have %go(tm)ﬂv < Lo(t,7)av. By Lemma 5.1(a)
this implies that ¢, , is decreasing.

(<) Conversely, let ¢, ., be decreasing in 0 < @ < 1. Then ¢, (1) < ¢y (),
and since v/ € V} was arbitrary, we readily obtain ¢(t,7)v < L(t,7)av from
Lemma 5.1(a).

By assumption on f, the function ¢, , is differentiable and the chain rule implies

<aD390(t7 7, CU'U)’U B QD(t7 T, CM)), ’U/>

5 for all o > 0.

¢;)’,v(a) =

Thus the subhomogeneity of the mapping ¢ is equivalent to the property that
(aDsp(t, T,0v)v — p(t, T, av),v’) <0, i.e., by Lemma 5.1(a) to the condition (5.6).

(b) Now let 7 < t be arbitrary points in T. Along the same lines as in (a), one
shows that ¢ is strictly subhomogeneous, if and only if the mapping ¢, , is strictly
decreasing. This property, in turn, is necessary for qS;,,U(a) < 0, 0 < «, and by
Lemma 5.1(b) we obtain the assertion. O

(%

Theorem 5.15. Let (5.1) be V4 -cooperative on V.. Then

(a) @ is subhomogeneous, if

Dyf(t,v)v < f(t,v) forallt €T, ve Vy; (5.7)
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(b) ¢ is strictly subhomogeneous, if, moreover, (5.1) is strictly Vi -cooperative
on Vi and

Dy f(t,v)v < f(t,v) foralltcT,veV}.

Proof. Let 7 <t and u € V; be fixed.
(a) We are going to show that the mapping A : [1,00)p — V, A(t) := ¢(t, 7, u) —
Dsp(t, 7,u)u has values in the cone V. Thereto consider

A B f (ot 7 ) = Daf(t p(t 7 u) Dap(t, 7 u)u =
- sz(t,(p(t,T, u)>A(t) +l(t)

with I(t) := f(t,@(t,7,u)) — D2 f(t, (t, 7,u))e(t, 7,u). Since [ : [1,00)p — V is rd-
continuous and since D3¢(-, 7, u) solves (5.4) w.r.t. the initial condition X (7) = Iy,
the variation of constants formula (cf. [P6t02, p. 56, Satz 1.3.11]) yields

A@=/WNJ@W@M,

where W, (t,7) € L(V) is the transition operator of (5.4). By assumption, (5.1)
is Vj-cooperative on V; and similarly to Remark 5.7(1) one sees the inclusion
U, (t,7) € L(V}) for 7 < ¢t. Furthermore, (5.7) implies [(t) € V, and by the convex-
ity of the Cauchy-integral on T it follows A(t) € V. for 7 < ¢. Now Lemma 5.14(a)
leads to the assertion.

(b) Proceed like in the proof of (a). Here Remark 5.7(2) yields that U, (¢, 7) is
strictly positive and the assertion follows from Lemma 5.14(b). O

6. APPLICATION: SYMBIOTIC INTERACTION

In the following last section we demonstrate the importance of the limit set
trichotomy from Theorem 3.1 in an application from biology within the calculus on
time scales. Thereto we restrict our considerations to time scales of the form

T = U [Tnatn]v

n&eNp

where (7,)neNg, (tn)nen, are real sequences with lim, oo 7, = limy, ooty = 00
and 7, < t, < Th41 for all n € Ny. Hence we have a continuous ODE dynamical
behavior of (5.1) on the intervals [7,,,t,], n € Ny, while the dynamic on the “gaps”
(tn, Tnt1) is discrete, i.e., difference equation-like. For technical reasons we addi-
tionally assume that the differences 7,11 — 7,, n € Ny, are bounded above by some
real T' > 0.

Consider a symbiotic interaction between d > 2, e.g., insect populations, i.e., an
interaction that results in a benefit between the populations. The life span of each
population is given by the interval [7,,t,], n € Ny, which can be interpreted as a
summer period. Suppose that just before the populations die out, eggs are laid at
time ¢ = ¢,, and hatch after the winter period (¢,,7,+1) at time ¢t = 7,,41. During
the winter, a certain amount of eggs dies, but to prevent each species from dying
out, an exterior influence adds additional eggs. If v;(t,) > 0, n € Ny, denotes the
biomass of the ith, ¢ = 1,...,d, population at time ¢ = t,,, we model this behavior
over the winter periods with the equations

Vi(Tnt1) = qi(tn)vi(tn) + pi(tn) foralli=1,...,d (6.1)
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and n € Ny, where ¢;(t,) € [0,1] describes the natural decay in the winter and
pi(tn) > 0 the external “seed”. The equation (6.1) guarantees that we have the
inclusion v(7,11) € int R% after each winter — independent of v(t,) € RL. For the
continuous growth we lean on [KR92] and consider the ODEs

U = v Fy(v,t) foralli=1,...,d, (6.2)

on the intervals [1,,t,], n € Ny, where the mappings F; : R? x T — R are continu-
ously differentiable in each state space variable vy, ..., vq. Obviously the boundary
ORY is forward invariant w.r.t. (6.2) and therefore any solution of (6.2) cannot leave
the standard cone ]Ri for times t € [7,,,t,], n € Nyg. Combining both situations, we
arrive at a dynamic equation (5.1) with right-hand side f = (fi,..., fq4) and

. v; Fy(v,t) for t € [, 1)
fz( ’U) T qi‘(f()t)_l’l)i + IZ((tt)) for t = tn .

If we assume that the ODE (6.2) has no finite escape times, then the mapping f
satisfies the assumptions (H;)-(Hs). In addition, the standard cone R is forward-
invariant w.r.t. (5.1).

As a canonical state space for (5.1) we consider the cone V4 = R%, which
evidently satisfies the assumption (Hp), and is Ri—convex, since the nonnegative
orthant is convex. Under the assumption

(C) DjF;(u,t)>0forallu e RY, i+ j, and t € Unen, s tn)s

the system (5.1) is R4 -cooperative on R% and we obtain from Theorem 5.10(a)
that its solution ¢ is order-preserving. On the other hand, if we suppose

(S) Z;l:l v;D;Fi(v,t) <0 forallv e RY, i=1,...,d and t € U, ey, [Tn:tn),

then using Theorem 5.15(a) one can show that ¢ is also subhomogeneous. So, due
to Lemma 4.4(a), ¢(¢t,7), 7 < t, must be nonexpansive w.r.t. the part metric on Ri.
Finally, since each T-interval of length greater or equal than 7 contains a right-
scattered point, we have ¢(t,7,v) € int RY for T < t—7 and v € R%. Therefore the
assumptions of Theorem 3.1 are satisfied and our limit set trichotomy applies. In
particular, if p; is bounded away from zero, we can exclude case (b) of Theorem 3.1
and all solutions of the general nonautonomous dynamic equation (5.1) are either
unbounded, or bounded with nonempty w-limit sets.

Example 6.1 (Kolmogorov systems). A particularly relevant special case of the
symbiotic interaction discussed above, are so-called Kolmogorov systems which have
the following biological interpretation (cf. [FS95]): Think of a hierarchy of species
v1, ..., 04, where v;(t) is the biomass of the ith species. In this hierarchy, v; interacts
only with v;_; and v;41. Such a hierarchy may occur in steep mountain side or in
a lake, where each population dominates a specific altitude or depth, respectively,
but is obliged to cooperate with other populations in the (narrow) overlap of their
zones of dominance. So we only modify the law for the continuous growth and
consider the system of ODEs

0y =v1 F1 (v, v2,1)
1-)1' :’UiFi(viflgvi,’Ui+17t) for all i = 27...,d— 1 (63)
0q=v4Fq(va—_1,vq,t)
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to describe the behavior on the intervals [7,,t,], where the mappings Fi, ..., Fy
are continuously differentiable in their state space variables. Furthermore, the
conditions (C) and (5) reduce to

Dy Fy(v1,vs,t), D1 Fi(v1,v2,v3,t), D3F;(v1,va,v3,t), D1 Fg(vy,v2,t) > 0 for
all vi,v9,v3 €Ry, i =2,...,d—1,and t € U, ¢y, [Tn, tn)s

25:1 v;D;Fi(v1,v2,t) < 0 and 23:1 v;D; Fi(v1,v2,v3,t) < 0, as well as
Z?:l v;DjFq(vi,ve,t) < 0 for all v1,v9,v3 € Ry, @ = 2,...,d -1, and
te UneNo [Tnatn)v

respectively. They guarantee that the right-hand side of (5.1) is R%-cooperative
and generates a subhomogeneous 2-parameter semiflow. Consequently our limit set
trichotomy from Theorem 3.1 applies. Explicit biological systems modeled by (6.3)
can be found in [FS95]. m
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