
May 25, 2008 10:19 Preprint

Robustness of Hyperbolic Solutions

under Parametric Perturbations†

Christian Pötzsche‡
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1. Introduction and dedication

Difference equations provide a successful deterministic framework to describe evo-
lutionary processes, where time evolves discretely, like e.g. temporal discretizations
of differential equations or various examples from biology, economics and other sci-
ences. Since the related models aim to capture real-world phenomena, they natu-
rally involve a set of parameters being responsible for their characteristic dynamical
behavior. In general, an explicit difference equation is of the form

xk+1 = fp(xk), (1)

where p stands for a corresponding (multi-dimensional) parameter vector and the
right-hand side fp dictates the evolution. Clearly, equation (1) generates a discrete
semigroup via the iterates fkp , k ≥ 0, and the classical local theory of dynami-
cal systems provides a powerful toolbox with ingredients like Lyapunov functions,
invariant manifolds, normal forms and others, to understand the behavior of (1)
close to given fixed reference solutions, like typically equilibria or periodic orbits.

Unfortunately, obtaining the precise value of the parameters p from experimen-
tal data is an inverse problem and therefore delicate. However, one can encounter
this intrinsic modeling difficulty of fuzzy values for p using the concept of struc-
tural stability which investigates whether qualitative properties of (1) persist under
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His bifurcation turned out to be my first serious encounter with dynamical systems, while the contributions
to skew-product flows paved my way to nonautonomous problems.
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perturbation of p, or not (see, for instance, [12, pp. 304ff]). Indeed, it is an easy con-
sequence of the implicit function theorem that equilibria (or periodic solutions) of
(1) persist generically, if p is varied (cf. Remark 1(a) and Remark 2(a) in Section 3).

Nevertheless, in many applications, equations of the from (1) are too restrictive
to provide realistic models. The main reason for this is that parameters in real-
world problems are rarely constant over time. This is due to various reasons, like
absence of lab conditions, adaption processes or seasonal effects in biology, control
strategies or further external influences. Therefore, difference equations

xk+1 = fpk
(xk) (2)

with parameters pk that change with time k, frequently provide a more honest, flex-
ible and realistic description. As a conceptional discrepancy, (1) is an autonomous,
whereas equation (2) is a nonautonomous problem. Here, as a difficulty one is con-
fronted with the fact that equilibria (resp. periodic solutions) for (1) are usually no
longer equilibria (resp. periodic solutions) of the so-called parametrically perturbed
problem (2) with an aperiodic sequence (pk)k∈Z. Consequently, the question for an
appropriate substitute of equilibria (or periodic solutions) arises, i.e., what replaces
them in a general nonautonomous setting?

In the present paper we rigorously prove that hyperbolic equilibria (or more
general bounded solutions) of (1) persist under bounded time-dependent para-
metric perturbations as bounded globally defined solutions for (2) — with small
`∞-distance to the original equilibria. In this setting, hyperbolicity is formulated
in terms of an exponential dichotomy in the variational equation. Actually, beyond
bounded perturbations, we also investigate the subclasses of almost periodic, peri-
odic and zero sequences (i.e., sequences (φk)k∈Z with limit zero for k → ±∞). As
a byproduct, this yields an approach to the existence of almost periodic solutions
different from e.g. [14, 26, 38].

Our main technical tools will be an abstract formulation of difference equation (2)
as nonlinear operator equation in ambient sequence spaces, which has already been
exploited in [8, 23] for stability issues, as well as the classical implicit function the-
orem in Banach spaces. This gives our approach a somewhat functional-analytical
flavor. Yet, from a technical perspective it has the advantage that arguments are
largely parallel for various sequence spaces.

Related robustness theory for equilibria of autonomous evolutionary differential
equations via the Lyapunov-Perron method can be found in [39, pp. 481ff]. These
results extend to the discrete case. In comparison, our approach for difference
equations yields less quantitative perturbation results, but is based on an elegant
implicit function argument. Moreover, we are able to deal with nonautonomous
perturbations of the above form.

After submitting this paper to JDEA we became aware of the preprint [15] and
realized that Theorem 3.4 essentially coincides with [15, Lemma 2, 3]. However, our
setting is slightly more general, since we consider not necessarily invertible systems,
where state space and parameters can be infinite-dimensional. Beyond that we also
treat further perturbation classes of (almost) periodic or zero sequences.

Dedication: In the framework of this paper, the appropriate robust hyperbol-
icity concept for nonautonomous difference equations is an exponential dichotomy.
Significant parts of the corresponding linear theory for ordinary and evolutionary
differential equations have been developed by Prof. Robert J. Sacker. This was part
of a fruitful collaboration on linear skew-product flows with Prof. George R. Sell
during a series of papers spanning over two decades [30–34] and [27]. As pointed
out in [28], “it became immediately apparent that discrete flows could be handed
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with little extra effort”.
A further crucial ingredient of our analysis is the `∞-roughness of exponential

dichotomies. In fact, the contributions of Prof. Sacker mentioned above, already
indicated that dichotomies are even more robust. Indeed, as demonstrated in [39,
pp. 210ff], [21], one can replace the `∞-topology with a topology of uniform con-
vergence on bounded (in the discrete case, finite) sets. Related results concerning
this matter for differential equations can be found in [33], but also in [16, Theo-
rem 3.1], [20, Theorem 2]. Similar investigations in the area of difference equations
and equations on general time scales are due to [22].

Also Prof. Sacker’s more recent research on the behavior of discrete dynamical
systems with a focus on biological applications (cf. [5–7, 29, 35–37]) turned out to
be a stimulating input for the paper at hand. We claim that for example results on
periodic attractive solutions in discrete population models (cf. [4, 5, 29]) persist at
least locally under aperiodically perturbed parameters.

Notation: As common in the literature, Z denotes the ring of integers, N are
the positive integers and a discrete interval I is the intersection of a real interval
with Z. Throughout, X,Y are Banach spaces equipped with the norm ‖·‖ and if
necessary, we indicate the norm on X by ‖·‖X . For open ρ-balls with center x we
write Bρ(x). Moreover, Ω◦ is the interior, Ω the closure and ∂Ω the boundary of a
set Ω ⊆ X. Finally, dist(x,Ω) is the distance of a point x ∈ X from Ω.

2. Sequence spaces and difference equations

The state space for difference equations under consideration in this paper, is a
nonempty open subset Ω ⊆ X. For the set of all sequences φ = (φk)k∈Z with values
in Ω we write `(Ω). Among the subsets of `(Ω), we are interested in:

• The set of bounded sequences

`∞(Ω) :=
{
φ ∈ `(Ω)

∣∣∣ sup
k∈Z
‖φk‖ <∞

}
,

• the set of zero sequences (provided 0 ∈ Ω)

`0(Ω) :=
{
φ ∈ `(Ω)

∣∣∣ lim
k→±∞

φk = 0
}
,

• the set of almost periodic sequences

`ap(Ω) := {φ ∈ `(Ω) |φ is almost periodic} ;

note that a sequence φ = (φk)k∈Z in Ω is called almost periodic (for short, ap),
if for all ε > 0 there exists an inclusion length l(ε) ∈ N such that every discrete
interval of length l(ε) contains a translation number n ∈ Z with

‖φk+n − φk‖ < ε for all k ∈ Z,

• the set of θ-periodic sequences, θ ∈ N,

`θ(Ω) := {φ ∈ `(Ω) |φk = φk+θ for all k ∈ Z} .
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In situations where Ω is the whole space X, we briefly write ` := `(X), proceed
accordingly with our other sequence spaces and equip them with the norm

‖φ‖∞ := sup
k∈Z
‖φk‖ .

They can be seen to be Banach spaces satisfying the following continuous embed-
dings (concerning `ap, one uses [40, p. 14, Theorem 2.5] for the completeness, and
[26, Proposition 5] or [40, p. 7, Theorem 2.1] for the embedding)

`0 ↪→ `∞, `θ ↪→ `ap ↪→ `∞.

It is easy to construct examples showing that `∞(Ω) is not open. Yet, we have

Lemma 2.1 . Suppose Ω is convex. Then also the sequence spaces `∞(Ω), `ap(Ω),
`0(Ω), `θ(Ω) are nonempty convex, and the latter two sets are open.

Proof . It is clear that the above sequence spaces are nonempty and convex.
Concerning the openness assertion, suppose the symbol `∗ stands for `0 or `θ.

Choose φ ∈ `∗(Ω) and define S := {φk}k∈Z. For `∗ = `0 (where 0 ∈ Ω) and `∗ = `θ
we observe that S is compact and disjoint from ∂Ω. Since the boundary ∂Ω is
closed, one has ρ := infk∈Z dist(φk, ∂Ω) > 0 and thus Bρ(φ) ⊆ `∗(Ω), i.e., φ is an
interior point. Because φ was arbitrary, `∗(Ω) is open. �

From now on, suppose that P ⊆ Y is an open neighborhood of 0 in a Banach
space Y . For a given mapping f : Z×Ω×P→Ω, we interpret Ω and P as state and
parameter space, respectively. To mimic notation from the introduction, we write
fp(k, x) := f(k, x, p) and extend the autonomous position of (1) by dealing with
nonautonomous equations

xk+1 = f0(k, xk). (3)

As a parametrically perturbed version of (3) we consider the difference equation

xk+1 = fpk
(k, xk), (4)

where (pk)k∈Z is a sequence in P . Due to the parametric perturbation, (4) be-
comes a nonautonomous difference equation, even if the unperturbed problem (3)
is autonomous. With a discrete interval I unbounded above, a solution of (4) is a
sequence φ = (φk)k∈I in Ω satisfying the recursion φk+1 ≡ fpk

(k, φk) on I. A glob-
ally defined or complete solution is a solution defined on Z. Since fpk

(k, ·) : Ω→Ω
is not assumed to be invertible, backward and complete solutions need not to exist
or to be unique.

We propagate the idea to rephrase difference equations like (4) as operator equa-
tions in sequence spaces. For fixed initial times κ ∈ Z and initial values ξ ∈ Ω, our
reformulation of (4) is based on a linear embedding operator E : Ω → `, a linear
backward shift operator S : `→ `,

(Eξ)k :=

{
0, for k 6= κ

ξ, for k = κ
, (Sφ)k :=

{
0, for k = κ

φk−1, for k 6= κ
,

respectively, as well as a nonlinear Nemytskii operator N : `(Ω×P )→ `(Ω),

N(φ, p) :=
(
f(k, φk, pk)

)
k∈Z

.
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For simplicity we suppressed the dependence of E,S on the initial time κ ∈ Z
and will identify the two spaces `(Ω×P ) and `(Ω)×`(P ). Having this available, the
crucial tool for our analysis is given in

Theorem 2.2 . Suppose κ ∈ Z, ξ ∈ Ω and p ∈ `(P ). A sequence φ ∈ `(Ω) is a
globally defined solution of a parametrically perturbed difference equation (4) with
φκ = ξ, if and only if φ solves the nonlinear equation

F (φ, ξ; p) = 0 (5)

in `(Ω), where the operator F : `(Ω)×Ω×`(P )→` is given by

F (φ, ξ; p) = φ− SN(φ, p)− Eξ. (6)

Remark 1 . An alternative formulation of (4) as a problem in a sequence space
is the coincidence equation S+φ = N(φ, p) with the forward shift operator
(S+φ)k = φk+1. Nevertheless, in the present paper, we favor the approach via (5)
for the following reason: Since it incorporates initial conditions, one can apply the
characterization from Theorem 2.2 to deduce attractivity properties for a fixed
reference solution of (4), like w.l.o.g. the trivial solution. Thereto, one solves (5)
w.r.t. φ in an appropriate subset of the space of all sequences (φk)k≥κ in Ω with
limit 0 for k → ∞. Although such an endeavor is not in our present scope, we
intent to popularize this method and refer to [8, 23] for corresponding results.

Proof . See [8, Theorem 3.5] for the straight-forward proof. �

3. Robustness of hyperbolic solutions

Let us assume from now on that state and parameter space Ω ⊆ X, P ⊆ Y are
nonempty open convex sets with 0 ∈ P .

Standing hypothesis. Let m ∈ N, 0 ≤ n ≤ m and suppose the right-hand side
f : Z×Ω×P→Ω of (4) is a mapping such that every f(k, ·), k ∈ Z, is m-times con-
tinuously Fréchet-differentiable with derivatives Dn

(2,3)f : Z×Ω×P→Ln(X×Y,X).

Our goal is to solve the abstract operator equation (5) in appropriate sequence
spaces by means of the implicit function theorem. This requires conditions to guar-
antee that the partial derivative of F w.r.t. (φ, ξ) is invertible. For this purpose, let
us suppose (pk)k∈Z is a fixed sequence in P , (φk)k∈Z is a globally defined solution
of equation (4), and we consider the variational equation

xk+1 = D2f(k, φk, pk)xk (7)

of (4) along φ; here, D2f is the partial Fréchet-derivative of f : Z×Ω×P→Ω w.r.t.
the second variable. This linear difference equation has the transition operator

Φp(k, κ) :=

{
IX , k = κ,

D2f(k − 1, φk−1, pk−1) · · ·D2f(κ, φκ, pκ), κ ≤ k.

An invariant projector for (7) is a sequence Qp : Z→L(X) with Qp(k) = Qp(k)2,

D2f(k, φk, pk)Qp(k) = Qp(k + 1)D2f(k, φk, pk) for all k ∈ Z
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and the restriction D2f(k, φk, pk)|kerQp(k) is supposed to be an isomorphism from
the kernel kerQp(k) onto kerQp(k+1) for all k ∈ Z. Provided an invariant projector
for (7) is given, the restriction Φp(k, κ) : kerQp(κ)→ kerQp(k), κ ≤ k, is well-
defined and has a bounded inverse Φ̄p(κ, k).

We say the above complete solution φ is hyperbolic, if its associated variational
equation (7) admits an exponential dichotomy, i.e., there exist real constantsK ≥ 1,
α ∈ (0, 1) and an invariant projector Qp such that

‖Φp(k, κ)Qp(κ)‖ ≤ Kαk−κ for all κ ≤ k,∥∥Φ̄p(k, κ)[IX −Qp(κ)]
∥∥ ≤ Kακ−k for all k ≤ κ.

Remark 1 . (a) A θ-periodic, θ ∈ N, variational equation (7) admits an exponential
dichotomy, if the spectrum of the monodromy operator M := Φp(κ+ θ, κ) ∈ L(X)
does not intersect the unit circle S1 in the complex plane (see, e.g., [24, Proposi-
tion 2.2] for the finite-dimensional situation), i.e.,

σ(M) ∩ S1 = ∅. (8)

In case dimX <∞ the set of operators M ∈ L(X) satisfying (8) is open and dense
in L(X) w.r.t. the norm topology (cf. [12, pp. 153ff]). Thus, equilibria (or periodic
solutions) of autonomous (or periodic) equations are generically hyperbolic.

(b) For general aperiodic time-dependence, the notion of an exponential di-
chotomy is an open property in the class of linear-homogeneous difference equations

xk+1 = A(k)xk (9)

with bounded coefficient sequence A : Z→L(X). Indeed, using [2, Theorem 2] we
can deduce that (9) admits an exponential dichotomy if and only if the weighted
shift operator T : `∞→`∞, (Tφ)k := A(k − 1)φk−1 is hyperbolic, i.e., its spec-
trum σ(T ) does not intersect S1. Due to the upper-semicontinuity of σ(T ) (cf. [17,
pp. 208–209, Remark 3.3]) this is an open property. Yet, an exponential dichotomy
itself is not generic. A corresponding example for linear ODEs on the half-line —
a weaker assumption than an exponential dichotomy on the whole line — can be
found in [19].

3.1 Parametric bounded perturbations

Beyond our standing hypothesis, we assume the derivatives of the right-hand side
f map bounded sets into bounded sets uniformly in time. More detailed:

Hypothesis. Suppose the right-hand side f : Z×Ω×P→Ω satisfies:

H(`∞)1 There exists a pair (x0, p0) ∈ Ω×P such that

sup
k∈Z

∥∥∥Dn
(2,3)f(k, x0, p0)

∥∥∥ <∞ for all 0 ≤ n < m,

H(`∞)2 Dm
(2,3)f is uniformly bounded, i.e., for every bounded subset V0 ⊆ Ω×P one has

sup
k∈Z

sup
(x,p)∈V0

∥∥∥Dm
(2,3)f(k, x, p)

∥∥∥ <∞,
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H(`∞)3 Dn
(2,3)f is uniformly continuous, i.e., for ε > 0, bounded subsets V0 ⊆ Ω×P and

pairs (x̄, p̄) ∈ V0 there exists a δ > 0 such that (x, p) ∈ Bδ(x̄, p̄) ∩ Ω×P implies∥∥∥Dn
(2,3)f(k, x, p)−Dn

(2,3)f(k, x̄, p̄)
∥∥∥ < ε for all k ∈ Z, 0 < n ≤ m.

Due to the lack of an appropriate reference, we derive differentiability results on
substitution operators between spaces of bounded sequences. More precisely, under
the above assumptions we consider Nemytskii operators point-wise given by

Nn(φ, p)k := Dn
(2,3)f(k, φk, pk) ∈ Ln(X×Y,X) for all k ∈ Z, 0 < n ≤ m (10)

and sequences φ ∈ `(Ω), p ∈ `(P ).

Lemma 3.1 . The operators Nn : `∞(Ω×P )→`∞(Ln(X×Y,X)) are well-defined
and continuous on `∞(Ω×P )◦ for 0 < n ≤ m.

Proof . We proceed in three steps and abbreviate Z := X×Y , V := Ω×P . A
convenient norm on the product space is ‖(x, y)‖Z := max {‖x‖X , ‖y‖Y }.

(I) We show that each derivative Dn
(2,3)f is uniformly bounded for 0 ≤ n ≤ m. In

case n = m, this is guaranteed by H(`∞)2; for n < m suppose z0 := (x0, p0) ∈ V
is as in assumption H(`∞)1 and let V0 ⊆ V be a fixed bounded set. The convexity
of V implies the inclusion {z0 + t(z − z0) ∈ Z : t ∈ [0, 1]} ⊆ V for z ∈ V0, we
introduce bounded sets

W :=
⋃
z∈V0

{z0 + t(z − z0) ∈ Z : t ∈ [0, 1]} ⊆ V,

and from assumption H(`∞)2 we get Cm := supk∈Z supw∈W ‖Dm
2 f(k,w)‖ < ∞.

Then lower triangle and mean value inequality (cf. [18, p. 342, Corollary 4.3]) yield

‖Dn
2 f(k, z)‖ ≤ ‖Dn

2 f(k, z0)‖+ sup
t∈[0,1]

∥∥Dn+1
2 f(k, z0 + t(z − z0))

∥∥ ‖z − z0‖ (11)

for 0 ≤ n < m and, in particular, for n = m− 1 one has∥∥Dm−1
2 f(k, z)

∥∥ ≤ ∥∥Dm−1
2 f(k, z0)

∥∥+ Cm ‖z − z0‖ for all z ∈ V0.

Therefore, assumption H(`∞)1 guarantees that also Dm−1
2 f is uniformly bounded

and we derive Cm−1 := supk∈Z supw∈W
∥∥Dm−1

2 f(k,w)
∥∥ <∞. Using (11) we induc-

tively construct real constants Cn ≥ 0, depending only on V0 such that

‖Dn
2 f(k, z)‖ ≤ ‖Dn

2 f(k, z0)‖+ Cn ‖z − z0‖ for all z ∈ V0, 0 ≤ n < m

and thus Dn
2 f maps bounded subsets of V into bounded sets, uniformly in k ∈ Z.

(II) For every φ ∈ `∞(V ), p ∈ `∞(P ) we know from step (I) that
(Dn

2 f(k, φk, pk))k∈Z is a bounded sequence, i.e., Nn is well-defined for 0 ≤ n ≤ m.
(III) In order to verify the continuity of Nn for 0 < n ≤ m, we choose ε > 0,

sequences φ̄ ∈ `∞(V )◦, p̄ ∈ `∞(P )◦ and set ζ̄ := (φ̄, p̄). Our uniform continuity
assumption H(`∞)3 yields the existence of a δ > 0 such that∥∥Dn

2 f(k, z)−Dn
2 f(k, ζ̄k)

∥∥ < ε
2 for all z ∈ Bδ(ζ̄k), k ∈ Z.
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Consequently, with every sequence ζ := (φ, p) ∈ Bδ(φ̄, p̄) ⊆ `∞(V ) one arrives at

sup
k∈Z

∥∥Dn
2 f(k, ζk)−Dn

2 f(k, ζ̄k)
∥∥ ≤ ε

2 ,

and therefore,
∥∥Nn(φ, p)−Nn(φ̄, p̄)

∥∥
∞ < ε. This was the assertion. �

In order to give an explicit expression for the derivatives of N , it is convenient to
identify the space `∞(Ln(X×Y,X)) of bounded sequences in Ln(X×Y,X) with the
n-linear mappings Ln(`∞(X×Y ), `∞) between `∞(X×Y ) and `∞. The correspond-
ing continuous isomorphism Jn : `∞(Ln(X×Y,X))→Ln(`∞(X×Y ), `∞) reads as(

(JnΛ)ψ1 · · ·ψn
)
k

:= Λ(k)ψ1
k · · ·ψnk for all k ∈ Z, ψ1, · · · , ψn ∈ `∞(X×Y ).

Proposition 3.2 . The operator N : `∞(Ω×P )→`∞ is well-defined and m-times
continuously Fréchet-differentiable on `∞(Ω×P )◦ with derivatives DnN = JnN

n

for 0 < n ≤ m.

Proof . We again abbreviate Z := X×Y , V := Ω×P .
Let ζ ∈ `∞(V ) and apply step (I) in the proof of Lemma 3.1 to see that N

is well-defined. For the differentiability assertion, choose ζ ∈ `∞(V )◦, ψ ∈ `∞(Z)
such that ζk +ψk ∈ V for all k ∈ Z. Then the mean value theorem (cf. [18, p. 341,
Theorem 4.2]) implies∥∥Dn

2 f(k, ζk + ψk)−Dn
2 f(k, ζk)−Dn+1

2 f(k, ζk)ψk
∥∥

≤
∫ 1

0

∥∥Dn+1
2 f(k, ζk + tψk)−Dn+1

2 f(k, ζk)
∥∥ dt ‖ψk‖

≤ sup
t∈[0,1]

sup
k∈Z

∥∥Dn+1
2 f(k, ζk + tψk)−Dn+1

2 f(k, ζk)
∥∥ ‖ψ‖∞

= sup
t∈[0,1]

∥∥Nn+1(ζ + tψ)−Nn+1(ζ)
∥∥
∞ ‖ψ‖∞ for all 0 ≤ n < m

and the continuity of Nn+1 from Lemma 3.1 implies

lim
ψ→0

sup
t∈[0,1]

∥∥Nn+1(ζ + tψ)−Nn+1(ζ)
∥∥
∞ = 0 for all 0 ≤ n < m.

Since ζ ∈ `∞(Ω×P )◦ was arbitrary, each Nn : `∞(Ω×P )◦→`∞(Ln(X×Y,X)) is
Fréchet-differentiable with continuous derivative Nn+1. As a result, the mapping
N : `∞(Ω×P )◦→`∞ is m-times continuously differentiable. �

Proposition 3.3 . The operator F : `∞(Ω)×Ω×`∞(P )→`∞ defined in Theo-
rem 2.2 is well-defined and m-times continuously Fréchet-differentiable on the open
set `∞(Ω)◦×Ω×`∞(P )◦ with partial derivative

D(1,2)F (φ, ξ; p)
(
x
η

)
= x− S(D2f(k, φk, pk)xk)k∈Z − Eη (12)

for all φ ∈ `∞(Ω)◦, ξ ∈ Ω, p ∈ `∞(P )◦ and x ∈ `∞, η ∈ X.

Proof . From Proposition 2.2 and (6) we deduce that F is well-defined. The linear
operators E : X → `∞ and S : `∞ → `∞ are clearly bounded and Proposition 3.2
with [18, p. 352, Theorem 7.1] imply that F is of class Cm. Furthermore, the
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remaining relation (12) follows, since the joint partial derivative of F w.r.t. the
first two arguments can be computed as

D(1,2)F (φ, ξ; p)
(
x
η

)
= D1F (φ, ξ; p)x+D2F (φ, ξ; p)η = x−D1S ◦N(φ, p)x− Eη

for all φ ∈ `∞(Ω)◦, ξ ∈ Ω, p ∈ `∞(P )◦, x ∈ `∞, η ∈ X. �

Now we can prove the existence of bounded globally defined solutions for the
parametrically perturbed difference equation (4). This result, as well as its proof,
has prototype character for the remaining paper and further perturbation classes.

Theorem 3.4 (bounded perturbations). Suppose H(`∞) holds. If φ0 ∈ `∞(Ω) is
a hyperbolic solution of the unperturbed equation (3) satisfying

inf
k∈Z

dist(φk, ∂Ω) > 0, (13)

then there exist δ, ρ > 0 and a unique Cm-function φ : Bδ(0) ⊆ `∞(P )→Bρ(φ0)
with φ(0) = φ0 such that each φ(p) ∈ `∞(Ω) is a globally defined hyperbolic solution
of the parametrically perturbed difference equation (4).

Example 3.5 Already autonomous and scalar difference equations (4) with right-
hand side fp(k, x) = x + p illustrate that one cannot disclaim the hyperbolicity
assumption in Theorem 3.4. Indeed, no solution φ0

k ≡ ξ, ξ ∈ R, of the unperturbed
equation xk+1 = xk persists as bounded solution for parameters p 6= 0, since all
forward solutions of xk+1 = xk + p are unbounded.

Remark 2 . (a) Obviously, equilibria (or periodic solutions) of time-periodic un-
perturbed equations (3) give rise to a periodic variational equation (7). Hence,
hyperbolicity of such solutions can be characterized in terms of condition (8) with
the monodromy operator M (see Remark 1(a)). Since the set of operators satisfy-
ing (8) is open and dense in L(X), equilibria (or periodic solutions) of autonomous
or periodic equations generically persists under parametric perturbations.

(b) Information on the size of ρ > 0 can be obtained using a quantitative version
of the implicit function theorem (cf. [13]).

(c) By Theorem 3.4 the saddle point structure consisting of stable and unstable
fiber bundles (or manifolds in the autonomous case, cf. [24, 25]) associated to the
hyperbolic globally defined solution φ0 persists under variation of p ∈ Bδ(0).

(d) We can immediately deduce (nonlinear) admissibility results from Theo-
rem 3.4: If a difference equation (3) has a hyperbolic globally defined solution,
then there exists a δ > 0 such that for all g ∈ Bδ(0) ⊆ `∞(P ) also the linear-
inhomogeneously perturbed system xk+1 = f0(k, xk) + gk has a globally defined
hyperbolic bounded solution.

Proof . We intend to apply the implicit function theorem (cf., e.g., [18, p. 364, The-
orem 2.1]) to solve F (ψ, ξ; p) = 0 for (ψ, ξ) ∈ `∞(Ω)×Ω. Above all, (13) guarantees
φ0 ∈ `∞(Ω)◦. Since (φ0

k)k∈Z is a solution of (3) we know from Theorem 2.2 that
F (φ0, φ0

κ; 0) = 0 holds and we show that the partial derivative

D(1,2)F (φ0, φ0
κ; 0) ∈ L(`∞×X, `∞),

which exists by Proposition 3.3, is a toplinear isomorphism. For given y ∈ `∞ this
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is equivalent to the existence of a unique pair (x, η) ∈ `∞×X such that

y
(12)
= x− S(D2f(k, φ0

k, 0)xk)k∈Z − Eη (14)

which, in turn, holds if and only if yκ = xκ − η and

xk+1 = D2f(k, φ0
k, 0)xk + yk+1, (15)

where (15) is supposed to hold for k 6= κ. From [11, p. 230, Theorem 7.6.5] we
know that there exists a unique bounded solution

χk =
∞∑

n=−∞
G(k, n+ 1)yn+1 (16)

of the inhomogeneous difference equation (15), where G(k, n) ∈ L(X) is Green’s
function associated with the dichotomy of (7) for p = 0 given by

G(k, n) :=

{
Φ0(k, n)Q0(n), n ≤ k,
−Φ0(k, n)[IX −Q0(n)], k < n.

Choosing xk = χk and η = xκ − yκ to see that (14) possesses a solution. In order
to show its uniqueness, let the pair (x̄, η̄) ∈ `∞×X be a further solution. Then the
difference x− x̄ is a bounded solution of the homogeneous initial value problem

xk+1 = D2f(k, φ0
k, 0)xk, xκ = η − η̄,

whose only bounded solution, due to its exponential dichotomy, is the trivial one.
Hence, x = x̄, η = η̄ and Banach’s theorem (see [18, p. 388, Corollary 1.4]) implies
that D(1,2)F (φ0, φ0

κ; 0) ∈ L(`∞×X, `∞) has a bounded inverse. Thus, the implicit
function theorem (cf., [18, p. 364, Theorem 2.1]) yields that there exists a δ̄ > 0 and
a unique Cm-mapping Ψ = (Ψ1,Ψ2) : Bδ̄(0)→`∞(Ω)×Ω such that Ψ(0) = (φ0, φ0

κ)
and F (Ψ(p); p) ≡ 0 on Bδ̄(0) ⊆ `∞(P ). We define φ := Ψ1 and Theorem 2.2
guarantees that φ(p) ∈ `∞(Ω) is a globally defined solution of (4) satisfying the
initial condition φ(p)κ = Ψ2(p).

It remains to show the hyperbolicity of φ(p). To establish this, note that the
perturbed difference equation xk+1 = D2f(k, φ(p)k, pk)xk can be written as

xk+1 = D2f(k, φ0
k, 0)xk + [D2f(k, φ(p)k, pk)−D2f(k, φ0

k, 0)]xk. (17)

With arbitrarily chosen ε > 0, the continuity of Ψ and hypothesis H(`∞)3 guaran-
tee that for sufficiently small δ ∈ (0, δ̄) one has∥∥D2f(k, φ(p)k, pk)−D2f(k, φ0

k, 0)
∥∥ < ε for all k ∈ Z, p ∈ Bδ(0).

Consequently, the `∞-roughness of exponential dichotomies (see [11, p. 232, The-
orem 7.6.7]) implies that (17) admits an dichotomy and φ(p) is hyperbolic. �

Remark 3 “Strong Boundedness Property”. The essential argument carrying the
above proof is the admissibility property [11, p. 230, Theorem 7.6.5] (“The Henry
Theorem”), characterizing exponential dichotomies. A flexible approach to this re-
sult via discrete linear skew-product semiflows can be found in form of the “Strong
Boundedness Property” given in [39, p. 213, Theorem 45.8] or [21, Section 4].
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Corollary 3.6 . If a bounded globally defined solution φ0 of (3) is exponentially
stable, then there is a δ > 0 such that also φ(p) , p ∈ Bδ(0), is exponentially stable.

Proof . Let κ ∈ Z. Since (φ0
k)k∈Z is an exponentially stable solution of (3), we know

that 0 is an exponentially stable equilibrium of the equation of perturbed motion

xk+1 = f0(k, xk + φ0
k)− f0(k, φ0

k),

whereby the converse of the theorem on stability by first approximation due to
Győri and Pituk (see [10, Theorem 4]) implies the existence of constants K0 ≥ 1,
α0 ∈ (0, 1) such that ‖Φ0(k, κ)‖ ≤ K0α

k−κ
0 for κ ≤ k. Hence, φ0 is hyperbolic

with associated invariant projector Q0(k) ≡ I. We apply Theorem 3.4 to deduce
the existence of a δ > 0 and hyperbolic globally defined solutions φ(p) of (4) for
sequences p ∈ Bδ(0) ⊆ `∞(P ). Choosing δ > 0 sufficiently small, we know that
the invariant projectors Q0 and Qp associated with the exponential dichotomies
of the variational equations for (3) and (4) along φ0 and φ(p), resp., are linearly
conjugated (cf. [17, pp. 32–34]). This guarantees that there exist real constants
K ≥ 1, α ∈ (0, 1) such that

‖Φp(k, κ)‖ ≤ Kαk−κ for all κ ≤ k

holds for the corresponding transition operator Φp(k, κ) of the variational equation
for (4) along φ(p). The theorem on stability by first approximation (also for this
classical case we refer to [10, Theorem 4]) implies that the zero solution of

xk+1 = fpk
(k, xk + φ(p)k)− fpk

(k, φ(p)k)

is exponentially stable, i.e., φ(p) is an exponentially stable solution of (4). �

Our Theorem 3.4 guarantees that bounded solutions of (3) persist under para-
metric perturbations. Next we discuss several subclasses of the bounded sequences
with this property.

3.2 Parametric limit zero perturbations

Now we investigate solutions homoclinic to 0, i.e., which converge to 0 as k → ±∞.

Hypothesis. Suppose 0 ∈ Ω and that f : Z×Ω×P→Ω satisfies:

H(`0)1 One has limk→±∞ f(k, 0, 0) = 0 and

sup
k∈Z

∥∥∥Dn
(2,3)f(k, 0, 0)

∥∥∥ <∞ for all 1 ≤ n < m,

H(`0)2 Dm
(2,3)f is uniformly bounded, i.e., for every bounded subset V0 ⊆ Ω×P one has

sup
k∈Z

sup
(x,p)∈V0

∥∥∥Dm
(2,3)f(k, x, p)

∥∥∥ <∞,
H(`0)3 Dn

(2,3)f is uniformly continuous, i.e., for ε > 0, bounded subsets V0 ⊆ Ω×P and
pairs (x̄, p̄) ∈ V0 there exists a δ > 0 such that (x, p) ∈ Bδ(x̄, p̄) ∩ Ω×P implies∥∥∥Dn

(2,3)f(k, x, p)−Dn
(2,3)f(k, x̄, p̄)

∥∥∥ < ε for all k ∈ Z, 0 < n ≤ m.
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From Lemma 2.1 we know that `0(Ω×P ) is open and Proposition 3.2 reads as

Proposition 3.7 . The operator N : `0(Ω×P )→`0 is well-defined and m-times
continuously Fréchet-differentiable with derivatives DnN = JnN

n for 0 < n ≤ m.

Proof . As above, we abbreviate Z := X×Y , V := Ω×P . Since φ ∈ `0(Ω), p ∈ `0(P )
are bounded sequences, we obtain from the proof of Lemma 3.1 that

C := sup
k∈Z

sup
h∈[0,1]

∥∥D(2,3)f(k, hφk, hpk)
∥∥ <∞.

Since mean value inequality (cf. [18, p. 342, Corollary 4.3]) and H(`0)1 guarantee

‖f(k, φk, pk)‖ ≤ ‖f(k, 0, 0)‖+ C ‖(φk, pk)‖ −−−−→
k→±∞

0,

the mapping N is well-defined, i.e., has values in `0(Ω). For the remainder of the
proof, we assume 0 < n ≤ m. Due to Lemma 3.1 and `0 ⊆ `∞ we know that
(Dn

(2,3)f(k, φk, pk))k∈Z is a bounded sequence in Ln(Z,X) and, therefore,

(
(JnNn(φ, p))ψ1 · · ·ψn

)
k

= Nn(φ, p)kψ1
k · · ·ψnk −−−−→

k→±∞
0

for all ψ1, . . . , ψn ∈ `0(Z). This implies JnN
n(φ, p) ∈ Ln(`0(Z), `0) and as in

Proposition 3.2 one shows that N is of class Cm with JnN
n as derivatives. �

After these preparations we are in the position to prove the following analog to
Theorem 3.4 for solutions of (4) in `0.

Theorem 3.8 (limit zero perturbations). Suppose H(`0) holds. If φ0 ∈ `0(Ω) is a
hyperbolic solution of the unperturbed equation (3), then there exist δ, ρ > 0 and
a unique Cm-function φ : Bδ(0) ⊆ `0(P )→Bρ(φ0) with φ(0) = φ0 such that each
φ(p) ∈ `0(Ω) is a globally defined hyperbolic solution of the parametrically perturbed
difference equation (4).

Proof . Let φ0 ∈ `0(Ω) and p ∈ `0(P ) be given. Thanks to Proposition 3.7 we
know that the mapping F : `0(Ω)×Ω×`0(P )→`0 is well-defined. Parallel to the
proof of Theorem 3.4 we use the implicit function theorem to solve F (ψ, ξ; p) = 0
for (ψ, ξ) ∈ `0(Ω)×Ω in a neighborhood of the point (φ0, φ0

κ). Here, the partial
derivative D(1,2)F (φ0, φ0

κ; 0) ∈ L(`0×X, `0) exists, and in order to show that it is a
toplinear isomorphism, we use the admissibility result in `0 from [2, Corollary 3]
instead of [11, p. 230, Theorem 7.6.5]. �

3.3 Parametric almost periodic perturbations

Another important perturbation class are the almost periodic sequences. Here, an
ap solution of (4) is already hyperbolic, provided its almost periodic variational
equation (7) has an exponential dichotomy on a semiaxis (in fact, a large discrete
interval is sufficient, cf. [1]), instead of on the whole integer axis.

Conditions guaranteeing the existence of ap solutions for nonautonomous dif-
ference equations can be found, for example, in [14, 26, 38]. In this spirit, our
perturbation theory implies that periodic solutions persist as ap functions under
almost periodic perturbations.

Let E be a further Banach space. We say a function g : Z×Ω×P→E is uniformly
almost periodic (for short, uniformly ap), if for all ε > 0 and compact B ⊆ Ω×P
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there exists an inclusion length l(ε,B) ∈ N such that every discrete interval of
length l(ε,B) contains an n ∈ Z with

‖g(k + n, x, p)− g(k, x, p)‖ < ε for all k ∈ Z, (x, p) ∈ B.

An illuminating discussion of conditions under which variational equations of ap
differential equations are almost periodic can be found in [9]. In our present discrete
context, an almost periodic time-dependence enables us to weaken some uniformity
and boundedness conditions needed above in H(`∞) and H(`0).

Hypothesis. Suppose Ω = X, P = Y and that f : Z×X×Y→X satisfies:

H(`ap)1 Dn
(2,3)f is uniformly ap for all 0 ≤ n ≤ m,

H(`ap)2 Dn
(2,3)f is uniformly continuous, i.e., for ε > 0, k ∈ Z, bounded V0 ⊆ X×Y and

pairs (x̄, p̄) ∈ V0 there exists a δ > 0 such that (x, p) ∈ Bδ(x̄, p̄) implies∥∥∥Dn
(2,3)f(k, x, p)−Dn

(2,3)f(k, x̄, p̄)
∥∥∥ < ε for all 0 < n ≤ m.

Proposition 3.9 . The operator N : `ap(X×Y )→`ap is well-defined and m-times
continuously Fréchet-differentiable with derivatives DnN = JnN

n for 0 < n ≤ m.

Proof . We briefly write Z := X×Y . Since the sequences φ ∈ `ap, p ∈ `ap(Y ) have
a relatively compact image (cf. [3, p. 140, Theorem 6.5]), there exists a compact
subset S ⊆ Z such that (φk, pk) ∈ S for all k ∈ Z. Referring to the assumption
H(`ap)1 we can apply [40, p. 16, Theorem 2.7]1 to see that (f(k, φk, pk))k∈Z is an
almost periodic sequence. Consequently, the mapping N is well-defined.

For every 0 < n ≤ m the very same argument shows that also the nth order
derivatives (Dn

(2,3)f(k, φk, pk))k∈Z are ap sequences in Ln(Z,X) and

(JnNn(φ, p))ψ1 · · ·ψn = Nn(φ, p)·ψ1
· · · ·ψn· ∈ `ap for all ψ1, . . . , ψn ∈ `ap(Z)

yields JnN
n(φ, p) ∈ Ln(`ap(Z), `ap). The continuity of Nn has been shown in

Lemma 3.1 under the uniform continuity assumption H(`∞)3. However, condition
H(`ap)2 and [40, p. 7, Theorem 2.1] guarantee that the partial derivatives Dn

(2,3)f

satisfy H(`∞)3 in our present almost periodic setting. Thus, one can proceed as
in Proposition 3.2 in order to prove that N is m-times continuously differentiable
with JnN

n as derivatives. �

Theorem 3.10 (almost periodic perturbations). Suppose H(`ap) holds. If φ0 ∈ `ap
is a hyperbolic solution of the unperturbed equation (3), then there exist δ, ρ > 0 and
a unique Cm-function φ : Bδ(0) ⊆ `ap(Y )→Bρ(φ0) with φ(0) = φ0 such that each
φ(p) ∈ `ap is a globally defined hyperbolic solution of the parametrically perturbed
difference equation (4).

Proof . Let φ0 ∈ `ap and p ∈ `ap(Y ). From the above Proposition 3.9 we deduce
that F : `ap×X×`ap(Y )→`ap is well-defined and of class Cm. The implicit function
theorem is applicable in order to solve F (ψ, ξ; p) = 0 for (ψ, ξ) ∈ `ap×X, provided

D(1,2)F (φ0, φ0
κ; 0) ∈ L(`ap×X, `ap) is invertible. (18)

1Admittedly, this result addresses uniformly almost periodic functions f : R×Ω→X, X finite-dimensional,
and guarantees that the composition t 7→ g(t, φ(t)) is ap for almost-periodic φ : R→X with values in a
compact subset S ⊆ Ω. The interested reader may check in detail that the proofs of [3, p. 140, Theorem 6.5],
[40, Theorem 2.7] and [40, p. 7, Theorem 2.1] carry over to the case of ap sequences and Banach space-
valued functions f : Z×Ω→X with obvious modifications.
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Since the derivative D2f is uniformly ap, the variational equation (7) along φ0 has
an almost periodic coefficient operator (cf. [40, p. 16, Theorem 2.7]). Thus, the
corresponding admissibility result for almost periodic linear difference equations
guaranteeing (18) can be found in [14, Proposition 13]. �

3.4 Parametric periodic perturbations

Finally, we round off our investigations and consider the classical situation of peri-
odic solutions φ0 for time-periodic difference equations (3) with possibly different
periods. Here, hyperbolicity of φ0 can be characterized and verified in terms of
Floquet multipliers of the variational equation (7) along φ0 (see Remark 1(a)).
Furthermore, uniformity conditions w.r.t. the time-dependence of f are trivially
satisfied and we precisely assume

Hypothesis. Suppose θ0, θ1, θ2 ∈ N and f : Z×Ω×P→Ω satisfies:

H(`θ)1 f(k, ·) = f(k + θ0, ·) for all k ∈ Z,
H(`θ)2 Dn

(2,3)f is uniformly continuous, i.e., for ε > 0, k ∈ Z, bounded subsets V0 ⊆ Ω×P
and pairs (x̄, p̄) ∈ V0 there exists a δ > 0 such that (x, p) ∈ Bδ(x̄, p̄)∩Ω×P implies∥∥∥Dn

(2,3)f(k, x, p)−Dn
(2,3)f(k, x̄, p̄)

∥∥∥ < ε for all 0 < n ≤ m.

Theorem 3.11 (periodic perturbations). Suppose H(`θ) holds and define θ ∈ N
as the least common multiple lcm {θ0, θ1, θ2}. If φ0 ∈ `θ1(Ω) is a hyperbolic solution
of the unperturbed equation (3), then there exist δ, ρ > 0 and a unique Cm-function
φ : Bδ(0) ⊆ `θ2(P )→Bρ(φ0) with φ(0) = φ0 such that each φ(p) ∈ `θ(Ω) is a globally
defined hyperbolic solution of the parametrically perturbed difference equation (4).

Proof . For given φ ∈ `θ1 and p ∈ `θ2 it is not difficult to deduce from assumption
H(`θ)1 that the sequence (f(k, φk, pk))k∈Z is θ-periodic with θ = lcm {θ0, θ1, θ2}.
Thus, the mapping F : `θ1(Ω)×Ω×`θ2(P )→`θ is well-defined and has an open
domain of definition (cf. Lemma 2.1). Due to the embeddings `θ1 , `θ2 ↪→ `θ we can
solve F (ψ, ξ; p) = 0 for (ψ, ξ) ∈ `θ(Ω)×Ω. As in the proof of Theorem 3.4, for
every inhomogeneity y ∈ `θ the unique bounded solution of (15) is given by (16)
– a sequence easily seen to be in `θ by our periodicity assumptions. This finally
implies that D(1,2)F (φ0, φ0

κ; 0) ∈ L(`θ×X, `θ) has a bounded inverse. �
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