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Abstract

The property that a nonlinear operator on a Banach spaces preserves an order
relation, is subhomogeneous or order concave w.r.t. an order cone has profound
consequences. In Nonlinear Analysis it allows to solve related equations by means
of suitable fixed point or monotone iteration techniques. In Dynamical Systems the
possible long term behavior of associate integrodifference equations is drastically
simplified. This paper contains sufficient conditions for vector-valued Urysohn inte-
gral operators to be monotone, subhomogeneous or concave. It also provides condi-
tions guaranteeing that these properties are preserved under spatial discretization
of particularly Nyström type. This fact is crucial for numerical schemes to converge,
or for simulations to reproduce the actual behavior and asymptotics.
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1 Introduction

Urysohn operators [11, pp. 158ff] are a natural generalization of Fredholm
integral operators and thus also known as nonlinear Fredholm operators [14].
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For the purpose of this paper they are of the form

F(u) :=
∫

Ω
f(·, y, u(y)) dµ(y) (F )

with a vector-valued kernel function f , a compact domain Ω and a measure µ
fulfilling µ(Ω) <∞. They represent an important species in the zoo of integral
equations. For instance, nonlinear elliptic BVPs (provided Green’s function is
known, cf. [11, pp. 181ff]) can be reformulated as fixed point equations involv-
ing an Urysohn operator. Besides being theoretically relevant, their applica-
tions are wide-spread and range from fluid dynamics [5, pp. 419ff, Chap. 10]
over theoretical ecology [10] to system identification [13].

A canonical approach to solve nonlinear integral equations involving Urysohn
operators are monotone iteration techniques (see [14, pp. 163ff, Chap. 11]
or [15, pp. 269ff, Chap. 7]). This rather simple constructive method merely
requires F to preserve an order relation induced by a cone in their state space,
which is typically a Banach space of integrable functions. Beyond preserving
such an order relation, additional properties like subhomogeneity or concavity
do further simplify the solution behavior of problems involving an operator
F (see [9] or [16, pp. 43, Chap. 3]). Finally, we also remark that several fixed
point results are based on related monotonicity assumptions [1].

For this reason it is a relevant task to provide conditions on the kernel func-
tions f guaranteeing (different degrees of) monotonicity, subhomogeneity or
concavity for an Urysohn operator F. While it is clear that the monotonicity
of a real-valued f in the third argument extends to F, we do address Rd-
valued functions f and order-relations determined by arbitrary cones in Rd.
This framework is well-motivated from applications e.g. in theoretical ecology
when modeling various relationships between different species.

Another important question is whether the mentioned structural properties
of an Urysohn operator F persist in simulations or numerical computations?
This aspect is crucial in simulations to capture the actual behavior. In the
second part of the paper we establish that monotonicity, subhomogeneity and
concavity are preserved under Nyström discretizations

Fn(u) :=
qn∑
j=0

wjf(·, ηj, u(ηj)) (F n)

of F (see [2, Sect. 3]), where the real weights wj and the qn ∈ N nodes ηj ∈ Ω
are determined by a numerical quadrature (or cubature) rule (cf. [4,7]). In
doing so, we focus on persistence issues and refer to e.g. [6] for aspects like
consistency, convergence or numerical stability.

Concerning related literature we refer to [12] focussing on linear integral opera-
tors and suitable discretizations including projection methods. On an abstract
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level, a projection method is a (linear) projection of the operator values F(u)
onto a finite-dimensional space. For this reason, the results obtained in [12]
also apply in our present setting and need not to be discussed again.

The paper is structured as follows: As starting point we formulate conditions
ensuring the well-definedness of Urysohn operators on the space of continu-
ous functions over the compact set Ω. Sec. 2 presents sufficient conditions on
the kernel functions f to imply a monotone, subhomogeneous or order con-
cave Urysohn operator F, possibly in a strict or strong way. These properties
actually carry over from the kernel functions f with values in Rd to the non-
linear integral operators F mapping into the continuous Rd-valued functions.
Persistence of these properties under Nyström discretization is established in
Sec. 3, provided the chosen integration rules for Fn have positive weights. This
property is satisfied for a large class of numerical methods and, besides guaran-
teeing well-posedness and computational stability [4,7], yields another reason
for the popularity of methods with positive weights. In Sec. 4 we provide some
quick information on semi-discretizations based on collocation, since the essen-
tial issues were settled in [12] already. The final Sec. 5 illustrates our results by
means of monotone iteration techniques applied to Urysohn operators. First,
the effect of different quadrature rules when solving a system of monotone
nonlinear integral equations is studied. Moreover, we approximate periodic
solutions of generalized Beverton-Holt integrodifference equations. Finally, for
the convenience of the reader, an appendix collects basic and necessary results
on cones in Banach spaces and monotone, subhomogeneous or order concave
mappings.

Notation

We write R+ := [0,∞) for the nonnegative reals. Norms on finite-dimensio-
nal spaces are denoted by |·| and 〈〈x, y〉〉 :=

∑d
i=1 xiyi is the Euclidean inner

product on Rd. For subsets U of a metric space (X, d), U◦ is the interior
and U the closure. Then we abbreviate Br(x) := {y ∈ X : d(y, x) < r} and
B̄r(x) := {y ∈ X : d(y, x) 6 r} for the open resp. closed ball in X of radius
r > 0 and center x ∈ X. The distance of x from a set U is

distU(x) := inf
u∈U

d(x, u)

and we define Br(U) := {y ∈ X : distU(y) < r} as r-neighborhood of U .

On a Banach space X, Ll(X) denotes the normed space of all bounded l-linear
maps T : X l → X, l ∈ N, supplemented by L0(X) := X and L(X) := L1(X)
for the bounded linear maps on X. We write N(S) := S−1({0}) for the kernel
of S ∈ L(X).

Unless otherwise noted, suppose (Ω,A, µ) is a measure space with µ(Ω) <∞,
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where Ω 6= ∅ is a compact metric space and the σ-algebra A contains the
Borel sets. The µ-integral of a µ-measurable function u : Ω → Rd is denoted
by

∫
Ω u(y) dµ(y) and satisfies

〈〈
∫

Ω
u(y) dµ(y), y′〉〉 =

∫
Ω
〈〈u(y), y′〉〉 dµ(y) for all y′ ∈ Rd. (1.1)

For compact subsets Ω ⊂ Rκ and the κ-dimensional Lebesgue measure µ = λκ
the resulting Lebesgue integral is abbreviated as

∫
Ω u(y) dy :=

∫
Ω u(y) dλκ(y).

The set C(Ω)d of all continuous functions u : Ω → Rd is a real Banach space
when equipped with the maximum norm ‖u‖∞ := maxx∈Ω |u(x)|. Throughout
the text, Y+ ⊂ Rd denotes a fixed cone inducing the relations 6, < and � in
Rd (cf. (A.1) and App. A for the related terminology); Y ′+ is the dual cone.
Last but not least, on the cone (cf. [12, Lemma 2.2])

C(Ω)d+ :=
{
u ∈ C(Ω)d : u(x) ∈ Y+ for all x ∈ Ω

}
and for functions u, ū ∈ C(Ω)d we introduce the relations

u � ū :⇔ ū− u ∈ C(Ω)d+,

u ≺ ū :⇔ ū− u ∈ C(Ω)d+ \ {0} ,
u ≺≺ ū :⇔ ū− u ∈ (C(Ω)d+)◦;

note that Y ◦+ 6= ∅ ensures (C(Ω)d+)◦ 6= ∅ (cf. [12, Lemma 2.2] again).

Lemma 1.1 (cf. [12, Lemma 2.3]) If u, ū ∈ C(Ω)d, then:

(a) u � ū ⇔ u(x) 6 ū(x) for all x ∈ Ω ⇔ 〈〈u(x), y′〉〉 6 〈〈ū(x), y′〉〉 for all
x ∈ Ω and y′ ∈ Y ′+.

(b) u ≺ ū⇔ u(x) 6 ū(x) for all x ∈ Ω and u(x0) < ū(x0) for some x0 ∈ Ω.
(c) If Y+ is solid, then u ≺≺ ū ⇔ u(x) � ū(x) for all x ∈ Ω ⇔ 〈〈u(x), y′〉〉 <
〈〈ū(x), y′〉〉 for all x ∈ Ω, y′ ∈ Y ′+ \ {0}.

2 Urysohn integral operators

This section studies Urysohn operators

F : U → C(Ω)d, F(u) :=
∫

Ω
f(·, y, u(y)) dµ(y), (F )

for which we are about to establish monotonicity, subhomogeneity and order
concavity in various degrees. This essentially means to demonstrate that corre-
sponding properties of the kernel functions f(x, y, ·) carry over to the integral
operators (F ). For this endeavor, we impose
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Hypothesis 2.1 Let Z ⊆ Rd be nonempty. Assume that f : Ω2 × Z → Rd

fulfills the following Carathéodory conditions with l ∈ {0, 1}:

(U l) Dl
3f(x, ·, z) : Ω → Ll(Rd) is µ-measurable for all x ∈ Ω, z ∈ Z, for every

r > 0 there exists a µ-measurable function βlr : Ω2 → R+ satisfying

sup
x∈Ω

∫
Ω
βlr(x, y) dµ(y) <∞,

such that for µ-a.a. y ∈ Ω it is
∣∣∣Dl

3f(x, y, z)
∣∣∣ 6 βlr(x, y) for all x ∈ Ω,

z ∈ Z ∩ B̄r(0) and Dl
3f(·, y, ·) : Ω × Z → Ll(Rd) exists as continuous

function for µ-a.a. y ∈ Ω. Furthermore, for every r > 0 there exist a µ-
measurable function γlr : Ω3 → R+ satisfying

lim
x→x0

∫
Ω
γlr(x, x0, y) dµ(y) = 0 for all x0 ∈ Ω,

such that for µ-a.a. y ∈ Ω one has
∣∣∣Dl

3f(x, y, z)−Dl
3f(x̄, y, z)

∣∣∣ 6 γlr(x, x̄, y)

for all x, x̄ ∈ Ω, z ∈ Z ∩ B̄r(0).

If we assume Hypothesis (U0), then [11, pp. 164–165, Prop. 3.1] yields that
the Urysohn operator (F ) is well-defined on

U :=
{
u ∈ C(Ω)d : u(x) ∈ Z for all x ∈ Ω

}
. (2.1)

In particular, for f : Ω2 × Rd → Rd of the form f(x, y, z) := k(x, y)z with a
kernel k : Ω2 → L(Rd), then F becomes a Fredholm operator and Hypothesis
(U0) ensures its well-definedness and continuity (cf. [12, Hypothesis (L)]).

Remark 2.2 (differentiability on Z) Since we imposed no openness on the
set Z ⊆ Rd, the existence of the partial derivative D3f is understood as follows:
There is an open superset Z̃ ⊇ Z and an extension f̃ : Ω2×Z̃ → Rd of f whose
partial derivative D3f̃ exists with restrictions f,D3f to Ω2 × Z satisfying the
above assumptions with l ∈ {0, 1}.

For later reference we state basic properties of the domain U :

Lemma 2.3 (the set U) Let U ⊆ C(Ω)d be defined in (2.1).

(a) If Z is open (or closed), then also U is open (resp. closed).
(b) If Z is Y+-convex, then also U is C(Ω)d+-convex.

PROOF. (a) Let u0 ∈ U for an open set Z. This means u0(x) ∈ Z for all
x ∈ Ω and whence Z0 := u0(Ω) ⊆ Z is a compact subset of the open set Z.
With the closed complement F := Rd \ Z consider the continuous distance
function distF : Z0 → R+. Due to Z0 ∩ F = ∅ it is always positive and thus
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ρ := minζ∈Z0 distF (ζ) > 0 holds. If z ∈ Bρ(Z0), then |ζ − z| < ρ 6 distF (ζ) is
true for some ζ ∈ Z0, consequently z 6∈ F and therefore Bρ(Z0) ⊆ Rd \F = Z.
But this guarantees that u(x) ∈ Z for all x ∈ Ω and u ∈ Bρ/2(u0), i.e. u0 is an
interior point of Z. The corresponding assertion for closed Z is evident.
(b) Given u, ū ∈ U with u � ū, one has u(x), ū(x) ∈ Z and (ū−u)(x) ∈ Y+ for
x ∈ Ω. Since Z is Y+-convex, we obtain from u(x) + θ(ū−u)(x) ∈ Z for x ∈ Ω
that 0 � u+ θ(ū− u) for all θ ∈ [0, 1] holds and thus U is C(Ω)d+-convex. 2

The remaining section studies in which sense structural properties of kernel
functions f such as monotonicity, subhomogeneity and order concavity extend
to Urysohn operators F.

Theorem 2.4 (properties of F) Let Hypothesis (U0) hold. If for all x ∈ Ω
and µ-a.a. y ∈ Ω a kernel function f(x, y, ·) : Z → Rd is

(a) Y+-monotone, then an Urysohn operator F : U → C(Ω)d is C(Ω)d+-mo-
notone,

(b) Y+-subhomogeneous with Z = Y+, then F : C(Ω)d+ → C(Ω)d+ is C(Ω)d+-
subhomogeneous,

(c) Y+-concave with Y+-convex Z, then F : U → C(Ω)d is C(Ω)d+-concave.

PROOF. Suppose u, ū ∈ U are given.

(a) Let y′ ∈ Y ′+ and u ≺ ū. Our assumptions imply f(x, y, u(y)) 6 f(x, y, ū(y))
and then 〈〈f(x, y, u(y)), y′〉〉 6 〈〈f(x, y, ū(y)), y′〉〉 for all x ∈ Ω, µ-a.a. y ∈ Ω re-
sults due to Lemma A.1(a). This, with monotonicity of the integral, guarantees

〈〈F(u)(x), y′〉〉 (1.1)
=

∫
Ω
〈〈f(x, y, u(y)), y′〉〉 dµ(y) 6

∫
Ω
〈〈f(x, y, ū(y)), y′〉〉 dµ(y)

(1.1)
= 〈〈F(ū)(x), y′〉〉 for all x ∈ Ω.

Since x ∈ Ω was arbitrary, Lemma 1.1(a) yields F(u) � F(ū).
(b) Let 0 ≺ u and y′ ∈ Y+. By f(x, y, ·) : Y+ → Y+ we obtain

〈〈F(u)(x), y′〉〉 (1.1)
=

∫
Ω
〈〈f(x, y, u(y)), y′〉〉 dµ(y) ≥ 0 for all x ∈ Ω

and hence F(u) ∈ C(Ω)d+ due to Lemma 1.1(a).
Thanks to the assumptions it is U = C(Ω)d+. If θ ∈ (0, 1), then Lemma A.1(a)
implies 〈〈θf(x, y, u(y)), y′〉〉 6 〈〈f(x, y, (θu)(y)), y′〉〉 for all x ∈ Ω and µ-a.a.
y ∈ Ω and consequently the monotonicity of the integral leads to

〈〈θF(u)(x), y′〉〉 (1.1)
=

∫
Ω
〈〈θf(x, y, u(y)), y′〉〉 dµ(y) 6

∫
Ω
〈〈f(x, y, θu(y)), y′〉〉 dµ(y)

(1.1)
= 〈〈F(θu)(x), y′〉〉 for all x ∈ Ω.
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Hence, Lemma 1.1(a) ensures θF(u) � F(θu), i.e. F is subhomogeneous.
(c) Referring to Lemma 2.3 the set U is C(Ω)d+-convex. Let y′ ∈ Y ′+, u ≺ ū
and θ ∈ (0, 1). Our assumption implies

θf(x, y, u(y)) + (1− θ)f(x, y, ū(y)) 6 f(x, y, θu(y) + (1− θ)ū(y))

and Lemma A.1(a) guarantees

〈〈θf(x, y, u(y)) + (1− θ)f(x, y, ū(y)), y′〉〉 6 〈〈f(x, y, θu(y) + (1− θ)ū(y)), y′〉〉

for all x ∈ Ω and µ-a.a. y ∈ Ω. Thus, the monotonicity of the integral yields

〈〈θF(u)(x) + (1− θ)F(ū)(x), y′〉〉
(1.1)
=
∫

Ω
〈〈θf(x, y, u(y)) + (1− θ)f(x, y, ū(y)), y′〉〉 dµ(y)

6
∫

Ω
〈〈f(x, y, θu(y) + (1− θ)ū(y)), y′〉〉 dµ(y)

(1.1)
= 〈〈F(θu+ (1− θ)ū)(x), y′〉〉 for all x ∈ Ω

and Lemma 1.1(a) leads to θF(u) + (1− θ)F(ū) � F(θu+ (1− θ)ū). 2

Theorem 2.5 (strict properties of F) Let Hypothesis (U0) hold, nonempty,
open subsets of Ω have positive measure and suppose there exists a x̄ ∈ Ω such
that f(x̄, ·) is continuous. If for all x ∈ Ω and µ-a.a. y ∈ Ω a kernel function
f(x, y, ·) : Z → Rd is

(a) Y+-monotone and f(x̄, y, ·) : Z → Rd is strictly Y+-monotone for µ-a.a.
y ∈ Ω, then an Urysohn operator F : U → C(Ω)d is strictly C(Ω)d+-mo-
notone,

(b) Y+-subhomogeneous with Z = Y+ and f(x̄, y, ·) : Y+ → Y+ is strictly Y+-
subhomogeneous for µ-a.a. y ∈ Ω, then F : C(Ω)d+ → C(Ω)d+ is strictly
C(Ω)d+-subhomogeneous,

(c) Y+-concave with Y+-convex Z and f(x̄, y, ·) : Z → Rd is strictly Y+-con-
cave for µ-a.a. y ∈ Ω, then F : U → C(Ω)d is strictly C(Ω)d+-concave.

PROOF. Let u, ū ∈ U .
(a) By Thm. 2.4(a) it remains to show F(u) 6= F(ū) for u ≺ ū. There is
a y0 ∈ Ω such that u(y0) < ū(y0) and thus f(x̄, y0, u(y0)) < f(x̄, y0, ū(y0)).
Then Lemma A.1(a) yields for some y′0 ∈ Y ′+ \ {0} the strict inequality

0 < 〈〈f(x̄, y0, ū(y0))− f(x̄, y0, u(y0)), y′0〉〉.

From the continuity of f(x̄, ·) we conclude that there is an open neighborhood
Ω0 of y0 with 0 < 〈〈f(x̄, y, ū(y))−f(x̄, y, u(y)), y′0〉〉 for all y ∈ Ω0. Furthermore,
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the estimate 0 6 〈〈f(x̄, y, ū(y)) − f(x̄, y, u(y)), y′〉〉 is valid for all y′ ∈ Y ′+ and
µ-a.a. y ∈ Ω. Integrating over Ω0 and the fact µ(Ω0) > 0 yield

0 <
∫

Ω0

〈〈f(x̄, y, ū(y))− f(x̄, y, u(y)), y′0〉〉 dµ(y)

6
∫

Ω
〈〈f(x̄, y, ū(y))− f(x̄, y, u(y)), y′0〉〉 dµ(y)

(1.1)
= 〈〈F(ū)(x̄)− F(u)(x̄), y′0〉〉.

Therefore we have F(u)(x̄) 6= F(ū)(x̄) and arrive at F(u) ≺ F(ū).
(b) and (c) can be established using analogous arguments. 2

Theorem 2.6 (strong monotonicity of F) Let Hypothesis (U0) hold, non-
empty, open subsets of Ω have positive measure and let Y+ be solid. If for all
x ∈ Ω and µ-a.a. y ∈ Ω a kernel function f(x, y, ·) : Z → Rd is strongly
Y+-monotone, then an Urysohn operator F : U → C(Ω)d is strongly C(Ω)d+-
monotone.

PROOF. Suppose that u, ū ∈ U , u ≺ ū, x ∈ Ω and y′ ∈ Y ′+ \ {0}. Note that
Ω0 = {y ∈ Ω : u(y) 6= ū(y)} is open subset of Ω and µ(Ω0) > 0. The strong
monotonicity of f(x, y, ·) yields the inequality f(x, y, u(y)) � f(x, y, ū(y))
and Lemma A.1(b) implies

0 < 〈〈f(x, y, ū(y))− f(x, y, u(y)), y′〉〉 =: φ(y) for µ-a.a. y ∈ Ω0.

Now at least one of the preimages Ωk := φ−1(( 1
k
,∞)) for k ∈ N has positive

measure, since Ω0 =
⋃
k∈N Ωk is of positive measure. If µ(Ωl) > 0, then

0 <
µ(Ωl)

l
6
∫

Ωl

φ(y) dµ(y) 6
∫

Ω0

φ(y) dµ(y) 6
∫

Ω
φ(y) dµ(y)

and 〈〈F(u)(x), y′〉〉 < 〈〈F(ū)(x), y′〉〉 and F(u) ≺≺ F(ū) holds due to Lemma A.1. 2

Theorem 2.7 (strong subhomogeneity and concavity of F) Let Hypo-
thesis (U0) hold with µ(Ω) > 0 and let Y+ be solid. If for all x ∈ Ω and µ-a.a.
y ∈ Ω a kernel function f(x, y, ·) : Z → Rd is strongly

(a) Y+-subhomogeneous with Z = Y+, then an Urysohn operator F : C(Ω)d+ →
C(Ω)d+ is strongly C(Ω)d+-subhomogeneous,

(b) Y+-concave with Y+-convex Z, then F : U → C(Ω)d is strongly C(Ω)d+-
concave.

PROOF. Suppose that θ ∈ (0, 1), u, ū ∈ U , u ≺≺ ū, x ∈ Ω and y′ ∈ Y ′+ \ {0}.
(a) By assumption f(x, y, ·) : Y+ → Y+ for all x ∈ Ω and µ-a.a. y ∈ Ω we
deduce that 0 6 〈〈f(x, y, u(y)), y′〉〉 for all x ∈ Ω, µ-a.a y ∈ Ω and all y′ ∈ Y ′+.
This implies F(u) ∈ C(Ω)d+. With φ(y) := 〈〈f(x, y, θu(y)) − θf(x, y, u(y)), y′〉〉
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for y ∈ Ω the argument is analogous to the proof of the Thm. 2.6.
(b) Proceed as above with the function φ(y) := 〈〈f(x, y, θu(y) + (1− θ)ū(y))−
θf(x, y, u(y))− (1− θ)f(x, y, (1− θ)u(y)), y′〉〉 for y ∈ Ω. 2

The subsequent consequence might be of independent interest:

Corollary 2.8 (monotonicity of the integral) Suppose u, ū : Ω→ Rd are
µ-integrable.

(a) If 〈〈u(y), y′〉〉 6 〈〈ū(y), y′〉〉 for µ-a.a. y ∈ Ω and every y′ ∈ Y ′+, then the
estimate

∫
Ω u(y) dµ(y) 6

∫
Ω ū(y) dµ(y) holds.

(b) Let u, ū ∈ C(Ω)d and assume nonempty, open subsets of Ω have positive
measure. If u ≺ ū, then

∫
Ω u(y) dµ(y) <

∫
Ω ū(y) dµ(y).

(c) If µ(Ω) > 0, Y+ is solid and 〈〈u(y), y′〉〉 < 〈〈ū(y), y′〉〉 for µ-a.a. y ∈ Ω and
every y′ ∈ Y ′+ \ {0}, then

∫
Ω u(y) dµ(y)�

∫
Ω ū(y) dµ(y).

Let us remark that u � ū or u ≺≺ ū imply the assumptions in (a) resp. (c) to
hold (cf. Lemma 1.1) i.e. the integral is monotone in this sense.

PROOF. (a) and (b) result from Thms. 2.4(a) resp. 2.5(a) with the kernel
function f(x, y, z) := z, whereas the argument for (c) is similar to the proof
of Thm. 2.6 using φ(y) := 〈〈ū(y)− u(y), y′〉〉 for µ-a.a. y ∈ Ω. 2

Under the additional Hypothesis (U1) the derivative of F exists as

DF(u)v =
∫

Ω
D3f(·, y, u(y))v(y) dµ(y) for all v ∈ C(Ω)d (2.2)

in the Fréchet-sense (in u ∈ U◦); moreover F is of class C1. Then it is some-
times convenient to formulate assumptions on f in terms of conditions on the
partial derivatives D3f :

Corollary 2.9 (monotonicity of F) Let (U l), l ∈ {0, 1}, hold on a Y+-con-
vex and open Z ⊆ Rd. If D3f(x, y, z) is Y+-positive for all x ∈ Ω, z ∈ Z and
µ-a.a. y ∈ Ω, then F is C(Ω)d+-monotone. In addition, if nonempty, open
subsets of Ω have positive measure and moreover

(a) there exists a x̄ ∈ Ω so that f(x̄, ·) is continuous and for µ-a.a. y ∈ Ω
and all z, z̄ ∈ Z, z < z̄ the derivative D3f(x̄, y, z∗) is Y+-injective for all
z∗ ∈ z, z̄, then F is strictly C(Ω)d+-monotone,

(b) Y+ is solid and D3f(x, y, z) is strongly Y+-positive for all x ∈ Ω, z ∈ Z
and µ-a.a. y ∈ Ω, then F is strongly C(Ω)d+-monotone.
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PROOF. It follows using Lemma 2.3 that U is also open and C(Ω)d+-convex.
Let u ∈ U and v ∈ C(Ω)d+. Due to our assumptions F : U → C(Ω)d is of
class C1 and the derivative (2.2) is a Fredholm integral operator with kernel
k(x, y) := D3f(x, y, u(y)). Then this kernel k : Ω2 → L(Rd) satisfies the
assumptions of [12, Thm. 2.7] and consequently DF(u) is positive. Therefore,
the monotonicity of F follows using Lemma A.2.
(a) Let x ∈ Ω. It results from Lemma A.2(a) that each f(x, y, ·) is monotone,
while f(x̄, y, ·) is even strictly monotone for µ-a.a. y ∈ Ω. Thus, Thm. 2.5(a)
yields the claim.
(b) Now [12, Thm. 2.7(b)] applies to k and thus DF(u) is strongly positive.
Therefore, Lemma A.2(b) implies that F is strongly monotone. 2

Corollary 2.10 (subhomogeneity of F) Let (U l), l ∈ {0, 1}, hold on Z =
Y+.

(a) If D3f(x, y, z) is Y+-positive and D3f(x, y, z)z 6 f(x, y, z) for all x ∈ Ω,
z ∈ Y+ and µ-a.a. y ∈ Ω, then F is C(Ω)d+-subhomogeneous.

(b) If nonempty, open subsets of Ω have positive measure and in addition to
the assumption of (a) there exists a x̄ ∈ Ω with D3f(x̄, y, z)z < f(x̄, y, z)
for µ-a.a. y ∈ Ω and all z ∈ Y+ \ {0}, then F is strictly C(Ω)d+-subhomo-
geneous.

(c) If µ(Ω) > 0, Y+ is solid and D3f(x, y, z)z � f(x, y, z) for all x ∈ Ω,
z ∈ Y ◦+ and µ-a.a. y ∈ Ω, then F is strongly C(Ω)d+-subhomogeneous.

PROOF. Let u ∈ C(Ω)d+ be given.
(a) Above all, it follows by Cor. 2.9 that F is monotone. Combining this
with 0 6 f(x, y, 0) for all x ∈ Ω and µ-a.a. y ∈ Ω, we have F : C(Ω)d+ →
C(Ω)d+. Let 0 ≺ u. By assumption D3f(x, y, u(y))u(y) 6 f(x, y, u(y)) holds
and Lemma A.1(a) guarantees 〈〈D3f(x, y, u(y))u(y), y′〉〉 6 〈〈f(x, y, u(y)), y′〉〉
for µ-a.a. y ∈ Ω, all x ∈ Ω and all y′ ∈ Y ′+, while Cor. 2.8(a) yields

[DF(u)u](x)
(2.2)
=
∫

Ω
D3f(x, y, u(y))u(y) dµ(y)

6
∫

Ω
f(x, y, u(y)) dµ(y)

(F )
= F(u)(x) for all x ∈ Ω.

Therefore, Lemma A.3 implies that F is subhomogeneous.
(b) Let 0 ≺ u and Ω0 = {y ∈ Ω : u(y) 6= 0}. By assumption for µ-a.a. y ∈ Ω0

there exists y′y ∈ Y ′+\{0} so that 〈〈D3f(x̄, y, u(y))u(y), y′y〉〉 < 〈〈f(x̄, y, u(y)), y′y〉〉
holds. Thanks to the continuity for µ-a.a. y ∈ Ω0 there exists εy > 0 such that

〈〈D3f(x̄, ỹ, u(ỹ))u(ỹ), y′y〉〉 < 〈〈f(x̄, ỹ, u(ỹ)), y′y〉〉 for any ỹ ∈ Bεy(y).

The family {Bεy(y) : µ-a.a. y ∈ Ω0} is an open cover of Ω1, where Ω1 is an open
set satisfying Ω1 ⊂ Ω0, the Borel-Lebesgue Theorem yields a finite subcover
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{Bεyi
(yi) : 1 6 i 6 n} of the closure Ω1. Moreover, µ(Ω1) > 0. If we define

ȳ′ =
∑n
i=1 y

′
yi
∈ Y ′+ \{0}, then 〈〈D3f(x̄, y, u(y))u(y), ȳ′〉〉 < 〈〈f(x̄, y, u(y)), ȳ′〉〉 for

any y ∈ Ω1 leads to

〈〈[DF(u)u](x̄)− F(u)(x̄), ȳ′〉〉
(2.2)
= 〈〈

∫
Ω
D3f(x̄, y, u(y))u(y)− f(x̄, y, u(y)) dµ(y), ȳ′〉〉

6〈〈
∫

Ω1

D3f(x̄, y, u(y))u(y)− f(x̄, y, u(y)) dµ(y), ȳ′〉〉 < 0.

This implies that [DF(u)u](x̄) 6= F(u)(x̄) and also DF(u)u ≺ F(u). Therefore,
Lemma A.3(b) ensures that F is strictly subhomogeneous.
(c) Let 0 ≺≺ u and y′ ∈ Y ′+ \ {0}. Here, D3f(x, y, u(y))u(y) � f(x, y, u(y))
holds by assumption and Lemma A.1(b) yields that 〈〈D3f(x, y, u(y))u(y), y′〉〉 <
〈〈f(x, y, u(y)), y′〉〉 µ-a.a. y ∈ Ω, which implies

〈〈[DF(u)u](x), y′〉〉 (2.2)
= 〈〈

∫
Ω
D3f(x, y, u(y))u(y) dµ(y), y′〉〉

< 〈〈
∫

Ω
f(x, y, u(y)) dµ(y), y′〉〉 (F )

= 〈〈F(u)(x), y′〉〉

for all x ∈ Ω. Whence, Lemma 1.1(c) yieldsDF(u)u ≺≺ F(u) and Lemma A.3(c)
implies that F is strongly subhomogeneous. 2

Corollary 2.11 (concavity of F) Let (U l), l ∈ {0, 1}, hold on a Y+-convex
Z ⊆ Rd.

(a) If D3f(x, y, z̄)(z̄ − z) 6 D3f(x, y, z)(z̄ − z) for all x ∈ Ω, z, z̄ ∈ Z, z < z̄
and µ-a.a. y ∈ Ω, then F is C(Ω)d+-concave.

(b) If nonempty, open subsets of Ω have positive measure and in addition to
the assumption of (a) there exists a x̄ ∈ Ω such that D3f(x̄, y, z̄)(z̄−z) <
D3f(x̄, y, z)(z̄ − z) for all µ-a.a. y ∈ Ω and z ∈ Z, then F is strictly
C(Ω)d+-concave.

(c) If µ(Ω) > 0, Y+ is solid and D3f(x, y, z̄)(z̄ − z) � D3f(x, y, z)(z̄ − z)
for all x ∈ Ω, z, z̄ ∈ Z, z � z̄ and µ-a.a. y ∈ Ω, then F is strongly
C(Ω)d+-concave.

PROOF. The arguments are analogous to those given in the above Cor. 2.10,
but one uses Lemma A.5 instead of Lemma A.3. 2

Remark 2.12 (order convexity) The previous theory also allows to deduce
conditions yielding the order convexity of Urysohn operators F. For this simply
replace the kernel function f by the negative −f in the above criteria.
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3 Nyström methods

A natural way to evaluate an operator involving a Rd-valued Lebesgue integral
approximately, is to replace the integral by a quadrature rule

∫
Ω
u(y) dy =

qn∑
j=0

wju(ηj) + en(u) (Qn)

with weights wj ∈ R, nodes ηj ∈ Ω, a strictly increasing sequence (qn)n∈N in
N0 and an error term en(u) ∈ Rd. Applied to Urysohn operators (F ) (with the
Lebesgue measure µ = λκ) one arrives at the discrete Urysohn operator

Fn(u) :=
qn∑
j=0

wjf(·, ηj, u(ηj)). (F n)

In detail, we impose

Hypothesis 3.1 Assume that Z ⊆ Rd has nonempty interior and that the
kernel function f : Ω2 × Z → Rd fulfills for l ∈ {0, 1}:

(NU l) Dl
3f : Ω2 × Z → Ll(Rd) exists as continuous function.

Note that (NU l) implies the above Hypothesis (U l) for l ∈ {0, 1}. Further-
more, the discrete operator (F n) allows the natural domains U ⊆ C(Ω)d from
(2.1) and Un := {u : Ωn → Z}. In both cases, (NU0) ensures that Fn is well-
defined on U and Un.

Remark 3.2 (Fn on the domain Un) Assume an integration rule (Qn) has
nonnegative weights. Then the results from Sec. 2 apply to the specific measure

µn(Ωn) :=
qn∑
j=0

wj, Ωn := {ηj ∈ Ω : 0 6 j 6 qn}

under which the general integral operator (F ) becomes a discrete Urysohn
operator (F n). Thus, the corresponding properties for Fn literally carry over
from Sec. 2 with the assumption “µ-a.a. y ∈ Ω” replaced by “all y ∈ Ωn”.

For this reason we focus on the domain U (rather than Un) from now on. Con-
cerning the quadrature rule (Qn) two features need to be pointed out. First,
for numerical stability the commonly used rules (Qn) have positive weights [6,
pp. 51–52, Sect. 4.5]. The next results provide yet another motivation to ap-
ply such methods. Second, one requires that the distance between neighboring
nodes in Ωn can be made arbitrarily small as n → ∞. In detail this means
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that (Qn) fulfills the net condition

∀ε > 0 : ∃n0 ∈ N : Ω ⊆
qn⋃
j=0

Bε(ηj) for all n ≥ n0(ε). (3.1)

In the following we investigate how properties such as monotonicity, subho-
mogeneity and order concavity of (F ) persist under Nyström discretizations:

Theorem 3.3 (properties of Fn on U) Let Hypothesis (NU0) hold and a
quadrature rule (Qn), n ∈ N, has nonnegative weights. If for all x ∈ Ω and
η ∈ Ωn a kernel function f(x, η, ·) : Z → Rd is

(a) Y+-monotone, then a discrete Urysohn operator Fn : U → C(Ω)d is
C(Ω)d+-monotone,

(b) Y+-subhomogeneous with Z = Y+, then Fn : C(Ω)d+ → C(Ω)d+ is C(Ω)d+-
subhomogeneous,

(c) Y+-concave with Y+-convex Z, then Fn : U → C(Ω)d is C(Ω)d+-concave.

PROOF. Mimic the proof of Thm. 2.4 with y ∈ Ω replaced by η ∈ Ωn and the
abstract integral

∫
Ω φ(y) dµ(y) by

∑
η∈Ωn wηφ(η) for corresponding real-valued

functions φ. 2

While monotonicity, subhomogeneity and order concavity directly extend from
the kernel function to the discrete Urysohn operators, the situation changes for
corresponding strict and strong notions. This is due to the fact that functions
in C(Ω)d+ \ {0} might vanish everywhere except from arbitrarily small balls
being disjoint from a grid Ωn.

Nevertheless, for sufficiently large n ∈ N (depending on u, ū ∈ U yet), that
is for sufficiently fine grids Ωn, the following weaker versions of strict mono-
tonicity and strict concavity can be established:

Theorem 3.4 (eventual strict monotonicity and concavity of Fn on U)
Let Hypothesis (NU0) hold with Ω = Ω◦ and quadrature rules (Qn) satisfying
the net condition (3.1) with eventually positive weights. For each u, ū ∈ U ,
u ≺ ū there exists a N ∈ N such that one has for n ≥ N : If for all x ∈ Ω,
η ∈ Ωn a kernel function f(x, η, ·) : Z → Rd is

(a) Y+-monotone and f(x̄, η, ·) is strictly Y+-monotone for one x̄ ∈ Ω and
all η ∈ Ωn, then Fn(u) ≺ Fn(ū),

(b) Y+-concave and f(x̄, η, ·) is strictly Y+-concave for one x̄ ∈ Ω and all
η ∈ Ωn with Y+-convex Z, then

θFn(u) + (1− θ)Fn(ū) ≺ Fn(θu+ (1− θ)ū) for all θ ∈ (0, 1).
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PROOF. Let u, ū ∈ U with u ≺ ū. This implies u(x) 6 ū(x) for x ∈ Ω and
there exists a x0 ∈ Ω such that u(x0) 6= ū(x0). Consequently, B := {x ∈ Ω :
u(x) 6= ū(x)} 6= ∅. By the continuity of u, ū and the assumption on Ω there
exist ε0 > 0, x1 ∈ Ω so that B2ε0(x1) ⊂ B. By the net condition (3.1) we find
an n0(ε0) ∈ N such that for n ≥ n0(ε0) there exist jn ∈ {0, . . . , qn} such that
ηjn ∈ B. From now on, assume (Qn) have positive weights for n ≥ n1 with
some n1 ∈ N and let n ≥ N := max {n0(ε0), n1}:
(a) Strict monotonicity of f(x̄, ηjn , ·) implies f(x̄, ηjn , u(ηjn)) < f(x̄, ηjn , ū(ηjn)).
Thus, Fn(u)(x̄) 6= Fn(ū)(x̄) and consequently Fn(u) ≺ Fn(ū).
(b) results analogously. 2

In the same spirit, also strict subhomogeneity and strong monotonicity hold
merely for sufficiently large n ∈ N:

Theorem 3.5 (eventual strict subhomogeneity of Fn on U) Let Hypo-
thesis (NU0) hold with Ω = Ω◦ and quadrature rules (Qn) satisfying the net
condition (3.1) with eventually positive weights. For each 0 ≺ u there exists
a N ∈ N such that one has for n ≥ N : If for all x ∈ Ω, η ∈ Ωn a kernel
function f(x, η, ·) : Y+ → Rd is Y+-subhomogeneous and f(x̄, η, ·) is strictly
Y+-subhomogeneous for one x̄ ∈ Ω and all η ∈ Ωn, then θFn(u) ≺ Fn(θu) for
all θ ∈ (0, 1).

PROOF. Let θ ∈ (0, 1), 0 ≺ u and ηjn as in the proof of Thm. 3.4. This
implies 0 6 u(x) for x ∈ Ω and there exists a x0 ∈ Ω so that 0 6= u(x0) holds.
Consequently, B := {x ∈ Ω : 0 6= u(x)} 6= ∅. Then strict subhomogeneity of
the mapping f(x̄, ηjn , ·) results in θf(x̄, ηjn , u(ηjn)) < f(x̄, ηjn , θu(ηjn)), hence
θFn(u)(x̄) 6= Fn(θu)(x̄) and the inequality θFn(u) ≺ Fn(θu) holds. 2

Theorem 3.6 (eventual strong monotonicity of Fn on U) Let Hypoth-
esis (NU0) hold with Ω = Ω◦, a solid Y+ and quadrature rules (Qn) satisfying
the net condition (3.1) with eventually positive weights. For each u, ū ∈ U ,
u ≺ ū there exists a N ∈ N such that one has for n ≥ N : If for all x ∈ Ω,
η ∈ Ωn a kernel function f(x, η, ·) : Z → Rd is strongly Y+-monotone, then
Fn(u) ≺≺ Fn(ū).

PROOF. The argument is analogous to the proof of Thm. 3.4. 2

Strong subhomogeneity and concavity however transfer from the kernel func-
tions f to an Urysohn operator F:

Theorem 3.7 (strong subhomogeneity and concavity of Fn on U) Let
Hypothesis (NU0) hold with Ω = Ω◦, a solid Y+ and quadrature rules (Qn)
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satisfying the net condition (3.1) with positive weights. If for all x ∈ Ω, η ∈ Ωn

a kernel function f(x, η, ·) : Z → Rd is strongly

(a) Y+-subhomogeneous with Z = Y+, then a discrete Urysohn operator Fn :
C(Ω)d+ → C(Ω)d+ is strongly C(Ω)d+-subhomogeneous.

(b) Y+-concave with Y+-convex Z, then Fn : U → C(Ω)d+ is strongly C(Ω)d+-
concave.

PROOF. (a) Let θ ∈ (0, 1), 0 ≺≺ u, y′ ∈ Y ′+\{0}, x ∈ Ω and ηjn ∈ Ωn. Conse-
quently, 0� u(y) for y ∈ Ω and the strong subhomogeneity of f(x, ηjn , ·) with
Lemma A.1(b) yield 〈〈θf(x, ηjn , u(ηjn)), y′〉〉 < 〈〈f(x, ηjn , θu(ηjn)), y′〉〉. Whence,
〈〈θFn(u)(x), y′〉〉 < 〈〈Fn(θu)(x), y′〉〉 holds and referring to Lemma 1.1(c) this
means θFn(u) ≺≺ Fn(θu).
(b) can be shown analogously. 2

So far we have seen in Thm. 3.3 that positive quadrature weights in (Qn)
are sufficient for monotonicity, subhomogeneity and concavity to persist. The
necessity of this property is explored in the next

Theorem 3.8 (necessary condition for monotonicity of Fn on Un) Let
Hypothesis (NU0) hold. If a discrete Urysohn operator Fn : Un → C(Ωn)d is
strictly C(Ωn)d+-monotone on Un for some n ∈ N and f(x, η, ·) : Z → Rd is
Y+-monotone for all x ∈ Ω, η ∈ Ωn, then (Qn) has positive weights.

PROOF. Let z, z̄ ∈ Z with z < z̄ and j ∈ {0, . . . , qn}. The functions

uj, ūj : Ωn → Z, uj(x) :≡ z, ūj(x) :=

z x 6= ηj,

z̄ x = ηj

satisfy uj, uj ∈ Un and uj ≺ ūj with uj(ηj) = z̄. Due to the strict C(Ωn)d+-
monotonicity of Fn on Un this leads to Fn(uj) ≺ Fn(ūj). By Lemma 1.1(b)
and Lemma A.1(a) there are x0 ∈ Ω and y′0 ∈ Y+ \ {0} such that

0 < 〈〈Fn(uj)(x0)− Fn(uj)(x0), y′0〉〉

= 〈〈
qn∑
k=0

wk
(
f(x0, ηk, ūj(ηk))− f(x0, ηk, uj(ηk))

)
, y′0〉〉

= wj〈〈f(x0, ηj, z̄)− f(x0, ηj, z), y
′
0〉〉.

Furthermore, the Y+-monotonicity of f(x0, ηj, ·) and Lemma A.1(a) guarantee
0 6 〈〈f(x0, ηj, z̄) − f(x0, ηj, z), y

′
0〉〉. Hence, 0 < 〈〈f(x0, ηj, z̄) − f(x0, ηj, z), y

′
0〉〉

and therefore results wj > 0. Because j ∈ {0, . . . , qn} was arbitrary this implies
the assertion. 2
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As in the framework of Sec. 2 it is convenient to provide conditions for mono-
tonicity, subhomogeneity and concavity in terms of the derivatives

DFn(u)v =
qn∑
j=0

wjD3f(·, ηj, u(ηj)) for all u ∈ U◦, v ∈ C(Ω)d; (3.2)

note that Fn is continuously differentiable.

Corollary 3.9 (monotonicity of Fn on U) Let (NU l) for l ∈ {0, 1} hold
on an Y+-convex, open Z ⊆ Rd and (Qn), n ∈ N, has nonnegative weights. If
D3f(x, η, z) is Y+-positive for all x ∈ Ω, η ∈ Ωn, z ∈ Z, then Fn is C(Ω)d+-
monotone on U . In case additionally Ω = Ω◦, (Qn) have eventually positive
weights and the net condition (3.1) hold, then for each u, ū ∈ U , u ≺ ū there
exists a N ∈ N such that one has for n ≥ N :

(a) If there exists a x̄ ∈ Ω so that for all η ∈ Ωn and z, z̄ ∈ Z, z < z̄ the
derivative D3f(x̄, η, z∗) is Y+-injective for z∗ ∈ z, z̄, then Fn(u) ≺ Fn(ū).

(b) If Y+ is solid and D3f(x, η, z) is strongly Y+-positive for all x ∈ Ω, η ∈ Ωn

and z ∈ Z, then Fn(u) ≺≺ Fn(ū).

PROOF. Let u ∈ U and v ∈ C(Ω)d+. With Lemma 2.3 the set U is open and
C(Ω)d+-convex, while F : U → C(Ω)d is of class C1 and the derivative (2.2)
is a Fredholm integral operator with kernel k(x, y) = D3f(x, y, u(y)). Since
k satisfies the assumptions of [12, Thm. 3.4], DFn(u) is positive. Hence, the
monotonicity of Fn follows using Lemma A.2.
(a) Lemma A.2(a) shows that each f(x, y, ·), x ∈ Ω, is monotone, while
f(x̄, y, ·) is even strictly monotone for µ-a.a. y ∈ Ω. Therefore, Thm. 3.4(a)
yields the claim.
(b) Here [12, Thm. 3.4(d)] can be applied to k. Whence, DFn(u) is strongly
positive and Lemma A.2(b) implies that Fn is strongly monotone. 2

Based on arguments from the proof of the corresponding Cor. 2.10 one obtains:

Corollary 3.10 (subhomogeneity and eventual strict subhomogeneity of Fn on U)
Let (U l) for l ∈ {0, 1} hold on Z = Y+ and (Qn), n ∈ N, have nonnegative
weights. If D3f(x, η, z) is Y+-positive and D3f(x, η, z)z 6 f(x, η, z) for all
x ∈ Ω, η ∈ Ωn, z ∈ Y+, then Fn is C(Ω)d+-subhomogeneous. In case addition-
ally Ω = Ω◦, (Qn) have eventually positive weights and the net condition (3.1)
hold, then for each 0 ≺ u there exists a N ∈ N such that one has for n ≥ N :
If there exists a x̄ ∈ Ω such that D3f(x̄, η, z)z < f(x̄, η, z) for all η ∈ Ωn and
z ∈ Y+ \ {0}, then θFn(u) ≺ Fn(θu) for all θ ∈ (0, 1).

Corollary 3.11 (strong subhomogeneity of Fn on U) Let (U l) for l ∈
{0, 1} hold on Z = Y+ with solid Y+ and (Qn), n ∈ N, have positive weights.
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If D3f(x, η, z) is Y+-positive, D3f(x, η, z)z 6 f(x, η, z) for all x ∈ Ω, η ∈ Ωn,
z ∈ Y+ and D3f(x, η, z)z � f(x, η, z) for all x ∈ Ω, η ∈ Ωn and z ∈ Y ◦+, then
Fn is strongly C(Ω)d+-subhomogeneous.

Similarly, proceeding as in the proof of the corresponding Cor. 2.11 it results:

Corollary 3.12 (concavity and eventual strict concavity of Fn on U)
Let (U l) for l ∈ {0, 1} hold on a Y+-convex Z and (Qn), n ∈ N, have nonnega-
tive weights. If D3f(x, η, z̄)(z̄−z) 6 D3f(x, η, z)(z̄−z) for all x ∈ Ω, η ∈ Ωn,
z, z̄ ∈ Z, z < z̄, then Fn is C(Ω)d+-concave. In case additionally Ω = Ω◦,
(Qn) have eventually positive weights and the net condition (3.1) hold, then
for each u, ū ∈ U , u ≺ ū there exists a N ∈ N such that one has for n ≥ N :
If there exists a x̄ ∈ Ω such that D3f(x̄, η, z̄)(z̄ − z) < D3f(x̄, η, z)(z̄ − z) for
all η ∈ Ωn and z, z̄ ∈ Z, z < z̄, then

θFn(u) + (1− θ)Fn(ū) ≺ Fn(θu+ (1− θ)ū) for all θ ∈ (0, 1).

Corollary 3.13 (strong concavity of Fn on U) Let (U l), l ∈ {0, 1}, hold
on a Y+-convex Z with solid Y+ and (Qn), n ∈ N, have positive weights. If
D3f(x, η, z̄)(z̄ − z)� D3f(x, η, z)(z̄ − z) for all x ∈ Ω, η ∈ Ωn and z, z̄ ∈ Z,
z � z̄, then Fn is strongly C(Ω)d+-concave.

4 Collocation methods

Another popular approach to tackle nonlinear integral equations numerically
are collocation methods [2, Sect. 2]. On an abstract level, they are based on
linear projections Πn : C(Ω)d → Xd

n, where each Xn is a finite-dimensional
subspace of C(Ω). This results in a finite-dimensional problem involving an
operator

Fn = ΠnF : U → Xd
n (4.1)

rather than F. Monotonicity properties of such projections Πn ∈ L(C(Ω)d)
were studied in [12, Sect. 4].

Theorem 4.1 (properties of collocation methods) Let F : U → C(Ω)d

be an Urysohn operator (F ).

(a) Let Πn be C(Ω)d+-positive. If F is C(Ω)d+-monotone (-subhomogeneous
or -concave), then Fn : U → Xd

n is C(Ω)d+-monotone (-subhomogeneous
resp. -concave). If additionally ΠnU ⊆ U holds, then the same is true for
F ◦ Πn : U → C(Ω)d.

(b) Let Πn(C(Ω)d+)◦ ⊆ (C(Ω)d+)◦ with a solid Y+. If F is strongly C(Ω)d+-
monotone (-subhomogeneous or -concave), then Fn is strongly C(Ω)d+-
monotone (-subhomogeneous resp. -concave). If additionally ΠnU ⊆ U ,
then strong C(Ω)d+-subhomogeneity (or -concavity) of F extends to F◦Πn.
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PROOF. The reader directly verifies from the definition that the correspond-
ing properties of F are preserved under composition with Πn. 2

More detailed, [12, Thm. 4.2] contains sufficient conditions for Πn to be pos-
itive or to satisfy Πn(C(Ω)d+)◦ ⊆ (C(Ω)d+)◦. These criteria can be combined
with our above analysis providing related assumptions on the kernel functions
f such that Thm. 4.1 applies.

5 Applications

5.1 Fixed points of a Leslie-Gower model

Assume k : Ω2 → L(R2) and the coefficient functions c1, c2 : Ω → (0,∞),
b1, b2 : Ω→ R+ are continuous. We consider the nonlinear integral equation

(
u

v

)
=
∫

Ω
k(·, y)

 c1(y)u(y)
1+u(y)+b1(y)v(y)

c2(y)v(y)
1+b2(y)u(y)+v(y)

 dy, (5.1)

whose right-hand side is an Urysohn operator (F ) with Z = R2
+, the kernel

function f(x, y, z) := k(x, y)g(y, z) and the measure µ = λκ. Abbreviating

g : Ω× R2
+ → R2

+, g(y, z) :=

 c1(y)z1
1+z1+b1(y)z2

c2(y)z2
1+b2(y)z1+z2


the partial derivative of f is given as D3f(x, y, z) = k(x, y)D2g(y, z) with

D2g(y, z) =

 c1(y)(1+b1(y)z2)
(1+z1+b1(y)z2)2

− b1(y)c1(y)z1
(1+z1+b1(y)z2)2

− b2(y)c2(y)z2
(1+b2(y)z1+z2)2

c2(y)(1+b2(y)z1)
(1+b2(y)z1+z2)2

 .
The south-east cone Y+ := {(x1, x2) ∈ R2 : x2 6 0 6 x1} is generated by the

linearly independent vectors e1 =
(

1
0

)
, e2 =

(
0
−1

)
and we choose e′1 =

(
1
0

)
,

e′2 =
(

0
−1

)
according to 〈〈ei, e′j〉〉 = δij for 1 6 i, j 6 2. Thus, the inequalities

〈〈D2g(y, z)e1, e
′
1〉〉 = c1(y)(1+b1(y)z2)

(1+z1+b1(y)z2)2
> 0, 〈〈D2g(y, z)e1, e

′
2〉〉 = b2(y)c2(y)z2

(1+b2(y)z1+z2)2
≥ 0,

〈〈D2g(y, z)e2, e
′
1〉〉 = b1(y)c1(y)z1

(1+b2(y)z1+z2)2
≥ 0, 〈〈D2g(y, z)e2, e

′
2〉〉 = c2(y)(1+b2(y)z1)

(1+b2(y)z1+z2)2
> 0

guarantee that D3f(x, y, z) is Y+-monotone for all x, y ∈ Ω and z ∈ R2
+,

provided k(x, y) has nonnegative entries.
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Fig. 1. Monotone convergence of solutions (ut, vt) for (5.2) to extremal solutions for
Nyström discretizations of (5.1) based on different quadrature rules [12, App. C]

Although the monotone convergence is preserved for Nyström methods based
on quadrature rules (Qn) having positive weights, the shape of the extremal
solutions varies significantly:

Example 5.1 (effect of quadrature rules) Consider a Leslie-Gower model
(5.1) with the habitat Ω = [−10, 10], a diagonal Gauß kernel

k(x, y) :=


1√

2πα2
1

exp
(
− (x−y)2

2α2
1

)
0

0 1√
2πα2

2

exp
(
− (x−y)2

2α2
2

)

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having dispersal rates α1, α2 > 0 and constant parameters

α1 = 0.1, c1(x) ≡ 4, b1(x) ≡ 2,

α2 = 0.9, c2(x) ≡ 2, b2(x) ≡ 0.1 on Ω.

The iterates (ut, vt) for the Nyström discretizations of the recursion

(
ut+1

vt+1

)
=
∫

Ω
k(·, y)

 c1(y)ut(y)
1+ut(y)+b1(y)vt(y)

c2(y)vt(y)
1+b2(y)ut(y)+vt(y)

 dy, (5.2)

based on various quadrature methods are illustrated in Fig. 1. Since in partic-
ular the first component of the kernel function is not very ’smooth’ (note that
α1 = 0.1), the limit functions have rather different shapes. This effect is due
to the comparatively small number qn 6 100 of nodes used in the discretization
and balances out for larger values of qn.

5.2 Integrodifference equations

Suppose that I is a discrete interval, i.e. the intersection of a real interval with
the integers, and set I′ := {t ∈ I : t+ 1 ∈ I}. We are interested in nonau-
tonomous difference equations

ut+1 = Ft(ut), (I0)

whose right-hand sides are Urysohn operators

Ft : Ut → C(Ω)d, Ft(u) :=
∫

Ω
ft(·, y, u(y)) dµ(y) for all t ∈ I′. (5.3)

One speaks of an integrodifference equation (I0) (briefly, IDE). For well-defined-
ness of Ft, assume throughout that Zt ⊆ Rd is nonempty and all kernel func-
tions ft : Ω2 × Zt → Rd satisfy at least the assumptions (U l) for l = 0 resp.
l ∈ {0, 1}, when derivatives are involved. Moreover, define the domain

Ut :=
{
u ∈ C(Ω)d : u(x) ∈ Zt for all x ∈ Ω

}
and suppose that Ft(Ut) ⊆ Ut+1 holds for all t ∈ I′. The forward solution to
(I0) starting at an initial time τ ∈ I in the initial state uτ ∈ Uτ given by

ϕ(t; τ, uτ ) :=

Ft−1 ◦ . . . ◦ Fτ (uτ ), τ < t,

uτ , t = τ
(5.4)

is the general solution ϕ :
{

(t, τ, u) ∈ I× I× C(Ω)d : τ 6 t, u ∈ Uτ
}
→ C(Ω)d

to the IDE (I0).
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strict strong

monotone (M0) (M1) (M2)

Thm. 2.4(a) Thm. 2.5(a) Thm. 2.6

Cor. 2.9 Cor. 2.9(a) Cor. 2.9(b)

subhomogeneous (S0) (S1) (S2)

Thm. 2.4(b) Thm. 2.5(b) Thm. 2.7(a)

Cor. 2.10(a) Cor. 2.10(b) Cor. 2.10(c)

order concave (C0) (C1) (C2)

Thm. 2.4(c) Thm. 2.5(c) Thm. 2.7(b)

Cor. 2.11(a) Cor. 2.11(b) Cor. 2.11(c)

Table 1
Assumptions guaranteeing various degrees of monotonicity, subhomogeneity or order
concavity for IDEs (I0)

The purpose of Tab. 1 is to encode the assumptions required in the subse-
quent results in a space saving manner. For instance, (M0) means that the
assumptions of Thm. 2.4(a) or of Cor. 2.9 (which guarantee monotonicity) are
satisfied. Given this, we obtain

Theorem 5.2 (monotonicity of IDEs) Let τ < t. If the kernel functions
fs : Ω2 × Zs → Rd satisfy

(a) (M0) for τ 6 s < t, then the general solution ϕ(t; τ, ·) : Uτ → Ut of (I0)
is C(Ω)d+-monotone on Uτ ,

(b) (M1) for τ 6 s < t, then ϕ(t; τ, ·) is strictly C(Ω)d+-monotone on Uτ ,
(c) (M2) for s = t − 1 and (M1) for all τ 6 s < t − 1, then ϕ(t; τ, ·) is

strongly C(Ω)d+-monotone on Uτ .

PROOF. For mappings Gi : Vi ⊆ C(Ω)d → C(Ω)d, i = 0, 1, with G0(V0) ⊆ V1

we obtain directly from the definition (see App. A) that the following holds:

• If G0,G1 are monotone, then also G1 ◦ G0 is monotone.
• If G0,G1 are strictly monotone, then also G1 ◦ G0 is strictly monotone.
• If G0 is strictly monotone, while G1 is strongly monotone, then G1 ◦ G0 is

strongly monotone.

Since Thms. 2.4–2.6 and Cor. 2.9 provide sufficient conditions for (strict,
strong) monotonicity of Fs, this combined with (5.4) yield the claims. 2

Theorem 5.3 (subhomogeneity of IDEs) Let τ < t. If the kernel func-
tions fs : Ω2 × Y+ → Y+ satisfy
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(a) (S0) for τ 6 s < t and (M0) for τ < s < t, then the general solution
ϕ(t; τ, ·) : C(Ω)d+ → C(Ω)d+ of (I0) is C(Ω)d+-subhomogeneous,

(b) (S1) for s = τ and (S0), (M1) for all τ < s < t, or
(S0) for τ 6 s < t − 1 and (M0) for τ < s < t, (S1) for s = t − 1 and
the inclusion Fs(C(Ω)d+ \ {0}) ⊆ C(Ω)d+ \ {0} hold for τ 6 s < t− 1,
then ϕ(t; τ, ·) is strictly C(Ω)d+-subhomogeneous,

(c) (S2) for s = τ and (S0), (M1) for all τ < s < t, or
(S0) for τ 6 s < t − 1 and (M0) for τ < s < t, (S2) for s = t − 1 and
the inclusion Fs((C(Ω)d+)◦) ⊆ (C(Ω)d+)◦ for τ 6 s < t− 1 hold,
then ϕ(t; τ, ·) is strongly C(Ω)d+-subhomogeneous.

PROOF. Let X+ := C(Ω)d+. For Gi : X+ → X+, i = 0, 1, we get by App. A:

• If G0,G1 are subhomogeneous and G1 is monotone, then G1 ◦G0 is subhomo-
geneous.
• If G0 is strictly subhomogeneous and G1 is subhomogeneous and strictly

monotone, or if G0 is subhomogeneous with G0(X+ \ {0}) ⊆ X+ \ {0} and
G1 is monotone and strictly subhomogeneous, then G1 ◦G0 is strictly subho-
mogeneous.
• If G0 is strongly subhomogeneous and G1 is subhomogeneous and strongly

monotone, or if G0 is subhomogeneous with G0(X◦+) ⊆ X◦+ and G1 is mono-
tone and strongly subhomogeneous, then G1◦G0 is strongly subhomogeneous.

(a) Note that G0 := Fτ is subhomogeneous and G1 := ϕ(t; τ + 1, ·), τ < t, is
monotone and subhomogeneous, thus ϕ(t; τ, ·) is subhomogeneous.
(b) We restrict to the second set of assumptions with mappings G1 = Ft−1 and
G0 := ϕ(t−1; τ, ·). Then G0 is subhomogeneous by (a) and satisfies the inclusion
G0(X+ \ {0}) ⊆ X+ \ {0}, while G1 is monotone and strictly subhomogeneous.
(c) results analogously to (b). 2

The next result guaranteeing C(Ω)d+-concavity has simplified assumptions:

Theorem 5.4 (concavity of IDEs) Let τ < t. If the kernel functions fs :
Ω2 × Zs → Rd with Y+-convex Zs satisfy

(a) (C0), (M0) for τ 6 s < t, then the general solution ϕ(t; τ, ·) : Uτ → Ut
of (I0) is C(Ω)d+-concave on Uτ ,

(b) (C1), (M1) for τ 6 s < t, then ϕ(t; τ, ·) is strictly C(Ω)d+-concave on Uτ ,
(c) (C2), (M2) for τ 6 s < t, then ϕ(t; τ, ·) is strongly C(Ω)d+-concave on

Uτ .

PROOF. For Gi : Vi ⊆ C(Ω)d → C(Ω)d, i = 0, 1, with G0(V0) ⊆ V1 the
definitions given in App. A directly yield:
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• If G0,G1 are X+-concave and monotone, then G1 ◦ G0 is order concave.
• If G0 is strictly concave and strictly monotone and G1 is order concave and

strictly monotone, or if G0 is order concave and strictly monotone and G1

is strictly order concave and monotone, then also G1 ◦ G0 is strictly order
concave.
• If G0 is strongly order concave and strictly monotone and G1 is order concave

and strongly monotone, or if G0 is order concave and strongly monotone and
G1 is strongly order concave and monotone, then G1 ◦ G0 is strongly order
concave.

Given this, the proof follows as above. 2

5.2.1 Structure-preserving discretizations

When it comes to numerical simulations of IDEs (I0) one has to restrict to
finite-dimensional subspaces of C(Ω)d and the integral in (5.3) can be evalu-
ated only approximately. One achieves this by applying discretization methods
for the numerical solution of integral equations (cf. [2]) to the right-hand side
of (I0) yielding a difference equation

ut+1 = Fnt (ut) (In)

on the state space C(Ω)d. This means the right-hand side Ft is replaced by a
Nyström discretization (F n) or collocation semi-discretization (4.1).

For Nyström discretizations we provided criteria that structural properties
persist in Sec. 3. Hence, Thms. 5.2–5.4 also hold for the general solution

ϕn(t; τ, uτ ) :=

Fnt−1 ◦ . . . ◦ Fnτ (uτ ), τ < t,

uτ , t = τ

of (In) with the conditions from Tab. 1 replaced by the corresponding results
of Sec. 3. For collocation methods, related results are based on Thm. 4.1.

5.2.2 Periodic generalized Beverton-Holt models

We finally illustrate how a monotone iteration technique (see [14, pp. 163ff,
Chap. 11] or [15, pp. 269ff, Chap. 7]) can be used to approximate periodic
solutions to IDEs (I0) and their Nyström discretizations.

Let θ ∈ N, δ ∈ (0, 1] and Ω ⊂ Rκ be compact. Suppose that k̃ : Rκ → R+ is a
continuous function such that there exist reals 0 < k− 6 k+ satisfying

k− 6 k̃(x− y) 6 k+ for all x ∈ {y1 − y2 ∈ Rκ : y1, y2 ∈ Ω}
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and that R is equipped with the cone Y+ = R+. Under these assumptions we
consider the spatial generalized Beverton-Holt model

ut+1(x) =
∫

Ω
k̃(x− y)

ct(y)ut(y)

1 + ut(y)δ
dµ(y) for all x ∈ Ω, (5.5)

where ct+θ = ct : Ω → R+, t ∈ Z, are continuous functions. As a result, (5.5)
becomes a θ-periodic difference equation, whose right-hand side is an Urysohn
operator with the kernel function

f : Ω× Ω× Y+ → Y+, f(x, y, z) := k̃(x− y)
ct(y)z

1 + zδ
;

for the Lebesgue measure µ = λκ one obtains an IDE as in [10]. In order
to study it along with its Nyström discretizations, we consider the monotone
mappings (being subhomogeneous and order concave as well)

Fnt : C(Ω)+ → C(Ω)+, Fnt (u)(x) :=
∫

Ω
k̃(x− y)

ct(y)u(y)

1 + u(y)δ
dµ(y)

for the measures µ ∈ {λκ, µn}, where the weighted counting measures µn are
introduced in Rem. 3.2. Under the assumption 1 < k−minθ−1

s=0

∫
Ω cs(y) dµ(y)

we define the reals

u− :=
θ−1
min
s=0

(
k−

∫
Ω
cs(y) dµ(y)− 1

)1/δ

, u+ :=
θ−1

max
s=0

(
k+

∫
Ω
cs(y) dµ(y)− 1

)1/δ

and obtain for all u ∈ C(Ω) satisfying u− 6 u(x) 6 u+ on Ω the estimates

u− 6
∫

Ω
k−
cs(y)u−
1 + uδ−

dµ(y) 6
∫

Ω
k−
cs(y)u(y)

1 + u(y)δ
dµ(y)

6 Fs(u)(x)

6
∫

Ω
k+
cs(y)u(y)

1 + u(y)δ
dµ(y) 6

∫
Ω
k+

cs(y)u+

1 + (u+)δ
dµ(y) 6 u+ for all s ∈ Z

and x ∈ Ω. Consequently the restrictions Fs : [u−, u+] → [u−, u+], s ∈ Z, to
the order interval [u−, u+] ⊆ C(Ω)+ are well-defined. Thus, for each τ ∈ Z
also the period maps

Πτ : [u−, u+]→ [u−, u+], Πτ (u) := ϕ(τ + θ; τ, u)

are well-defined and monotone thanks to Thm. 5.2. Furthermore, the fixed
points uτ ∈ [u−, u+] of Πτ correspond to initial values for θ-periodic solutions
of (5.5). Indeed a fixed point of (5.5) can be approximated from above and be-
low by means of monotone iterations (see for instance [14, p. 168, Thm. 11.1]).
If we define the iterates of the period map Π0 as

v+
t := ϕ(tθ; 0, u+), v−t := ϕ(tθ; 0, u−) for all 0 6 t,
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then the sequence (v+
t )t≥0 is decreasing to a fixed point v+, while the sequence

(v−t )t≥0 is increasing to v− of Πτ as limit; one has the error estimate

u− 6 v−t 6 v− 6 v+ 6 v+
t 6 u+ for all 0 6 t.

The following concrete example illustrates the situation of a unique fixed point
v+ = v− in C(Ω)◦+ being approximated by a monotone iteration technique:

Example 5.5 (Gauß kernel) On an interval Ω = [−L
2
, L

2
] for some L > 0

let us consider the Gauß kernel k̃(x) := 1√
2πα2

exp(− x2

2α2 ) and growth rates

ct(x) := γt(2 + sin(2π
L
x)) > 0. We choose

k− = 1√
2πα2

exp(− L2

2α2 ), k+ = 1√
2πα2

and thanks to

` :=
∫ L/2

−L/2
2 + sin(2π

L
y) dµ(y) =

2L, µ = λ1,∑
η∈Ωn wη(2 + sin(2π

L
η)), µ = µn

the above theory applies for sufficiently large coefficients γt. More precisely,
the estimate 1 < `√

2πα2
exp(− L

2α2 ) minθ−1
t=0 γt needs to hold and we choose

u−(x) :≡
(

`√
2πα2

exp(− L2

2α2 )
θ−1
min
s=0

γs − 1

)1/δ

, u+(x) :≡
(

`√
2πα2

θ−1
max
s=0

γs − 1
)1/δ

on [−L
2
, L

2
] as initial functions for the monotone iteration process. For the spe-

cific parameter values α = δ = 1
2
, L = 2 and γt := 19 + (−1)t one obtains

u−(x) ≡ 2.72 · 10−3 and u+(x) ≡ 3.95 · 103. Then Fig. 2 illustrates the con-
vergence of upper and lower solutions to the fixed point of Π0 for Nyström
discretizations of (5.5) with different quadrature rules.

A Cones, monotone, subhomogeneous and concave mappings

Assume X is a real Banach space with dual space X ′ and the duality pairing
〈x, x′〉 := x′(x). A nonempty closed and convex subset X+ ⊆ X is called a
cone, if R+X+ ⊆ X+ and X+∩(−X+) = {0} hold. Equipped with such a cone,
X is called an ordered Banach space. Let us assume X+ 6= {0} throughout.
For vectors x, x̄ ∈ X we introduce the relations

x 6 x̄ :⇔ x̄− x ∈ X+,

x < x̄ :⇔ x̄− x ∈ X+ \ {0} , (A.1)

x� x̄ :⇔ x̄− x ∈ X◦+;
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Fig. 2. Nyström discretization to approximate the 2-periodic solution to (5.5) based
on the trapezoidal and the 6th order Gauß rule (see [12, App. C]).
left: Monotone iterations from below (red) and above (blue)
right: Error between the upper and lower approximations (for the Gauß rule the
error vanishes for t ≥ 30 iterations)

the latter one requires X+ to have nonempty interior; one speaks of a solid
cone X+. Order intervals are defined as [x, x̄] := {y ∈ X : x 6 y 6 x̄}.

By means of the dual cone X ′+ := {x′ ∈ X ′ : 0 6 〈x, x′〉 for all x ∈ X+} it is
possible to characterize the elements of X+ and X◦+ as follows:

Lemma A.1 (cf. [12, Lemma A.1]) (a) X ′+ 6= {0} and for x ∈ X holds:

x ∈ X+ ⇔ 0 6 〈x, x′〉 for all x′ ∈ X ′+,
x ∈ X+ \ {0} ⇒ 0 < 〈x, x′0〉 for some x′0 ∈ X ′+ \ {0} .

(b) If X+ is solid, then for every x ∈ X the following holds:

x ∈ X◦+ ⇔ 0 < 〈x, x′〉 for all x′ ∈ X ′+ \ {0} ,
x ∈ ∂X+ ⇒ 0 = 〈x, x′0〉 for some x′0 ∈ X ′+ \ {0} .

One denotes a subset U ⊆ X as X+-convex, if for all x, x̄ ∈ U satisfying x < x̄
the inclusion x, x̄ := {x+ θ(x̄− x) ∈ X : θ ∈ [0, 1]} ⊆ U holds. For instance,
the cone X+ itself is X+-convex, and so is every convex set U .
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A.1 Monotone mappings

Let U ⊆ X. A mapping F : U → X is called 1

• monotone, if x < x̄⇒ F (x) 6 F (x̄),
• strictly monotone, if x < x̄⇒ F (x) < F (x̄),
• strongly monotone, if x < x̄⇒ F (x)� F (x̄) for all x, x̄ ∈ U .

When working with several cones, we sometimes write X+-monotone etc.,
in order to refer to a specific cone and proceed similarly with our further
terminology. In particular, a linear mapping T ∈ L(X) is

• monotone (then called positive), if T (X+ \ {0}) ⊆ X+,
• strictly monotone (then called strictly positive), if T (X+ \ {0}) ⊆ X+ \ {0},
• strongly monotone (then called strongly positive), if T (X+ \ {0}) ⊆ X◦+.

We denote T ∈ L(X) as X+-injective, if its kernel satisfies N(T )∩X+ = {0}.
Note that T is strictly monotone, if and only if it is monotone andX+-injective.
A strongly monotone T yields the inclusion TX◦+ ⊆ X◦+.

Lemma A.2 (conditions for monotonicity) Suppose F : U → X is a C1-
mapping on a X+-convex, open subset U ⊆ X. If DF (x) ∈ L(X) is positive for
all x ∈ U , then F is monotone. Moreover, the following holds with x, x̄ ∈ U :

(a) If for every x < x̄ and x∗ ∈ x, x̄ the derivative DF (x∗) is X+-injective,
then F is strictly monotone.

(b) If X+ is solid and for every x < x̄ there exists some x∗ ∈ x, x̄ such that
DF (x∗) is strongly positive, then F is strongly monotone.

PROOF. The monotonicity of F and (b) are shown in [8, Lemma 2.2].
(a) Given x, x̄ ∈ U with x < x̄ one has F (x) 6 F (x̄). We prove F (x) 6= F (x̄)
and thereto abbreviate xθ := x+ θ(x̄− x) ∈ U for θ ∈ [0, 1]. By monotonicity
of DF (xθ) we derive from Lemma A.1(a) that 〈DF (xθ)(x̄− x), x′〉 ≥ 0 holds
for all x′ ∈ X ′+. The X+-injectivity of DF (xθ) implies DF (xθ)(x̄ − x) 6= 0.
From again Lemma A.1(a) we see that there exists a functional x′θ ∈ X ′+ \ {0}
with 〈DF (xθ)(x̄− x), x′θ〉 > 0. Furthermore, the continuity of DF yields that
there exists an εθ > 0 with

〈DF (xs)(x̄− x), x′θ〉 > 0 for all s ∈ (θ − εθ, θ + εθ).

Since the family {(θ−εθ, θ+εθ) : θ ∈ [0, 1]} is an open cover of [0, 1], the Borel-
Lebesgue Theorem provides a finite subcover {(θi − εi, θi + εi) : 1 6 i 6 n}.

1 we implicitly assume here that U contains at least two x, x̄ ∈ U such that x < x̄
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If we define x̃′ :=
∑n
i=1 x

′
θi
∈ X ′+ \ {0}, then 〈DF (xθ)(x̄− x), x̃′〉 > 0 and thus

〈F (x̄)− F (x), x̃′〉 =
∫ 1

0
〈DF (xθ)(x̄− x), x̃′〉 dθ > 0,

by the Mean Value Theorem, which finally guarantees that F (x̄) 6= F (x). 2

A.2 Subhomogeneous mappings

A self-mapping F : X+ → X+ is called 2

• subhomogeneous, if 0 < x⇒ θF (x) 6 F (θx),
• strictly subhomogeneous, if 0 < x⇒ θF (x) < F (θx),
• strongly subhomogeneous, if 0 � x ⇒ θF (x) � F (θx) for all x ∈ X+ and
θ ∈ (0, 1).

Affine-linear mappings F (x) = Tx + y with positive T ∈ L(X) and y ∈ X+

are always subhomogeneous, while strict subhomogeneity requires an inhomo-
geneity y ∈ X+ \ {0} and strong subhomogeneity holds for y ∈ X◦+.

Lemma A.3 (conditions for subhomogeneity) Suppose F : U → X is
differentiable.

(a) F is subhomogeneous, if and only if DF (x)x 6 F (x) for all x ∈ X+\{0}.
(b) If DF : X+ → L(X) is continuous and DF (x)x < F (x) for all x ∈

X+ \ {0}, then F is strictly subhomogeneous.
(c) If X+ is solid and DF (x)x � F (x) for all x ∈ X◦+, then F is strongly

subhomogeneous.

The differentiability of F : X+ → X+ is to be understood so that F has a
differentiable extension F̄ : U → X to an open superset U ⊆ X of X+.

PROOF. Given x′ ∈ X ′+ and x ∈ X+ \ {0}, our assumptions guarantee that
the function φx′,x : (0, 1]→ R, φx′,x(θ) := 1

θ
〈F (θx), x′〉 is differentiable with

φ̇x′,x(θ) = 1
θ2
〈θDF (θx)x− F (θx), x′〉 for all θ ∈ (0, 1]. (A.2)

(a) Let us begin with preparations:
(I) Claim: F is subhomogeneous, if and only if φ̇x′,x(θ) 6 0 for every θ ∈ (0, 1],

2 note that the terminology is not consistent in the literature: [3, p. 112, Def. 4.1.1]
speaks of sublinear instead of subhomogeneous maps and additionally assumes
monotonicity. Both [3, p. 112, Def. 4.1.1] and [16, p. 52, Def. 2.3.1] require the strict
subhomogeneity condition to hold merely for 0 � x, while [9, p. 142, Ex. 5.1.11]
assumes strong subhomogeneity to be satisfied for all 0 < x
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x′ ∈ X ′+ \ {0} and x ∈ X+ \ {0}.
(⇒) If F is subhomogeneous, then θ1

θ2
F (θ2x) 6 F (θ1x), i.e., the estimate

1
θ2
F (θ2x) 6 1

θ1
F (θ1x) for all 0 < θ1 6 θ2 6 1 and x ∈ X+ \ {0} results.

Referring to Lemma A.1(a) this implies that φx′,x is nonincreasing and hence
φ̇x′,x(θ) 6 0 for all θ ∈ (0, 1].
(⇐) Conversely, φ̇x′,x(θ) 6 0 is equivalent to φx′,x being nonincreasing on (0, 1].
Thus, φx′,x(1) 6 φx′,x(θ) and since x′ ∈ X+ \{0} was arbitrary, we obtain that
F (x) 6 1

θ
F (θx) for all θ ∈ (0, 1] from Lemma A.1(a), i.e. θF (x) 6 F (θx).

(II) Claim: F is strongly subhomogeneous, if and only if the functions φx′,x are
strictly decreasing on (0, 1) for all x′ ∈ X ′+ \ {0} and x ∈ X◦+.
This follows similarly as in step (I) using Lemma A.1(b).
(III) The relation DF (x)x 6 F (x) is equivalent to θDF (θx)x 6 F (θx)
for θ ∈ (0, 1] and x ∈ X+ \ {0}. By Lemma A.1(a) this is rephrased as
〈θDF (θx)x− F (θx), x′〉 6 0 which, in turn, thanks to (A.2) is necessary and
sufficient for φ̇x′,x(θ) 6 0 for all θ ∈ (0, 1]. Then step (I) guarantees the claimed
characterization of subhomogeneity.
(b) Let θ ∈ (0, 1) and x ∈ X+ \ {0}. By assumption it is ϑDF (ϑx)x < F (ϑx)
for all ϑ ∈ [θ, 1]. Using Lemma A.1(a) for any ϑ ∈ [θ, 1] there is a x′ϑ ∈ X ′+\{0}
such that 〈ϑDF (ϑx)x− F (ϑx), x′ϑ〉 < 0. By continuity of DF and F there ex-
ists a εϑ > 0 with

〈sDF (sx)x− F (sx), x′ϑ〉 < 0 for all s ∈ (ϑ− εϑ, ϑ+ εϑ).

Since {(εϑ−ϑ, εϑ+ϑ) : ϑ ∈ [θ, 1]} is an open cover of [θ, 1], the Borel-Lebesgue
Theorem yields a finite subcover {(εi − ϑi, ϑi + εi) : 1 6 i 6 n} of [θ, 1]. If
we define x̃′θ :=

∑n
i=1 x

′
ϑi
∈ X ′+ \ {0}, then 〈ϑDF (ϑx)x− F (ϑx), x̃′θ〉 < 0 for

all ϑ ∈ [θ, 1]. By (A.2) this shows that φx̃′
θ
,x is strictly decreasing on [θ, 1],

in particular φx̃′
θ
,x(1) < φx̃′

θ
,x(θ) and consequently 〈θF (x), x̃′θ〉 < 〈F (θx), x̃′θ〉.

This means that θF (x) 6= F (θx).
(c) Let 0 � x. The inequality DF (x)x � F (x) yields θF (θx)x � F (θx)
and Lemma A.1(b) implies 〈θDF (θx)x− F (θx), x′〉 < 0 for all θ ∈ (0, 1) and
functionals x′ ∈ X ′+ \{0}. Given this, using (A.2) results φ̇x′,x(θ) < 0 on (0, 1)
and hence φx′,x is strictly decreasing. Now step (II) yields the assertion. 2

Corollary A.4 (conditions for subhomogeneity) Suppose F : X+ → X
is monotone and differentiable. Then DF (x)x 6 F (x) for all x ∈ X+ if and
only if F is subhomogeneous.

PROOF. (⇒) We only have to prove that F : X+ → X+. ByDF (x)x 6 F (x)
for x = 0, we get that 0 6 F (0). Monotonicity implies F (0) 6 F (x) for all
0 < x. Hence, 0 6 F (x) for all 0 < x and it results F (X+) ⊆ X+.
(⇐) F : X+ → X+ implies that 0 6 F (0). The rest is due to Lemma A.3. 2
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A.3 Concave mappings

Let U ⊆ X be X+-convex throughout this subsection. Given this, a mapping
F : U → X is called 3

• order or X+-concave, if x < x̄⇒ θF (x) + (1− θ)F (x̄) 6 F (θx+ (1− θ)x̄),
• strictly X+-concave, if x < x̄⇒ θF (x) + (1− θ)F (x̄) < F (θx+ (1− θ)x̄),
• strongly X+-concave, if x� x̄⇒ θF (x) + (1− θ)F (x̄)� F (θx+ (1− θ)x̄)

for all x, x̄ ∈ U and θ ∈ (0, 1).

Corresponding notions of order convexity for a mapping F : U → X result
when F is replaced by −F in the above definitions.

Note that (strict or strong) subhomogeneity holds for (strictly resp. strongly)
X+-concave mappings F : X+ → X+, with the reference point x = 0. In this
sense, the concavity concepts for F : X+ → X+ are less general than the
respective subhomogeneity notions.

Affine-linear maps F (x) = Tx+ y with T ∈ L(X) and y ∈ X are X+-concave,
but never strictly or strongly X+-concave.

Lemma A.5 (conditions for concavity) Suppose F : U → X is a C1-
mapping on a X+-convex, open subset U ⊆ X.

(a) F is X+-concave, if and only if DF (x̄)(x̄ − x) 6 DF (x)(x̄ − x) for all
x, x̄ ∈ U , x < x̄.

(b) If DF (x̄)(x̄ − x) < DF (x)(x̄ − x) for all x, x̄ ∈ U , x < x̄, then F is
strictly X+-concave.

(c) If X+ is solid and DF (x̄)(x̄−x)� DF (x)(x̄−x) for all x, x̄ ∈ U , x� x̄,
then F is strongly X+-concave.

PROOF. (a)(⇒) Let F be X+-concave and x, x̄ ∈ U , x < x̄. First, the
estimate (1− θ)F (x) + θF (x̄) 6 F ((1− θ)x+ θx̄) = F (x+ θ(x̄− x)) implies

F (x+ (x̄− x))− F (x)−DF (x)(x̄− x)

6 1
θ

[F (x+ θ(x̄− x))− F (x)−DF (x)(θ(x̄− x))] for all θ ∈ (0, 1)

and in the limit θ ↘ 0 results F (x̄) − F (x) 6 DF (x)(x̄ − x). Second, note
that (1− θ)F (x̄) + θF (x) 6 F ((1− θ)x̄+ θx) = F (x̄− θ(x̄− x)) leads to

F (x̄− (x̄− x))− F (x̄) +DF (x̄)(x̄− x)

3 also for the notion of concavity the terminology is not consistent throughout the
literature: [3, p. 114, Def. 4.1.2] assumes a self-mapping of X+ and requires strict
concavity to hold only for all 0� x
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6 1
θ

[F (x̄− θ(x̄− x))− F (x̄) +DF (x̄)(θ(x̄− x))] for all θ ∈ (0, 1).

In the limit θ ↘ 0 follows DF (x̄)(x̄−x) 6 F (x̄)−F (x) and we conclude that
DF (x̄)(x̄− x) 6 DF (x)(x̄− x).
(a)(⇐) Conversely, for any x, x̄ ∈ U with x < x̄ we obtain x+ t(x̄−x) ∈ U for
all t ∈ [0, 1], since U is assumed to be X+-convex. This allows us to define a
function Φ : (0, 1]→ X as Φ(t) := 1

t
[F (x+ t(x̄− x))− F (x)] and we obtain

Φ̇(t) = − 1

t2
[F (x+ t(x̄− x))− F (x)] +

1

t
DF (x+ t(x̄− x))(x̄− x)

= −1

t

∫ 1

0
[DF (x+ θt(x̄− x))−DF (x+ t(x̄− x))](x̄− x) dθ

= − 1

t2

∫ t

0
DF (x+ ϑ(x̄− x))−DF (x+ t(x̄− x))(x̄− x) dϑ

from the Mean Value Theorem, where we used the substitution ϑ = tθ in the
last equality. Let t1 ∈ (0, 1). Integrating this identity over [t1, 1] we obtain

t1F (x̄) + (1− t1)F (x)− F (x+ t1(x̄− x))

= t1

∫ 1

t1

1

t2

∫ t

0
[DF (x+ t(x̄− x))−DF (x+ s(x̄− x))] (x̄− x) ds dt 6 0,

because for s ∈ (0, t] we have s(x̄− x) 6 t(x̄− x) and later by assumption

DF (x+ t(x̄− x))(x̄− x) 6 DF (x+ s(x̄− x))(x̄− x)

and DF (x+ t(x̄− x))((t− s)(x̄− x)) 6 DF (x+ s(x̄− x))((t− s)(x̄− x)).
Finally, as in (a)(⇐) one can establish (b) and (c) by means of corresponding
arguments given in the proof of Lemma A.3. 2
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