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ABSTRACT. The paper provides sufficient conditions for monotonicity, subhomogeneity
and concavity of vector-valued Hammerstein integral operators over compact domains, as
well as for the persistence of these properties under numerical discretizations of degenerate
kernel type. This has immediate consequences on the dynamics of Hammerstein integrod-
ifference equations and allows to deduce a local-global stability principle.

1. Introduction. The recent years showed an increasing interest in the dynamics and the
asymptotic behavior of integrodifference equations (IDEs for short). They are recursions

ut+1(x) =

∫
Ω

kt(x, y)gt(y, ut(y)) dy for all x ∈ Ω (1.1)

on spaces of continuous or integrable functions over Ω involving a Hammerstein integral
operator. Their popularity stems primarily from the field of theoretical ecology as tool to
describe the spatial dispersal of species over time. An advantage of IDEs compared to
alternative modelling approaches based e.g. reaction-diffusion equations is their flexibility.
By means of directly specifying a particular kernel kt, various different dispersal strategies
can be incorporated and fitted to given data, as illustrated for instance in [2, 10, 16, 20, 32].

In spite of these motivations the paper at hand serves different and possibly more basic
purposes related to the theory of Hammerstein operators. Such operators are the composi-
tion of a linear Fredholm integral operator with a nonlinear superposition operator. We give
conditions on the kernel kt and the growth function gt yielding that the resulting right-hand
sides of (1.1) possess structural properties such as monotonicity, subhomogeneity or con-
vexity. In this context monotonicity means that the problem preserves an order relation on
a real Banach space induced by an appropriate order cone. This, as well as subhomogeneity
or concavity of an operator has immediate consequences in various fields:
• For Dynamical Systems, IDEs (1.1) motivated from biological or ecological applica-

tions are often monotone. This property simplifies their long term behavior and we
refer to the survey [13], the monographs [5, 18] or [31, pp. 43ff, Chap. 2] providing
further information. For example, solutions to autonomous IDEs (1.1) generically
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converge to periodic solutions [29] or criteria for global stability of IDEs [10] are at
hand. Moreover, for general nonautonomous equations (1.1), [23] proves a limit set
trichotomy, while [26] contains information on the structure of pullback attractors
under monotonicity assumptions. Consequences of (additional) subhomogeneity are
discussed in [31, pp. 52–58] and implications of concavity are given in [18].

• In Analysis nonlinear elliptic BVPs (provided Green’s function yielding the kernel
is known, [21, pp. 181ff]) can be formulated as fixed point problems involving a
Hammerstein operator. Given this, a classical constructive method to solve nonlinear
problems are monotone iteration techniques (see e.g. [15], [27, pp. 167ff, Chap. 11]
or [30, p. 283, Thm. 7.A] etc.), which leads to an autonomous IDE (1.1). Several
fixed point results are based on related monotonicity assumptions [1]. Finally, [7]
provide conditions such that Hammerstein operators can be transformed into order-
preserving ones.

While it is evident how monotonicity of real-valued kernel functions in (1.1) carries over
to the integral operators, our approach is more flexible. We indeed allow Rd-valued inte-
gration kernels preserving order relations w.r.t. arbitrary cones in finite dimensions. So our
setting is sufficiently general to address systems of nonlinear equations, as well as multiple
species models in competitive/cooperative interaction. In particular, by our results ensuring
monotonicity, methods from [1, 5, 13, 18, 31] or the papers [10, 23, 26, 29] do apply.

Our further aim is related to the numerical analysis of integral equations and to compu-
tational simulation results for IDEs (1.1). We investigate the question, whether the above
structural properties of integral operators (monotonicity, subhomogeneity, concavity) are
preserved under commonly used spatial discretization techniques? This for instance en-
sures that monotone iteration applies and yields convergent iterates. For the dynamics
of IDEs, such results guarantee that simulations necessarily based on spatial discretiza-
tion reflect the qualitative asymptotic behavior of the original difference equation (1.1).
This paper actually focusses on degenerate kernel methods (yielding semi-discretizations).
Projection methods, and in particular Collocation or Bubnov-Galerkin approximations pri-
marily require linear techniques and were covered in [24], while Nyström methods (as full
discretizations) were addressed in the more general setting of Urysohn integral operators in
[25] already. Our focus is to establish the persistence of structural properties of Hammer-
stein integral operators and the resulting IDEs under spatial discretization. In contrast to
classical numerical analysis, we do not address consistency, stability or convergence issues
and refer to e.g. [3, 11] for such questions. We furthermore restrict to integral operators on
the space of continuous functions over a compact domain.

Concerning the related literature, we point out that parallel results in the more general
class of Urysohn operators were derived in [25]. Nevertheless our separate analysis of
Hammerstein operators appears legitimate, since it allows to combine linear results from
[24] with structural properties of Nemytskii operators. Moreover the method of degenerate
kernels applies and we put a stronger focus on IDEs. To our surprise we were not able
to find general studies dealing with monotonicity preserving spatial schemes in the area of
PDEs although studies on specific problems exist, for instance, see [4, 22]. Yet, monotonic-
ity conditions for temporal Runge-Kutta discretizations were tackled in [14] for ordinary
differential equations and in [9] for delay equations.

As an application we provide a criterion for systems of IDEs guaranteeing that local
exponential stability of a periodic solution implies its global asymptotic stability. This
extends previous results for scalar IDEs from [10].
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The paper is structured as follows: First, the necessary notation related to continuous
functions with values in finite-dimensional spaces and cones is established. In Sec. 2 suffi-
cient conditions on the growth functions are given such that the resulting Hammerstein op-
erators are monotone, subhomogeneous or order concave. In essence these properties carry
over from the growth functions having values in Rd to the integral operators mapping into
the continuous Rd-valued functions. Sec. 3 on spatial discretization of (1.1) tackles degen-
erate kernel methods, where similar problems as observed in [24] for projection methods
arise, i.e. various common interpolation techniques violate monotonicity. Results on mono-
tone Hammerstein IDEs are provided in Sec. 4, which include the promised local-global
stability principle in Thm. 4.4. Finally, Sec. 5 contains concrete applications illustrating
the above observations. An appendix collects the required basic results on cones in Banach
spaces and monotone, subhomogeneous or concave mappings.

Notation. We abbreviate R+ := [0,∞) for the nonnegative reals, |·| for norms on finite-di-
mensional spaces and 〈〈x, y〉〉 :=

∑d
j=1 xjyj for x, y ∈ Rd is the Euclidean inner product.

For a matrix S ∈ Rd×d, the element in row i and column j is Sij , while Id is the identity.
With a Banach space (X, ‖·‖), Ll(X) means the linear space of bounded l-linear map-

pings T : X l → X , l ∈ N, in particular L0(X) := X , L(X) := L1(X) are the
bounded operators and GL(X) the bounded invertible operators on X . We abbreviate
N(T ) := T−1({0}) for the kernel and σ(T ) ⊂ C for the spectrum of T ∈ L(X).

On subsets Ω of a metric space (X, d), Ω◦ is the interior and Ω the closure. If Ω 6= ∅
is compact, then C(Ω) abbreviates the linear space of continuous functions u : Ω → R
equipped with the maximum norm. We moreover endow Ω with the Borel σ-algebra A and
a measure µ such that (Ω,A, µ) becomes a measure space satisfying µ(Ω) <∞.

In the following, Y+ ⊂ Rd abbreviates an order cone inducing the relations ≤, < and
� on Rd (cf. (A.1) and App. A for the related terminology). By [24, Lemma 2.2] the set

C(Ω)d+ :=
{
u : Ω→ Rd|u(x) ∈ Y+ for all x ∈ Ω

}
.

is a cone. Whence, for any u, ū ∈ C(Ω)d the cone property allows us to introduce

u � ū :⇔ ū− u ∈ C(Ω)d+, u ≺ ū :⇔ ū− u ∈ C(Ω)d+ \ {0} .

In particular, C(Ω)d+ is normal, since Y+ ⊂ Rd is normal as a cone in a finite-dimensional
space. If Y+ is solid, then also C(Ω)d+ is solid and we define

u ≺≺ ū :⇔ ū− u ∈ (C(Ω)d+)◦.

Finally, for the convenience of the reader we restate a characterization from [24, Lemma 2.3]:

Lemma 1.1. The following holds for all u, ū ∈ C(Ω)d:
(a) u � ū ⇔ u(x) ≤ ū(x) for all x ∈ Ω⇔ 〈〈u(x), y′〉〉 ≤ 〈〈ū(x), y′〉〉 for all x ∈ Ω and

y′ ∈ Y ′+.
(b) If Y+ is solid, then u ≺≺ ū⇔ u(x)� ū(x) for all x ∈ Ω⇔ 〈〈u(x), y′〉〉 < 〈〈ū(x), y′〉〉

for all x ∈ Ω, y′ ∈ Y ′+ \ {0}.

2. Hammerstein integral operators. Given kernels k : Ω2 → L(Rd) and growth func-
tions g : Ω× Z → Rd on a set Z ⊆ Rd, this paper deals with Hammerstein operators

H : U → C(Ω)d, H(u) :=

∫
Ω

k(·, y)g(y, u(y)) dµ(y) (2.1)

canonically given on the set

U :=
{
u ∈ C(Ω)d : u(x) ∈ Z for all x ∈ Ω

}
.
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It is established in [25, Lemma 2.2] that openness or Y+-convexity of Z extend to openness
resp. C(Ω)d+-convexity of U .

Hammerstein operators can be addressed using two approaches: First, they are a spe-
cial case of Urysohn integral operators [21, pp. 164ff, Sect. V.3]. Then under appropriate
assumptions on k, g the functions f : Ω2 × Z → Rd,

f(x, y, z) := k(x, y)g(y, z), D3f(x, y, z) = k(x, y)D2g(y, z)

do fulfill [25, Hypothesis (U l)] and the criteria for monotonicity, subhomogeneity or con-
cavity developed in [25, Sect. 2] readily apply to (2.1).

Second, Hammerstein operators can be written as composition

H = KG (2.2)

of a linear (bounded) Fredholm integral operator

K : C(Ω)d → C(Ω)d, Ku :=

∫
Ω

k(·, y)u(y) dµ(y) (2.3)

with a nonlinear Nemytskii operator

G : U → C(Ω)d, G(u)(x) := g(x, u(x)) for all x ∈ Ω. (2.4)

Because a detailed analysis of Urysohn operators was given in [25] already, we follow the
latter approach and assume:

Hypothesis. With nonempty Z ⊆ Rd, functions k : Ω2 → L(Rd), g : Ω × Z → Rd and
l ∈ {0, 1} assume:

(L) k(x, ·) : Ω→ L(Rd) is µ-measurable for all x ∈ Ω with

sup
x∈Ω

∫
Ω

|k(x, y)| dµ(y) <∞

and limx→x0

∫
Ω
|k(x, y)− k(x0, y)| dµ(y) = 0 for all x0 ∈ Ω.

(N l) Dl
2g : Ω× Z → Ll(Rd) exists as a continuous function.

Consequently, the operators (2.3) and (2.4) are well-defined and continuous for l = 0,
and so are the resulting Hammerstein operators (2.1).

The assumption concerning (N l) is to be understood as follows: In case conditions
on the derivative D2g are applied, then (N l) is supposed to hold for l ∈ {0, 1}, while
otherwise it suffices to have (N0). We proceed accordingly for example in Thms. 2.3, 2.6
and 2.9 below.

The following is based on several sufficient criteria for positivity of the linear Fredholm
operator K from [24, Sect. 2]. We list their assumptions for later reference:

Hypothesis. With k(x, y) ∈ L(Rd) assume:

L0 k(x, y) is Y+-positive for all x ∈ Ω and µ-a.a. y ∈ Ω,
L1 nonempty, open subsets of Ω have positive measure, there exists a x̄ ∈ Ω so that

k(x̄, ·) is continuous on Ω and k(x̄, y) is Y+-injective for µ-a.a. y ∈ Ω (cf. App. A),
L2 nonempty, open subsets of Ω have positive measure, Y+ is solid and k(x, y) is strongly

Y+-positive for all x ∈ Ω and µ-almost all y ∈ Ω,
L3 µ(Ω) > 0, Y+ is solid and k(x, y)Y ◦+ ⊆ Y ◦+ for all x ∈ Ω and µ-a.a. y ∈ Ω.
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2.1. Monotonicity. Since monotonicity properties of Fredholm operators K were settled
in [24, Thm. 2.6] already, it remains to focus on the Nemytskii operator G. For this, we list
the following set of assumptions:

Hypothesis. M0 g(x, ·) : Z → Rd is Y+-monotone for all x ∈ Ω,
M1 g(x, ·) : Z → Rd is one-to-one for all x ∈ Ω,
M2 g(x, ·) : Z → Rd is strongly Y+-monotone for all x ∈ Ω.

Proposition 2.1 (monotonicity of G). Let Hypothesis (N0) hold. Then a Nemytskii opera-
tor G : U → C(Ω)d fulfills:

(a) G is C(Ω)d+-monotone, if and only if M0 holds.
(b) If M0 ∧M1 hold, then G is strictly C(Ω)d+-monotone.
(c) Let Y+ be solid. If G is strongly C(Ω)d+-monotone, then M2 holds.

Proof. (a) Let z, z̄ ∈ Z, z < z̄.
(⇒) Define the constant functions u(x) :≡ z, ū(x) :≡ z̄ on Ω. Then u ≺ ū and because

G is monotone, one has G(u) � G(ū). Therefore, Lemma 1.1(a) implies

〈〈g(x, z), y′〉〉 (2.4)
= 〈〈G(u)(x), y′〉〉 ≤ 〈〈G(ū)(x), y′〉〉 (2.4)

= 〈〈g(x, z̄), y′〉〉
for all x ∈ Ω and y′ ∈ Y ′+. Referring to Lemma A.1(a) this means g(x, z) ≤ g(x, z̄), i.e.
the mappings g(x, ·) are Y+-monotone for all x ∈ Ω.
(⇐) Conversely, suppose that g(x, ·) is Y+-monotone for all x ∈ Ω and assume u ≺ ū.
This implies u(x) ≤ ū(x) and consequently

〈〈G(u)(x), y′〉〉 (2.4)
= 〈〈g(x, u(x)), y′〉〉 ≤ 〈〈g(x, ū(x)), y′〉〉 (2.4)

= 〈〈G(ū)(x), y′〉〉
holds for all x ∈ Ω, y′ ∈ Y ′+. Whence, Lemma 1.1(a) shows G(u) � G(ū).

(b) Let u ≺ ū. There exists an x0 ∈ Ω such that u(x0) 6= ū(x0), whereas (a) implies
G(u) � G(ū). Thus, it remains to show that G(u) 6= G(ū), which results from the injectivity
assumption on g(x, ·) yielding g(x0, u(x0)) 6= g(x0, ū(x0)).

(c) Let z, z̄ ∈ Z, z < z̄ and u ≺ ū denote the constant functions defined in (a). Since G

is strongly monotone, one has G(u) ≺≺ G(ū) and Lemma 1.1(b) implies

〈〈g(x, z), y′〉〉 (2.4)
= 〈〈G(u)(x), y′〉〉 < 〈〈G(ū)(x), y′〉〉 (2.4)

= 〈〈g(x, z̄), y′〉〉
for all y′ ∈ Y ′+ \ {0} and x ∈ Ω. Now Lemma A.1(b) yields g(x, z)� g(x, z̄), i.e. g(x, ·)
is strongly Y+-monotone for all x ∈ Ω.

Besides the criteria from Prop. 2.1, also the abstract Lemma A.2 allows to come up
with sufficient conditions for G to be monotone. Under the additional Hypothesis (N1) the
Nemytskii operator G is of class C1 with the derivative

[DG(u)v](x) = D2g(x, u(x))v(x) for all x ∈ Ω, u ∈ U◦, v ∈ C(Ω)d. (2.5)

Therefore, by the Chain Rule [21, p. 33, Lemma 4.1] Hammerstein operators (2.1) are
continuously differentiable with the derivative DH(u) = KDG(u).

Hypothesis. With open and Y+-convex Z ⊆ Rd assume:
M ′0 D2g(x, z) is Y+-positive for all x ∈ Ω and z ∈ Z,
M ′1 D2g(x, z) is Y+-injective for all x ∈ Ω and z ∈ Z.

Note that M ′0 implies the previous assumption M0 by Lemma A.2.

Corollary 2.2. Let Hypotheses (N l) hold for l ∈ {0, 1} with open, Y+-convex Z. If
(a) M ′0 holds, then G : U → C(Ω)d is C(Ω)d+-monotone,
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(b) M ′0 ∧M ′1 hold, then G is strictly C(Ω)d+-monotone.

Proof. (a) By Lemma A.2 we see thatM ′0 impliesM0 and Prop. 2.1(a) yields the assertion.
(b) Due to [25, Lemma 2.2] the set U is open and C(Ω)d+-convex. Since M ′0 holds, G is

monotone by (a) and according to Lemma A.2(b) it remains to show that, given u, ū ∈ U
with u ≺ ū, the derivative DG(u∗) is C(Ω)d+-injective for all u∗ ∈ u, ū. This means

{0} =
{
v ∈ C(Ω)d+ : DG(u∗)v = 0

} (2.5)
=
{
v ∈ C(Ω)d+ : D2g(x, u∗(x))v(x) ≡ 0 on Ω

}
,

for which M ′1 is a sufficient condition.

The fact that we gave merely a necessary condition for the strong C(Ω)d+-monotonicity
of G in Prop. 2.1(c) is not a serious problem:

Theorem 2.3 (monotonicity of H). Let Hypotheses (L) and (N l) hold with l ∈ {0, 1}. If
(a) L0 ∧ (M0 ∨M ′0) hold, then a Hammerstein operator H : U → C(Ω)d is C(Ω)d+-

monotone,
(b) (L0 ∧ L1) ∧ ((M0 ∧M1) ∨ (M ′0 ∧M ′1)) hold, then H is strictly C(Ω)d+-monotone,
(c) L2 ∧ ((M0 ∧M1) ∨ (M ′0 ∧M ′1)) hold, then H is strongly C(Ω)d+-monotone.

Proof. (a) The operator K is monotone due to [24, Thm. 2.6] and so is G by Prop. 2.1(a).
Hence, (2.2) is a composition of monotone operators and therefore monotone.

(b) Similarly, [24, Thm. 2.6(a)] guarantees that K is strictly monotone and it remains
to provide conditions that G is strictly monotone. According to Prop. 2.1(b) this requires
M0 ∧ M1 to hold, or, by Cor. 2.2(b) the conditions M ′0 ∧ M ′1 must be satisfied. This
guarantees that H is a composition of strictly monotone operators.

(c) The assumption L2 yields that K is strongly positive due to [24, Thm. 2.6(b)], while
G is strictly monotone by Prop. 2.1(b) or Cor. 2.2(b). Therefore, H is strongly monotone
due to Cor. A.3(b).

2.2. Subhomogeneity. In this subsection we assume Z = Y+ and obtain U = C(Ω)d+.
It is clear that a positive Fredholm operator K ∈ L(C(Ω)d) is subhomogeneous. The
corresponding property of a growth function g extends to G and in turn to Hammerstein
operators.

Hypothesis. With a function g : Ω× Y+ → Y+ assume:
S0 g(x, ·) is Y+-subhomogeneous for all x ∈ Ω,
S1 g(x, ·) is strictly Y+-subhomogeneous for all x ∈ Ω,
S2 g(x, ·) is strongly Y+-subhomogeneous for all x ∈ Ω.

Proposition 2.4 (subhomogeneity of G). Let Hypothesis (N0) hold. Then a Nemytskii
operator G : C(Ω)d+ → C(Ω)d+ fulfills:

(a) G is C(Ω)d+-subhomogeneous, if and only if S0 holds.
(b) If S1 holds, then G is strictly C(Ω)d+-subhomogeneous.
(c) Let Y+ be solid. If G is strongly C(Ω)d+-subhomogeneous, then S2 holds.

Proof. (a) (⇒) Let z ∈ Y+ \ {0}. If u(x) :≡ z on Ω, then 0 ≺ u and because G is
subhomogeneous it results θG(u) � G(θu) for θ ∈ (0, 1). Thus, Lemma 1.1(a) leads to

〈〈θg(x, z), y′〉〉 (2.4)
= 〈〈θG(u)(x), y′〉〉 ≤ 〈〈G(θu)(x), y′〉〉 (2.4)

= 〈〈g(x, θz), y′〉〉 for all x ∈ Ω

and all y′ ∈ Y ′+. By means of Lemma A.1(a) this shows θg(x, z) ≤ g(x, θz), i.e. the
mapping g(x, ·) is Y+-subhomogeneous for all x ∈ Ω.
(⇐) Clearly, G : C(Ω)d+ → C(Ω)d+ is well-defined. Let u ∈ C(Ω)d, 0 ≺ u and θ ∈ (0, 1).
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In case 0 = u(x), by 0 � G(0) we have θG(u)(x) = θg(x, 0) ≤ g(x, 0) = G(θu)(x).
Moreover, in case 0 < u(x) by assumption

〈〈θG(u)(x), y′〉〉 (2.4)
= 〈〈θg(x, u(x)), y′〉〉 ≤ 〈〈g(x, θu(x)), y′〉〉 (2.4)

= 〈〈G(θu)(x), y′〉〉
holds for all y′ ∈ Y ′+. Whence, θG(u) � G(θu).

(b) Let 0 ≺ u and θ ∈ (0, 1). There exists an x0 ∈ Ω with u(x0) 6= 0, while (a) implies
θG(u) � G(θu). Hence, θG(u) 6= G(θu) remains to be shown, but results as follows: Since
g(x0, ·) is strictly subhomogeneous, it is θg(x0, u(x0)) < g(x0, θu(x0)) and consequently
θG(u)(x0) 6= G(θu)(x0) due to (2.4).

(c) Let 0� z, 0 ≺≺ u be the constant function introduced in (a) and θ ∈ (0, 1). Since G

is strongly subhomogeneous, one has θG(u) ≺≺ G(θu) and Lemma 1.1(b) guarantees

〈〈θg(x, z), y′〉〉 (2.4)
= 〈〈θG(u)(x), y′〉〉 < 〈〈G(θu)(x), y′〉〉 (2.4)

= 〈〈g(x, θz), y′〉〉 for all x ∈ Ω

and all y′ ∈ Y ′+ \ {0}. Then Lemma A.1(b) implies θg(x, z) � g(x, θz), that is g(x, ·) is
strongly subhomogeneous for all x ∈ Ω.

Note that alternative sufficient conditions for subhomogeneity of g(x, ·) in terms of the
partial derivativeD2g can be derived using Lemma A.4. Here the differentiability of g(x, ·)
on the cone Y+ is to be understood such that there exists an open superset Z̃ ⊃ Y+ on which
the partial derivativeD2g(x, ·) exists. An alternative approach is given in terms of the cone
differentiability from e.g. [6, pp. 225–226].

Hypothesis. With a function g : Ω× Y+ → Y+ assume:
S′0 D2g(x, z)z ≤ g(x, z) for all x ∈ Ω and z ∈ Y+ \ {0},
S′1 D2g(x, z)z < g(x, z) for all x ∈ Ω and z ∈ Y+ \ {0},
S′2 D2g(x, z)z � g(x, z) for all x ∈ Ω and z ∈ Y ◦+.

Corollary 2.5. Let Hypotheses (N l) hold for l ∈ {0, 1}. If g(x, ·) : Y+ → Y+ for all
x ∈ Ω, then the following holds:

(a) S′0 if and only if G : C(Ω)d+ → C(Ω)d+ is C(Ω)d+-subhomogeneous,
(b) if S′1 holds, then G is strictly C(Ω)d+-subhomogeneous,
(c) if S′2 holds, then G is strongly C(Ω)d+-subhomogeneous.

Proof. (a) Combined with S′0 we obtain from Lemma A.4(a) that g(x, ·) is subhomoge-
neous, i.e. S0 holds. Then the claim is a consequence of Prop. 2.4(a).

(b) Proceed as in (a) using Lemma A.4(b) and Prop. 2.4(b).
(c) Similar ideas to Prop. 2.4 and Lemma A.4(c).

Theorem 2.6 (subhomogeneity of H). Let Hypotheses (L) and (N l) hold with l ∈ {0, 1}.
If

(a) L0 ∧ (S0 ∨ S′0) holds, then a Hammerstein operator H : C(Ω)d+ → C(Ω)d+ is
C(Ω)d+-subhomogeneous,

(b) (L0 ∧ L1) ∧ (S1 ∨ S′1) holds, then H is strictly C(Ω)d+-subhomogeneous,
(c) L2 ∧ (S1 ∨ S′1) or L3 ∧ S′2 holds, then H is strongly C(Ω)d+-subhomogeneous.

Proof. (a) By assumption L0, the Fredholm operator K is positive (cf. [24, Thm. 2.6]).
Moreover, G is subhomogeneous due to Prop. 2.4(a) or Cor. 2.5(a). Hence, Cor. A.5(a)
yields that (2.2) is subhomogeneous.

(b) From [24, Thm. 2.6(a)] we conclude that K is strictly positive, while G is strictly
subhomogeneous, provided S1 (see Prop. 2.4(b)) or S′1 (cf. Cor. 2.5(b)) holds. Then the
composition (2.2) is strictly subhomogeneous due to Cor. A.5(b).
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(c) First, if assumption L2 holds, then K is strongly positive by [24, Thm. 2.6(b)]. As
above in (b) we see that G is strictly subhomogeneous. Second, if L3 holds, then K leaves
the interior of C(Ω)d+ invariant due to [24, Thm. 2.6(c)], while Cor. 2.5(c) ensures that G is
strongly subhomogeneous. In both cases, Cor. A.5(c) guarantees that the composition (2.2)
is strongly subhomogeneous.

2.3. Concavity. Concavity of a mapping is strongly related to subhomogeneity. There-
fore, the following is largely parallel to Sec. 2.2.

Hypothesis. With a Y+-convex set Z ⊆ Rd assume:
C0 g(x, ·) : Z → Rd is Y+-concave for all x ∈ Ω,
C1 g(x, ·) : Z → Rd is strictly Y+-concave for all x ∈ Ω,
C2 g(x, ·) : Z → Rd is strongly Y+-concave for all x ∈ Ω.

Proposition 2.7 (concavity of G). Let Hypothesis (N0) hold with a Y+-convex Z. Then a
Nemytskii operator G : U → C(Ω)d fulfills:

(a) G is C(Ω)d+-concave, if and only if C0 holds.
(b) If C1 holds, then G is strictly C(Ω)d+-concave.
(c) Let Y+ be solid. If G is strongly C(Ω)d+-concave, then C2 holds.

Proof. (a) (⇒) Let z, z̄ ∈ Z, z < z̄. The constant functions u(x) :≡ z and ū(x) :≡ z̄ on Ω
satisfy u ≺ ū and since G is order concave, one has θG(u)+(1−θ)G(ū) � G(θu+(1−θ)ū)
for all θ ∈ [0, 1]. Then Lemma 1.1(a) yields for all y′ ∈ Y ′+ and x ∈ Ω that

〈〈θg(x, z) + (1− θ)g(x, z̄), y′〉〉 (2.4)
= 〈〈θG(u)(x) + (1− θ)G(ū), y′〉〉

≤ 〈〈G(θu+ (1− θ)ū)(x), y′〉〉 (2.4)
= 〈〈g(x, θz + (1− θ)z̄), y′〉〉.

By Lemma A.1(a) this means θg(x, z) + (1 − θ)g(x, z̄) ≤ g(x, θz + (1 − θ)z̄), that is
g(x, ·) is Y+-concave for all x ∈ Ω.
(⇐) Conversely, suppose C0 holds and let u ≺ ū, θ ∈ (0, 1). In case u(x) = ū(x), it is

θG(u)(x) + (1− θ)G(ū)(x) = θg(x, u(x)) + (1− θ)g(x, ū(x)) = g(x, u(x))

= g(x, θu(x) + (1− θ)ū(x)) = G(θu+ (1− θ)ū)(x),

while in case u(x) < ū(x) results

〈〈θG(u)(x) + (1− θ)G(ū)(x), y′〉〉 (2.4)
= 〈〈θg(x, u(x)) + (1− θ)g(x, ū(x)), y′〉〉

≤ 〈〈g(x, θu(x) + (1− θ)ū(x)), y′〉〉 (2.4)
= 〈〈G(θu+ (1− θ)ū)(x), y′〉〉

for all y′ ∈ Y ′+. Thus, θG(u) + (1− θ)G(ū) � G(θu+ (1− θ)ū).
(b) Let u ≺ ū and θ ∈ (0, 1). There is an x0 ∈ Ω so that u(x0) 6= ū(x0), while (a)

implies θG(u) + (1 − θ)G(ū) � G(θu + (1 − θ)ū). It remains to establish θG(u) + (1 −
θ)G(ū) 6= G(θu + (1 − θ)ū), which results since g(x0, ·) is strictly order concave and
θg(x0, u(x0)) + (1− θ)g(x0, ū(x0)) < g(x0, θu(x0) + (1− θ)ū(x0)). The claim follows.

(c) Let z, z̄ ∈ Y+, z � z̄, θ ∈ (0, 1). Hence u ≺≺ ūwhere u, ū are the constant functions
from (a). Since G is strongly order concave, θG(u) + (1 − θ)G(ū) ≺≺ G(θu + (1 − θ)ū)
and Lemma 1.1(b) yield

〈〈θg(x, z) + (1− θ)g(x, z̄), y′〉〉 (2.4)
= 〈〈θG(u)(x) + (1− θ)G(ū)(x), y′〉〉

< 〈〈G(θu+ (1− θ)ū)(x), y′〉〉 (2.4)
= 〈〈g(x, θz + (1− θ)z̄), y′〉〉 for all x ∈ Ω

and all y′ ∈ Y ′+ \ {0}. Then Lemma A.1(b) implies that θg(x, z) + (1 − θ)g(x, z̄) �
g(x, θz + (1− θ)z̄) for θ ∈ (0, 1), i.e. g(x, ·) is strongly order concave for all x ∈ Ω.
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Sufficient conditions for the concavity of g(x, ·) in terms of the partial derivative D2g
can be provided using Lemma A.6.

Hypothesis. With an open, Y+-convex set Z ⊆ Rd assume:

C ′0 D2g(x, z̄)(z̄ − z) ≤ D2g(x, z)(z̄ − z) for all x ∈ Ω and z, z̄ ∈ U , z < z̄,
C ′1 D2g(x, z̄)(z̄ − z) < D2g(x, z)(z̄ − z) for all x ∈ Ω and z, z̄ ∈ U , z < z̄,
C ′2 D2g(x, z̄)(z̄ − z)� D2g(x, z)(z̄ − z) for all x ∈ Ω and z, z̄ ∈ U , z � z̄.

Corollary 2.8. Let Hypotheses (N l) hold for l ∈ {0, 1} with open, Y+-convex Z. Then

(a) C ′0 if and only if G : U → C(Ω)d+ is C(Ω)d+-concave,
(b) if C ′1 holds, then G is strictly C(Ω)d+-concave,
(c) if C ′2 holds, then G is strongly C(Ω)d+-concave.

Proof. The argument is analogous to the proof of Cor. 2.5 with Prop. 2.4 replaced by
Prop. 2.7 and employs Lemma A.6 instead of Lemma A.4.

Theorem 2.9 (concavity of H). Let Hypotheses (L) and (N l) hold with l ∈ {0, 1}. If

(a) L0 ∧ (C0 ∨ C ′0) holds, then a Hammerstein operator H : U → C(Ω)d+ is C(Ω)d+-
concave,

(b) (L0 ∧ L1) ∧ (C1 ∨ C ′1) holds, then H is strictly C(Ω)d+-concave,
(c) L2 ∧ (C1 ∨ C ′1) or L3 ∧ C ′2 holds, then H is strongly C(Ω)d+-concave.

Proof. The proof is analogous to the arguments required for Thm. 2.6, with Cor. A.5 re-
placed by Cor. A.7.

Remark 2.10 (order-convex mappings). Corresponding sufficient criteria for order-convex
Hammerstein operators result by simply applying the above conditions ensuring the con-
cavity of the Nemytskii operator G to the negative growth function −g.

Remark 2.11 (dispersal-growth operators). Again motivated by applications in theoretical
ecology [2, 20], we denote compositions

(G ◦K)(u)(x) = g

(
x,

∫
Ω

k(x, y)u(y) dµ(y)

)
for all x ∈ Ω

of Nemytskii operators (2.4) with Fredholm integral operators (2.3) as dispersal-growth
operators (dispersal preceds growth). As in the above Hammerstein case, sufficient con-
ditions for monotonicity result by combining the criteria L0-L2 from [24, Thm. 2.6] with
Prop. 2.1 or Cor. 2.2. Similarly, based on Cor. A.5, conditions for subhomogeneity result
by Prop. 2.4 or Cor. 2.5. Finally, by means of Cor. A.7 we can deduce their concavity
properties from Prop. 2.7 or Cor. 2.8.

3. Degenerate kernel discretization. Among the techniques to solve integral equations
numerically, Nyström and projection methods apply to general Urysohn integral operators
[24, 25]. We therefore discuss an approach tailor-made for Hammerstein operators H.
Thereto, assume the kernels k : Ω2 → L(Rd) can be approximated by so-called degenerate
kernels kn : Ω2 → L(Rd) giving rise to spatially discretized operators of the form

Knu =

∫
Ω

kn(·, y)u(y) dµ(y)

(cf. [11, pp. 65ff, Sect. 4.2]). More precisely, if {φ1, . . . , φn} is a set of linearly indepen-
dent continuous functions φi : Ω → R, 1 ≤ i ≤ n, and κi : Ω → L(Rd) are continuous,
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then kn is of the form

kn(x, y) =

n∑
i=1

φi(x)κi(y) for all x, y ∈ Ω.

Hence, one obtains Ku ∈ span {φ1, . . . , φn} for all u ∈ C(Ω)d.
In this general setting, positivity of the degenerate kernel approximation Kn can be

determined by means of the sign of

〈〈Knu(x), y′〉〉 =

n∑
i=1

φi(x)

∫
Ω

〈〈κi(y)u(y), y′〉〉dµ(y) for all x ∈ Ω, y′ ∈ Y ′+.

In order to obtain more feasible conditions, we restrict to degenerate kernels being deter-
mined by interpolation conditions. Thereto, suppose that {x1, . . . , xn} ⊆ Ω is a set of
pairwise different points so that

Pn := [φi(xj)]
n
i,j=1 ∈ GL(Rn).

In case Pn = In the set {φ1, . . . , φn} is called a Lagrange basis. The interpolation condi-
tions k(xj , y) = kn(xj , y) for all y ∈ Ω yield that κj(y) are determined by the equations

n∑
i=1

(Pn)ijκi(y) =

n∑
i=1

φi(xj)κi(y) = k(xj , y) for all 1 ≤ j ≤ n. (3.1)

Theorem 3.1 (positivity of Kn). If all the functions

σj : Ω→ R, σj(x) :=

n∑
i=1

(P−1
n )ijφi(x) for all 1 ≤ j ≤ n (3.2)

have nonnegative values, then the following hold:

(a) If k(x, y) is Y+-positive for all x ∈ Ω and µ-a.a. y ∈ Ω, then Kn is C(Ω)d+-positive.
(b) Let Y+ be solid. If k(x, y) is strongly Y+-positive for all x ∈ Ω and µ-a.a. y ∈ Ω

with
∀x ∈ Ω : ∃j0 ∈ {1, . . . , n} : σj0(x) > 0, (3.3)

then Kn is strongly C(Ω)d+-positive.

Proof. Let u ∈ C(Ω)d, 0 ≺ u and y′ ∈ Y ′+.
(a) Using Lemma 1.1(a) we obtain that 0 ≤ 〈〈k(x, y)u(y), y′〉〉 for all x ∈ Ω and µ-a.a.

y ∈ Ω. Thus, our assumptions lead to

〈〈Knu(x), y′〉〉 =

n∑
i=1

φi(x)

∫
Ω

〈〈κi(y)u(y), y′〉〉dµ(y)

(3.1)
=

n∑
i=1

φi(x)

∫
Ω

〈〈
n∑
j=1

(P−1
n )ijk(xj , y)u(y), y′〉〉dµ(y)

=

n∑
j=1

n∑
i=1

(P−1
n )ijφi(x)

∫
Ω

〈〈k(xj , y)u(y), y′〉〉dµ(y)

=

n∑
j=1

σj(x)

∫
Ω

〈〈k(xj , y)u(y), y′〉〉dµ(y) ≥ 0 for all x ∈ Ω.

With anew Lemma 1.1(a) this means 0 � Knu, i.e. Kn is positive.
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(b) If y′ 6= 0, then by means of Lemma 1.1(b) the assumption yields the strict inequality
0 < 〈〈k(x, y)u(x), y′〉〉 for all x ∈ Ω and µ-a.a. y ∈ Ω. As in (a) this implies

〈〈Knu(x), y′〉〉 =

n∑
j=1

σj(x)

∫
Ω

〈〈k(xj , y)u(y), y′〉〉dµ(y)
(3.3)
> 0 for all x ∈ Ω

and consequently Lemma 1.1(b) guarantees that Kn is strongly positive.

Note that Thm. 3.1 has a counterpart [24, Thm. 4.2] in the area of collocation methods,
which also requires nonnegativity of the functions σ1, . . . , σn defined in (3.2). There we
have demonstrated that Thm. 3.1 applies when φ1, . . . , φn are the hat functions (yielding
piecewise linear interpolation, see [24, Exam. 4.5]) or the Lagrange functions (leading to
polynomial interpolation, cf. [24, Exam. 4.6]). Nevertheless, the subsequent example illus-
trates that even in case Ω = [a, b] a popular interpolation method might violate positivity.

Example 3.2 (cubic splines). Let xi := a + i b−an for 0 ≤ i ≤ n. Suppose that φj ,
−2 ≤ j ≤ n, are the cubic B-splines (cf. [12, pp. 242ff]), which consist of nonnegative
functions. Beyond n+1 interpolation conditions they require additional conditions in order
to arrive at an invertible matrix Pn ∈ R(n+3)×(n+3). For this, canonical choices are:
• Hermite boundary conditionsD1k

n(a, y) = D1k(a, y) andD1k
n(b, y) = D1k(b, y)

(see [12, p. 251]) yield the functions σj from Fig. 1 (top, right) with the matrix

Pn =
1

6


− 3n
b−a 0 3n

b−a
1 4 1

. . . . . . . . .
1 4 1
− 3n
b−a 0 3n

b−a


• Natural splines [12, p. 251] are based on the boundary conditions D2

1k
n(a, y) = 0,

D2
1k
n(b, y) = 0, lead to the functions σj from Fig. 1 (bottom, left) and the matrix

Pn =
1

6



6n2

(b−a)2 − 12n2

(b−a)2
6n2

(b−a)2

1 4 1
. . . . . . . . .

1 4 1
6n2

(b−a)2 − 12n2

(b−a)2
6n2

(b−a)2


• For periodic splines [12, p. 252] one requires that D1k

n(a, y) = D1k
n(b, y) and

D2
1k
n(a, y) = D2

1k
n(b, y) leading to functions σj from Fig. 1 (bottom, right), where

Pn =
1

6



− 3n
b−a 0 3n

b−a
3n
b−a 0 − 3n

b−a
6n2

(b−a)2 − 12n2

(b−a)2
6n2

(b−a)2 − 6n2

(b−a)2
12n2

(b−a)2 − 6n2

(b−a)2

1 4 1
1 4 1

. . . . . . . . .
1 4 1

1 4 1


None of them results in an inverse matrix P−1

n with nonnegative entries. Indeed, the mini-
mal elements cn := minn+3

i,j=1(P−1
n )ij are illustrated in Fig. 1 (top, left) for 3 ≤ n ≤ 10 as

they become stationary for n→∞. Hence, Thm. 3.1 does not apply.
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2 4 6 8 10

n

-2

-1.5

-1

-0.5

c
n

Hermite
natural
periodic

-1 -0.5 0 0.5 1
x

-0.2

0

0.2

0.4

0.6

0.8

1

σ
j(x

)

The functions σ
j
 (Hermite)

-1 -0.5 0 0.5 1
x

-0.2

0

0.2

0.4

0.6

0.8

1

σ
j(x

)

The functions σ
j
 (natural)

-1 -0.5 0 0.5 1
x

-0.2

0

0.2

0.4

0.6

0.8

1

σ
j(x

)

The functions σ
j
 (periodic)

FIGURE 1. Top left: Minimal entries cn of the inverse collocation ma-
trices P−1

n for cubic splines depending on n (for a = −1, b = 1)
Functions σj : [−1, 1] → R, −2 ≤ j ≤ n, for n = 20 and different
types of boundary conditions

Remark 3.3 (discrete degenerate kernel methods). Evaluating the operators KnG still re-
quires to approximate integrals yielding discrete degenerate kernel methods. For this pur-
pose, it was shown in [24, Thm. 3.3] and [25, Sect. 2] that quadrature rules with positive
weights preserve monotonicity, as well as their strict and strong versions.

4. Integrodifference equations. Let I be a discrete interval, i.e. the intersection of a real
interval with the integers, and I′ := {t ∈ I : t+ 1 ∈ I}. We study nonautonomous differ-
ence equations

ut+1 = Ht(ut), (I0)

whose right-hand sides are Hammerstein integral operators

Ht : Ut → C(Ω)d, Ht(u) :=

∫
Ω

kt(·, y)gt(y, u(y)) dµ(y) (4.1)

on domains Ut :=
{
u ∈ C(Ω)d : u(x) ∈ Zt for all x ∈ Ω

}
for every t ∈ I′; one speaks

of (Hammerstein) integrodifference equations. For well-definedness of Ht, we assume
throughout this section that all kernels kt : Ω2 → L(Rd) satisfy Hypothesis (L), while all
growth functions gt : Ω × Zt → Rd with Zt ⊆ Rd fulfill the Hypothesis (N l) for l = 0
resp. l ∈ {0, 1}, when derivatives are involved.

In case I is unbounded above and there exists a θ ∈ N such that Ht+θ = Ht holds for
all t ∈ I, then (I0) is called θ-periodic.
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If Ht(Ut) ⊆ Ut+1 holds for t ∈ I′, then the forward solution to (I0) starting at an initial
time τ ∈ I in the initial state uτ ∈ Uτ is given by the compositions

ϕ(t; τ, uτ ) :=

{
Ht−1 ◦ . . . ◦Hτ (uτ ), τ < t,

uτ , t = τ.
(4.2)

We denote the resulting function ϕ :
{

(t, τ, u)× I2 × C(Ω)d : τ ≤ t, u ∈ Uτ
}
→ C(Ω)d

as general solution of (I0).
Structural properties of ϕ(t; τ, ·) : Uτ → Ut can be deduced as follows: Relying on the

conditions given in Thm. 2.3 we obtain that (strict) monotonicity of all Hs, τ ≤ s < t,
extends to ϕ(t; τ, ·) due to (4.2), while conditions for strong monotonicity are based on
Cor. A.3. Similarly, subhomogeneity or concavity of ϕ(t; τ, ·) can be tackled via Thm. 2.6
and Cor. A.5 resp. Thm. 2.9 and Cor. A.7. Of particular importance are cone mappings:

Theorem 4.1 (cone mappings). Let Z = Y+ and τ ≤ t. If the kernels kt : Ω2 → L(Rd)
satisfy L0, while the growth functions gt : Ω × Y+ → Y+ fulfill M0 and S0 for all t ∈ I′,
then ϕ(t; τ, ·) : C(Ω)d+ → C(Ω)d+ is a cone mapping.

Proof. Let s ∈ I′. By assumption, one has Us = C(Ω)d+. From Hypotheses L0 and M0

we conclude using Thm. 2.3(a) that Hs is monotone. With L0 and S0 it is a consequence
of Thm. 2.6(a) that Hs is also subhomogeneous. If τ ≤ t, then (4.2) implies that ϕ(t; τ, ·)
is monotone and subhomogeneous. Thus, Rem. A.8 yields the claim.

Remark 4.2 (dispersal-growth equations). Based on Rem. 2.11 we denote nonautonomous
difference equations of the form

ut+1(x) = gt+1

(
x,

∫
Ω

kt(x, y)ut(y) dµ(y)

)
for all x ∈ Ω (4.3)

as dispersal-growth equations. Their right-hand side is the composition Gt+1 ◦ Kt of a
Nemytskii operator Gt+1 with a Fredholm operator Kt, t ∈ I′. The general solutions ϕ to
an IDE (I0) and ϕ̂ to (4.3) are semi-conjugated via

ϕ(t; τ, uτ ) = Kt−1 ◦ ϕ̂(t− 1; τ,Gτ (uτ )) for all τ < t, uτ ∈ Uτ .

Monotonicity, subhomogeneity and concavity of the general solution ϕ̂ result analogously
to the Hammerstein case.

4.1. Linear integrodifference equations. Linearly homogeneous IDEs

ut+1 = Ktut, Ktu :=

∫
Ω

kt(·, y)u(y) dµ(y) (4.4)

have the evolution operator

Φ(t, τ) :=

{
Kt−1 · · ·Kτ , τ < t,

IC(Ω)d , τ = t
(4.5)

and the general solution of (4.4) is given by ϕ(t; τ, uτ ) = Φ(t, τ)uτ for all τ ≤ t and initial
values uτ ∈ C(Ω)d. Moreover, given τ < t, if the products

(y1, . . . , yt−τ−1) 7→ kt−1(x, yt−τ−1) · · · kτ+1(y2, y1)kτ (y1, y)

are integrable for all x ∈ Ω and µ-a.a. y ∈ Ω,
(4.6)
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then we define the iterated kernels ktτ : Ω2 → L(Rd),

ktτ (x, y) :=


∫

Ω
· · ·
∫

Ω
kt−1(x, yt−τ−1) · · · kτ+1(y2, y1)kτ (y1, y) dµ(y1) · · · dµ(yt−τ−1),

t > τ + 1,

kτ (x, y), t = τ + 1,

and thanks to Fubini’s theorem [28, p. 224, 7.3.4 Thm.] the evolution operator Φ(t, τ) can
be represented as single Fredholm operator

Φ(t, τ)u =

∫
Ω

ktτ (·, y)u(y) dµ(y) for all τ < t, u ∈ C(Ω)d. (4.7)

Assuming positivity of an iterated kernel is weaker than imposing conditions on each indi-
vidual kernel:

Theorem 4.3 (positivity of linear IDEs). Let τ < t and suppose (4.6) holds. If the iterated
kernels ktτ : Ω2 → L(Rd) satisfy

(a) L0, then Φ(t, τ) is C(Ω)d+-positive,
(b) L1, then Φ(t, τ) is strictly C(Ω)d+-positive,
(c) L2, then Φ(t, τ) is strongly C(Ω)d+-positive.

Proof. The assertion results from (4.7), if we apply [24, Thm. 2.6] to the kernel ktτ .

4.2. Global asymptotic stability. Since we are interested in asymptotic behavior of IDEs
(I0) now, suppose that I is unbounded above. Under these premises we arrive at

Theorem 4.4 (local-global stability principle). Let θ0, θ1 ∈ N, θ := lcm {θ0, θ1} and let
the cone Y+ be solid. Assume that the kernels kt : Ω2 → L(Rd) satisfy L0 and the growth
functions gt : Ω× Y+ → Y+ fulfill M0 and S0, as well as

(i) kt = kt+θ0 , gt = gt+θ0 ,
(ii) Ht((C(Ω)d+)◦) ⊆ (C(Ω)d+)◦

for all t ∈ I. If a θ1-periodic solution φ∗ = (φ∗t )t∈I of (I0) in (C(Ω)d+)◦ satisfies

|λ| < 1 for all λ ∈ σ(DHτ+θ−1(φτ+θ−1) · · ·DHτ (φτ )) (4.8)

and one τ ∈ I, then φ∗ is globally asymptotically stable w.r.t. (C(Ω)d+)◦.

Proof. Above all, C(Ω)d+ defines a solid and normal cone due to [24, Lemma 2.2]. Now let
τ ∈ I. Since (I0) is a θ0-periodic IDE by (i) and the solution φ∗ is θ1-periodic, the period
mapping πτ := ϕ(τ + θ; τ, ·) possesses the fixed point φ∗τ ∈ (C(Ω)d+)◦. First, it results
from Thm. 4.1 that πτ : C(Ω)d+ → C(Ω)d+ is a cone mapping, which leaves the interior of
the cone C(Ω)d+ invariant due to (ii). Second, πτ is of class C1 with the derivative

Dπτ (φ∗τ ) = DHτ+θ−1(φτ+θ−1) · · ·DHτ (φτ ).

Whence, it follows from (4.8) that σ(Dπτ (φ∗τ )) is contained in the open unit disc in C.
Then [8, Thm. 1] implies that φ∗τ is an exponentially stable fixed point of πτ . In particular
φ∗τ is locally attractive and thus Thm. A.10 applies to the period map πτ . Therefore, φ∗τ is
globally attractive, and being exponentially stable, it is even globally asymptotically stable
w.r.t. πτ . This property extends to the θ1-periodic solution φ∗ of (I0).
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4.3. Order-preserving discretizations. When simulating the dynamics of IDEs (1.1) the
integrals need to be approximated by a quadrature rule or one has to replace the state space
C(Ω)d by a finite-dimensional subspace (cf. [3, 11]). This means the right-hand side of
(1.1) is substituted by mappings Hn

t : Ut → C(Ω)d yielding a difference equation

ut+1 = Hn
t (ut). (In)

In essence, the right-hand sides Hn
t in (In) are of the form

Hn
t = Kn

t G for all t ∈ I′,

where the structure of the linear operator Kn
t depends on the discretization method:

For Nyström methods (cf. [24, Sec. 3]), the integral in (1.1) is replaced by a numerical
integration rule (involving weights wη > 0 and a set of nodes η ∈ Ωn := {η1, . . . , ηn}),
which implies the discretization

Kn
t (u) :=

n∑
j=1

kt(·, η)u(η).

Such mappings can be realized as special case of the general Hammerstein operators (2.1),
if we choose the weighted counting measure µ(Ω′) :=

∑
η∈Ω′ wη on the family of discrete

subsets Ω′ ⊆ Rκ and Ω = Ωn.
For degenerate kernel methods (cf. [24, Sec. 3]) on has

Kn
t u :=

n∑
j=1

φj(·)
∫

Ω

κj,t(y)u(y) dµ(y)

and monotonicity can be determined in terms of the criteria from Sec. 3.
In conclusion, it remains to study monotonicity properties of Kn

t , because Hn
t inher-

its subhomogeneity or concavity from the Nemytskii operator G derived in Prop. 2.4 and
Cor. 2.5 resp. Prop. 2.7 and Cor. 2.8.

5. Applications. Let us comment on applications from theoretical ecology [19], where we
restrict to the time-invariant case for simplicity.

First, various real-valued functions k : Ω2 → R+ are used as entries in matrix-valued
kernels for (2.3), in order to describe the dispersal stage in ecological models [19, 32];
therefore one speaks of dispersal kernels. Often such functions are of convolution form
k(x, y) = k̃(|x− y|) for all x, y ∈ Ω with some function k̃ : R+ → R+. Further details
were given in [24, Sec. 5.1].

Second, the sedentary state is described via certain (extensively studied) types of (non-
linear) growth functions g : Ω × Z → R+ in (2.1). Given the solid cone Y+ = R+, a
growth rate c : Ω→ R+ and a parameter δ > 0, typical examples are:

• Generalized Beverton-Holt function: g(y, z) := c(y)z
1+zδ

with Z = R+ is monotone
and subhomogeneous for δ ∈ (0, 1]. In case c(x) > 0 for all x ∈ Ω the generalized
Beverton-Holt model is strongly monotone and strongly subhomogeneous. The case
δ = 1 is the Beverton-Holt model and satisfies 0 ≤ g(y, z) ≤ c(y) for all y ∈ Ω.

• Hassell function: g(y, z) := c(y)z
(1+z)δ

with Z = R+ is monotone and subhomogeneous
for δ ∈ (0, 1]. In case c(x) > 0 for all x ∈ Ω the Hassell model is strongly monotone
and strongly subhomogeneous. Again, δ = 1 yields the Beverton-Holt model.

• Allee growth function: g(y, z) := c(y)z2

δ+z2 with Z = R+ satisfies 0 ≤ g(y, z) ≤ c(y)

for all y ∈ Ω, 0 ≤ z. It is monotone, but not subhomogeneous. In case c(x) > 0 for
all x ∈ Ω it is even strongly monotone.
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FIGURE 2. Dependence of the asymptotically stable fixed point u∗α of
(5.1) (left) and of the dominant eigenvalue on the dispersal rate α > 0
(right), where γ = 3, δ = 0.5 and Ω = [−1, 1]. The positive function u∗α
exists for α ∈ (0, α∗) with α∗ ≈ 0.84

• Ricker function: g(y, z) := c(y)ze−δz with Z = [0, 1
δ ] is monotone and fulfills the

inequality 0 ≤ g(y, z) ≤ e−1c(y) for all y ∈ Ω, z ∈ Z. Furthermore, strong
monotonicity holds in case c(x) > 0, x ∈ Ω.

Consequently, Thm. 4.4 can be applied to IDEs (1.1) involving the generalized Beverton-
Holt or Hassell function for δ ∈ (0, 1). In addition, the Allee growth and the Ricker
function allow monotone iteration techniques (cf. [27, pp. 163ff, Chapt. 11] and [30, p. 283,
Thm. 7.A]); in the Ricker case at least on order intervals.

5.1. Spatial Hassell model. In order to illustrate Thm. 4.4, we are interested in the non-
trivial fixed point of the autonomous Hassell equation

ut+1(x) =

∫
Ω

k(x, y)
c(y)ut(y)

(1 + ut(y))δ
dy for all x ∈ Ω (5.1)

with t ∈ Z, continuous functions k : Ω2 → R+, c : Ω → R+ and a parameter δ > 0. The
right-hand side of (5.1) is monotone for δ ∈ (0, 1] due to Thm. 2.3(a) and subhomogeneous
for parameters δ ∈ (0, 1] by Thm. 2.6(a).

Example 5.1 (Cauchy kernel). We equip (5.1) with the Cauchy kernel

k(x, y) :=
α

π(α2 + |x− y|2)

having dispersal rate α > 0 and a constant growth rate c(y) :≡ γ. The right-hand side of
(5.1) satisfies H(u)(x) > 0 for all x ∈ Ω and u ∈ C(Ω)d+\{0} yielding the assumption (ii)
of Thm. 4.4. The resulting Hassell IDE (5.1) depends on the three parameters α, γ, δ > 0.
Combining Thm. 4.4 with the local criterion [8, Thm. 1] one obtains:
• For α ∈ (0, α∗) there exists a globally asymptotically stable positive solution u∗α

until it transfers its stability to the trivial solution. Hence, an increase in the dispersal
rate destabilizes u∗α (see Fig. 2).

• The trivial solution looses its exponential stability at a growth rate γ∗ in terms of
a transcritical bifurcation. For γ > γ∗ there exists a globally asymptotically stable
positive fixed point u∗γ and we refer to Fig. 3 for an illustration.

• The positive solution u∗δ exists and is globally asymptotically stable for δ ∈ (0, 1).
Although monotonicity of the right-hand side is lost for δ > 1, the nonzero fixed
point remains (at least) locally asymptotically stable for δ > 1 (see Fig. 4).
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In order to obtain these results we have discretized (5.1) using the Nyström method based
on the trapezoidal rule with n = 50 nodes. The nontrivial fixed points were computed using
a Newton solver in Matlab and we relied on the Matlab function eig in order to compute
the dominant eigenvalue of the linearization (which is real by the Krein-Rutman theorem).
The fixed-point and eigenvalue branches from Figs. 2–4 were obtained by continuation
using a predictor-corrector method.

A more general class of IDEs to which the local-global stability principle Thm. 4.4
applies on the north-east cone Y+ := R2

+ are systems of spatial Hassell equations(
ut+1

vt+1

)
=

∫
Ω

(
k11(·, y) c11(y)ut(y)

(1+ut(y))δ11
+ k12(·, y) c12(y)vt(y)

(1+vt(y))δ12

k21(·, y) c21(y)ut(y)
(1+ut(y))δ21

+ k22(·, y) c22(y)vt(y)
(1+vt(y))δ22

)
dy,

with continuous functions kij : Ω2 → (0,∞), cij : Ω → (0,∞) and δij ∈ (0, 1) for
indices 1 ≤ i, j ≤ 2, that is, the right-hand side is monotone and subhomogeneous.

5.2. Nonautonomous spatial Leslie-Gower model. A monotone iteration technique for
nonautonomous integrodifference equations was developed in [26]. It allows to determine
maximal and minimal solutions contained in the pullback attractor of dissipative IDEs.
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Let I = Z and assume that k : Ω2 → L(R2), as well as the coefficient functions
c1t , c

2
t : Ω→ (0,∞), b1t , b

2
t : Ω→ R+ are continuous. Consider the Leslie-Gower model(

ut+1

vt+1

)
=

∫
Ω

k(·, y)

 c1t (y)ut(y)

1+ut(y)+b1t (y)vt(y)
c2t (y)vt(y)

1+b2t (y)ut(y)+vt(y)

 dy, (5.2)

whose right-hand side is a Hammerstein operator (2.1) with Z = R2
+ and the continuously

differentiable growth functions

gt : Ω× R2
+ → R2

+, gt(x, u, v) :=

 c1t (x)u

1+u+b1t (x)v
c2t (x)v

1+b2t (x)u+v


with the partial derivatives

D(2,3)gt(x, u, v) =

 c1t (x)(1+b1t (x)v)

(1+u+b1t (x)v)2
− b1t (x)c1t (x)u

(1+u+b1t (x)v)2

− b2t (x)c2t (x)v

(1+b2t (x)u+v)2
c2t (x)(1+b2t (x)u)

(1+b2t (x)u+v)2

 .

The south-east cone Y+ :=
{

(x1, x2) ∈ R2 : x2 ≤ 0 ≤ x1

}
is generated by the linearly

independent vectors e1 =
(

1
0

)
, e2 =

(
0
−1

)
and we choose e′1 =

(
1
0

)
, e′2 =

(
0
−1

)
according

to 〈〈ei, e′j〉〉 = δij for 1 ≤ i, j ≤ 2. Thus,

〈〈D(2,3)gt(x, u, v)e1, e
′
1〉〉 =

c1t (x)(1+b1t (x)v)

(1+u+b1t (x)v)2
> 0,

〈〈D(2,3)gt(x, u, v)e1, e
′
2〉〉 =

b2t (x)c2t (x)v

(1+b2t (x)u+v)2
≥ 0,

〈〈D(2,3)gt(x, u, v)e2, e
′
1〉〉 =

b1t (x)c1t (x)u

(1+b2t (x)u+v)2
≥ 0,

〈〈D(2,3)gt(x, u, v)e2, e
′
2〉〉 =

c2t (x)(1+b2t (x)u)

(1+b2t (x)u+v)2
> 0

and hence [24, Sect. 5.1] implies thatD(2,3)gt(x, u, v) is Y+-monotone for all t ∈ Z, x ∈ Ω
and u, v ∈ R+.

As shown in [26, Thm. 4], the nonautonomous IDE (5.2) has a pullback attractorA∗ and
due to the monotonicity of the right-hand side, A∗ is bounded below by the trivial solution
and bounded above by an extremal solution (u+, v+) = (u+

t , v
+
t )t∈I ∈ A∗.

Example 5.2 (pullback attractor). Consider a nonautonomous Leslie-Gower model (5.2)
with Ω = [−10, 10], a diagonal matrix k =

(
k1 0
0 k2

)
with Gauß kernels

ki(x, y) := 1√
2πα2

i

exp
(
− 1

2α2
i
|x− y|2

)
for all i = 1, 2

having dispersal rates α1, α2 in the diagonal. The extremal solutions bounding the pullback
attractor A∗ for the Nyström discretizations are illustrated in Fig. 5. Here, we illustrated
the case of 20-periodic driving using the parameters

α1 = 0.3, c1t (x) ≡ 4, b1t (x) ≡ 2− sin 2πt
20 ,

α2 = 0.7, c2t (x) ≡ 2(1 + 0.1 sin 2πt
20 ), b2t (x) ≡ 0.1,

as well as an asymptotically autonomous situation with parameters

α1 = 0.3, c1t (x) ≡ 4, b1t (x) ≡ 2− arctan t,

α2 = 0.7, c2t (x) ≡ 2(1 + 0.1 arctan t), b2t (x) ≡ 0.1.

In a periodic case, extremal solutions (and the pullback attractor) are periodic, too.
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FIGURE 5. Extremal solutions u+
t , v

+
t : [−10, 10] → R+ of the pull-

back attractor for Nyström discretizations (6th order Gauß with 99 nodes)
of the nonautonomous Leslie-Gower model (5.2) for 20-periodic driving
(top) and asymptotically autonomous driving (bottom)

Appendix A. Cones, monotone, subhomogeneous and concave mappings. Let (X, ‖·‖)
be a real Banach space with dual space X ′ and the duality pairing 〈x, x′〉 := x′(x). A
nonempty, closed, convex subset X+ ⊆ X is denoted as a cone, if R+X+ ⊆ X+ and
X+ ∩ (−X+) = {0} hold. Equipped with such a cone, X is called an ordered Banach
space X; throughout, it is assumed that X+ 6= {0}. For elements x, x̄ ∈ X we write

x ≤ x̄ :⇔ x̄− x ∈ X+,

x < x̄ :⇔ x̄− x ∈ X+ \ {0} , (A.1)

x� x̄ :⇔ x̄− x ∈ X◦+;

the latter relation requires X+ to have interior X◦+ 6= ∅; in this case one speaks of a solid
cone. For a normal cone X+ there exists a c ≥ 0 such that x ≤ x̄ implies ‖x‖ ≤ c ‖x̄‖ for
all x, x̄ ∈ X+. Finally, order intervals are defined as [x, x̄] := {y ∈ X : x ≤ y ≤ x̄}.

By means of the dual coneX ′+ := {x′ ∈ X ′ : 0 ≤ 〈x, x′〉 for all x ∈ X+} it is possible
to characterize the elements of X+ and X◦+ as follows:

Lemma A.1 (cf. [24, Lemma A.1]). (a) X ′+ 6= {0} and for every x ∈ X one has:

x ∈ X+ ⇔ 0 ≤ 〈x, x′〉 for all x′ ∈ X ′+,
x ∈ X+ \ {0} ⇒ 0 < 〈x, x′0〉 for some x′0 ∈ X ′+ \ {0} .

(b) If X+ is solid, then for every x ∈ X one has:

x ∈ X◦+ ⇔ 0 < 〈x, x′〉 for all x′ ∈ X ′+ \ {0} ,
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x ∈ ∂X+ ⇒ 0 = 〈x, x′0〉 for some x′0 ∈ X ′+ \ {0} .

One denotes a subset U ⊆ X as X+-convex, if for all x, x̄ ∈ U satisfying x < x̄ the
inclusion x, x̄ := {x+ θ(x̄− x) ∈ X : θ ∈ [0, 1]} ⊆ U holds. For instance, the cone X+

itself is X+-convex, and so is every convex set.

A.1. Monotone mappings. Let U ⊆ X . A mapping F : U → X is called1

• monotone, if x < x̄⇒ F (x) ≤ F (x̄),
• strictly monotone, if x < x̄⇒ F (x) < F (x̄),
• strongly monotone, if x < x̄⇒ F (x)� F (x̄) for all x, x̄ ∈ U .

When working with several cones, we write X+-monotone etc. to refer to a specific one
and proceed similarly in our further terminology. In particular, linear maps T ∈ L(X) are
• monotone (then called positive), if T (X+ \ {0}) ⊆ X+,
• strictly monotone (then called strictly positive), if T (X+ \ {0}) ⊆ X+ \ {0},
• strongly monotone (then called strongly positive), if T (X+ \ {0}) ⊆ X◦+.

We denote T ∈ L(X) as X+-injective, provided its kernel satisfies N(T ) ∩ X+ = {0}.
Then T is strictly monotone, if and only if it is monotone and X+-injective. Furthermore,
a strongly monotone T yields the inclusion TX◦+ ⊆ X◦+.

Lemma A.2 (conditions for monotonicity). Suppose F : U → X is a C1-mapping on a
X+-convex, open subset U ⊆ X . If DF (x) ∈ L(X) is positive for all x ∈ U , then F is
monotone. Moreover, the following holds with x, x̄ ∈ U :

(a) If for every x < x̄ and x∗ ∈ x, x̄ the derivative DF (x∗) is X+-injective, then F is
strictly monotone.

(b) If X+ is solid and for every x < x̄ there exists some x∗ ∈ x, x̄ such that DF (x∗) is
strongly positive, then F is strongly monotone.

Proof. The monotonicity of F and (b) are shown in [13, Lemma 2.2], while for (a) we refer
to [25, Lemma A.2(a)].

Note that respective monotonicity properties are preserved under composition. Beyond
that, and for slightly weaker assumptions, the following holds:

Corollary A.3. Let X+ be a solid cone, V ⊆ X and F : U → X .
(a) If F is strongly monotone and T ∈ L(X) satisfies TX◦+ ⊆ X◦+, then the composition

TF : U → X is strongly monotone.
(b) If F is strictly monotone with F (U) ⊆ V and G : V → X is strongly monotone,

then G ◦ F : U → X is strongly monotone.

Proof. Let x, x̄ ∈ U , x < x̄.
(a) By the strong monotonicity of F it is F (x) � F (x̄), i.e. F (x̄) − F (x) ∈ X◦+.

Hence, T (F (x̄)− F (x)) ∈ X◦+ and the linearity of T implies that TF (x)� TF (x̄).
(b) is immediate by definition.

A.2. Subhomogeneous mappings. A self-mapping F : X+ → X+ is called2

• subhomogeneous, if 0 < x⇒ θF (x) ≤ F (θx),
• strictly subhomogeneous, if 0 < x⇒ θF (x) < F (θx),

1we implicitly assume here that U contains at least two x, x̄ ∈ U such that that x < x̄
2there is some inconsistency in the literature related to these notions: [5, pp. 112–113, Def. 4.1.1] and [13]

speak of sublinearity instead of subhomogeneity and [5] requires subhomogeneous mappings to be monotone.
Moreover, in [5] and [31, p. 52, Def. 2.3.1] strict subhomogeneity is required to hold only for 0 � x, whereas
[18, p. 142, Exam. 5.1.11] requires strong subhomogeneity to hold for 0 < x.
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• strongly subhomogeneous, if 0� x⇒ θF (x)� F (θx) for all θ ∈ (0, 1).
Affine-linear mappings F (x) = Tx + y with positive T ∈ L(X) and y ∈ X+ are always
subhomogeneous, while strict subhomogeneity requires an inhomogeneity y ∈ X+ \ {0}
and strong subhomogeneity holds for y ∈ X◦+.

Lemma A.4 (conditions for subhomogeneity, cf. [25, Lemma A.4]). If F : X+ → X+ is
differentiable, then the following holds:

(a) F is subhomogeneous, if and only if DF (x)x ≤ F (x) for all x ∈ X+ \ {0}.
(b) If DF : X+ → L(X) is continuous and DF (x)x < F (x) for all x ∈ X+ \ {0},

then F is strictly subhomogeneous.
(c) If X+ is solid and DF (x)x � F (x) for all x ∈ X◦+, then F is strongly subhomo-

geneous.

The above differentiability of F : X+ → X+ is to be understood so that the mapping F
has a differentiable extension F̄ : U → X to an open superset U ⊆ X of X+.

Corollary A.5. Let T ∈ L(X) and F : X+ → X+.
(a) If T is positive and F is subhomogeneous, then TF, F ◦ T : X+ → X+ are sub-

homogeneous.
(b) If T is strictly positive and F is strictly subhomogeneous, then TF, F ◦T are strictly

subhomogeneous.
(c) If X+ is solid, T is positive with TX◦+ ⊆ X◦+ and F is strongly subhomogeneous,

then TF is strongly subhomogeneous.
(d) If X+ is solid, T is strongly positive and F is strictly subhomogeneous, then TF is

strongly subhomogeneous.

Proof. (a) and (b) are immediate from the definition.
(c) Note that TF : X+ → X+. Let 0 � x and θ ∈ (0, 1). Provided F is strongly

subhomogeneous, then the inequality 0 � F (θx) − θF (x) and the forward T -invariance
of X◦+ readily show that θTF (x) = T (θF (x))� TF (θx).

(d) Let 0 � x and θ ∈ (0, 1). If F is strictly subhomogeneous, then θF (x) < F (θx)
and the strong monotonicity of T yields θTF (x) = T (θF (x))� TF (θx).

A.3. Concave mappings. Let U ⊆ X be a X+-convex set. A map F : U → X is called3

• order- or X+-concave, if x < x̄⇒ θF (x) + (1− θ)F (x̄) ≤ F (θx+ (1− θ)x̄),
• strictly X+-concave, if x < x̄⇒ θF (x) + (1− θ)F (x̄) < F (θx+ (1− θ)x̄),
• strongly X+-concave, if x� x̄⇒ θF (x) + (1− θ)F (x̄)� F (θx+ (1− θ)x̄) for

all x, x̄ ∈ U and θ ∈ (0, 1).
Note that (strict or strong) subhomogeneity holds for (strictly resp. strongly) X+-concave
mappings F : X+ → X+, with the reference point x = 0. In this sense, the concavity
concepts for F : X+ → X+ are less general than the respective subhomogeneity notions.

Affine-linear mappings F (x) = Tx + y with T ∈ L(X) and y ∈ X are X+-concave,
but never strictly or strongly X+-concave.

Lemma A.6 (conditions for concavity, cf. [25, Lemma A.6]). If F : U → X is a C1-
mapping on a X+-convex, open set U ⊆ X , then the following holds:

(a) F is X+-concave, if and only if DF (x̄)(x̄ − x) ≤ DF (x)(x̄ − x) for all x, x̄ ∈ U ,
x < x̄.

3as in the concept of subhomogeneity, also the notions of strict and strong concavity are not consistently used
throughout the literature: [1] demands strong concavity to hold for all x < x̄, while [5, pp. 114–115, Def. 4.1.2]
assumes x� x̄ to define strict concavity.
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(b) If DF (x̄)(x̄ − x) < DF (x)(x̄ − x) for all x, x̄ ∈ U , x < x̄, then F is strictly
X+-concave.

(c) If X+ is solid and DF (x̄)(x̄ − x) � DF (x)(x̄ − x) for all x, x̄ ∈ U , x � x̄, then
F is strongly X+-concave.

Corollary A.7. Let U ⊆ X be X+-convex.
(a) If T ∈ L(X) is positive and F : U → X is X+-concave, then TF : U → X is

X+-concave. In case additionally TU ⊆ U also F ◦ T : U → X is X+-concave.
(b) If T is strictly positive and F is strictlyX+-concave, then TF is strictlyX+-concave.

In case additionally TU ⊆ U also F ◦ T : U → X is strictly X+-concave.
(c) If X+ is solid, TX◦+ ⊆ X◦+ and F is strongly X+-concave, or T is strongly positive

and F is strictly X+-concave, then TF is strongly X+-concave.

Proof. The argument is analogous to the proof of Cor. A.5.

A dual theory holds for order-convex mappings with F replaced by the negative −F .

A.4. Cone mappings. One speaks of a cone mapping F : X+ → X+, provided the
inclusion F

(
[θx, 1

θx]
)
⊆
[
θF (x), 1

θF (x)
]

for all θ ∈ (0, 1), x ∈ X+.

Remark A.8. A monotone F : X+ → X+ is a cone mapping, if and only if it is subho-
mogeneous (cf. [17, Prop. 3.1(iii)]).

Proposition A.9. Let F : X+ → X be X+-concave and monotone. If 0 ≤ F (0), then F
is subhomogeneous and a cone mapping.

Proof. Let x̄ ∈ X+. The monotonicity yields 0 ≤ F (0) ≤ F (x̄), i.e. F (X+) ⊆ X+.
Furthermore, the concavity of F and 0 ≤ F (0) imply for all θ ∈ (0, 1) that

(1− θ)F (x̄) ≤ θF (0) + (1− θ)F (x̄) ≤ F (θ0 + (1− θ)x̄) = F ((1− θ)x̄).

In conclusion, F is subhomogeneous and due to Rem. A.8 also a cone mapping.

Finally, for monotone and subhomogeneous self-mappings of a solid cone it is possi-
ble to conclude the global asymptotic stability of a fixed point from its local asymptotic
stability (provided e.g. by linearization).

Theorem A.10 (local-global stability principle, cf. [17, Thm. 4.1]). Let X+ be a solid and
normal cone. If an iterate F ◦k of F : X+ → X+ is a cone mapping for some k ∈ N leaving
X◦+ invariant, then any locally attractive fixed point of F in X◦+ is globally attractive.
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