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When studying the behavior of autonomous ordinary differential equations under time-dependent perturbations
vanishing for t → ±∞, their equilibria generically persist locally as homoclinic solutions. Using an abstract
and flexible continuation theorem, we find even global branches of such homoclinic solutions for parametrized
nonautonomous ordinary differential equations. Our approach is based on degree-theoretical arguments. In
particular, Landesman-Lazer conditions are proposed to obtain the existence of homoclinic solutions by means
of a nonzero degree.
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1 Introduction

It is both an interesting, as well as a relevant question to ask about the fate of an equilibrium x∗ of a parametrized
(ordinary) differential equation ẋ = f(x, λ), when the parameter λ is replaced by a time-variant function λ(t)?
For instance, λ might describe how the environment affects a model, which could be periodic to capture seasonal
effects, but will be rather arbitrary in other applications.

From a mathematical perspective, time-dependent parameters give rise to nonautonomous (ordinary) differen-
tial equations and therefore one cannot expect that constant solutions (equilibria) exist anymore (cf. [12]). Hence,
a wider class of reference solutions is appropriate in order to tackle related continuation or bifurcation problems
(cf. [18, 19]). In this context it is a key observation that hyperbolic equilibria of autonomous equations (the lin-
earization has no spectrum on the imaginary axis) persist locally as bounded solutions defined on the entire real
axis, when constant parameters become time-varying functions (see [3, 19]). This fact results from a combination
of admissibility properties for exponential dichotomies with the implicit function theorem, and is thus local in
nature. Information on the global behavior can be deduced on basis of global implicit function theorems, which
in turn require degree-theoretical arguments. For instance, in [20] we applied such a result due to [9] to arrive
at corresponding statements on the global structure of solution branches (in a discrete time setting of difference
equations).

The paper at hand has a slightly different focus. Rather than asking for the behavior of global branches, we
tackle the problem to find a solution for every parameter value and whether these solutions can be chosen from a
continuum? A corresponding abstract continuation principle was shown in [21] for general equations in Banach
spaces. Here we present a concrete and nontrivial application to ordinary differential equations. As a showcase, it
applies to the following situation: Given an equation having w.l.o.g. the trivial equilibrium, what happens to this
zero solution when replacing the parameters by time-variant functions decaying to 0 in forward and backward
time? This means we investigate the effect of nonautonomous perturbations vanishing at infinity. Locally, i.e. for
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small perturbations, the zero equilibrium will persist as a solution vanishing at ±∞ – one speaks of a homoclinic
solution. We provide sufficient conditions guaranteeing that homoclinic solutions exist over the entire parameter
range, which might be unbounded.

In order to be more precise, we investigate time-variant (nonautonomous) ordinary differential equations

ẋ = f(t, x, λ), (Dλ)

depending on a parameter λ. Since one cannot expect (Dλ) to have equilibria, an appropriate counterpart are
bounded solutions existing on the entire real line. In this spirit, we provide sufficient conditions so that (Dλ) has
homoclinic solutions, i.e., entire solutions φλ : R→ Rd satisfying

lim
t→±∞

φλ(t) = 0

for every parameter λ from a connected (metrizable Banach) manifold Λ, which moreover form a continuum.
The main tool for this purpose is a continuation principle for parameter-dependent Fredholm maps from [21].

Indeed, the ordinary differential equation (Dλ) is formulated as abstract equation

G(x, λ) = 0 (Oλ)

in an ambient Banach space. In order to be more precise, we consider oriented Fredholm mappings G : O×Λ→
Y between Banach spaces X,Y , where O ⊆ X is nonempty, open and suppose

(A1) the parameter space Λ is a connected metrizable (Banach) manifold (or more general, a connected absolute
neighborhood retract, cf. [8, p. 287, Cor. (5.4)]),

(A2) for any compact set Λ0 ⊆ Λ the restriction G|O×Λ0
is proper,

(A3) G−1(0) ∩ ((∂O)× Λ) = ∅ and G(·, λ)|O is Fredholm of index 0 for all λ ∈ Λ,

(A4) there exists a λ∗ ∈ Λ such that deg(G(·, λ∗), O, 0) 6= 0,

where deg(G(·, λ∗), O, 0) is an ambient topological degree, we are going to specify later. Under these assump-
tions, our key tool reads as follows:

Theorem 1.1 (global continuation principle, cf. [21, Thm. 1.1]) If (A1–A4) hold, then G−1(0)∩ (O×Λ) has
a connected component C which for every λ ∈ Λ contains a solution x ∈ O of (Oλ).

An actual application of Thm. 1.1 to an abstract formulation (Oλ) of (Dλ) first requires an ambient spatial
setting: We work with the continuous limit 0 functions for Y and its C1-counterpart for X . The corresponding
criteria needed to fulfill (A2) are adapted from [13, 15]. Second, various tools from nonautonomous dynamics
like exponential dichotomies [12, 13] or the Bebutov flow (cf. [23, 13]) to come into play. In particular, a
generalized Landesman-Lazer condition (see for instance, [10]) proves to be helpful — note that this approach is
novel because typically Landesman-Lazer conditions were used only for time-periodic problems (Dλ) so far.

The central problem in this (and of course a general) application of Thm. 1.1 is to verify that the degree in
assumption (A4) does not vanish. This task requires to choose a degree theory appropriate for the particular
problem. Here, we found a combination of the Benevieri-Furi degree [1] (as opposed to that of Fitzpatrick-
Pejsachowicz-Rabier [11]) with the Landesman-Lazer condition to be advantageous in calculations, which result
in the criterion of Prop. 4.6.

The paper is organized as follows: After introducing our terminology and notation, the following §2 deals
with homoclinic solutions for (Dλ) and provides an appropriate functional analytical setting. This includes a
recap of the Fredholm theory for linear differential equations, as well as criteria for the properness of substitution
operators. On this basis we can formulate and prove our main continuation Thm. 3.1 in §3. Also an immediate
example is given. Verifying its assumption involves to show that a topological degree does not vanish. This is a
nontrivial task and settled in §4 by means of Landesman-Lazer conditions; in addition, we provide two examples.
Finally, our two appendices aim to help readers possibly unfamiliar with single perquisites of this paper, and
intend to keep it largely self-contained. Basic concepts of topological dynamics such as the construction of the
Bebutov flow are contained in App. A, while App. B contains a crucial tool to compute the Benevieri-Furi degree.

As a further field of applications for Thm. 1.1, although not examined here, we mention boundary value
problems over unbounded domains [13, 9, 15].
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Notation and preliminaries

In what follows, we use the notations R+ := [0,∞), R− := (−∞, 0], N0 := N ∪ {0} and δij ∈ {0, 1} is the
Kronecker symbol. For a metric space X , Br(x) and B̄r(x) are the open resp. closed r-balls centered in x, the
interior of a set Ω ⊂ X is Ω◦, the closure is Ω and ∂Ω the boundary.

For Banach spacesX,Y we denote the space of linear bounded operators fromX to Y byL(X,Y ),GL(X,Y )
are the invertible elements and Φ0(X,Y ) the linear index 0 Fredholm operators. We briefly write L(X) :=
L(X,X) (similarly for other spaces) and idX for the identity map on X . Furthermore, N(T ) := T−1(0) and
R(T ) := TX are the kernel resp. the range of T ∈ L(X,Y ).

Given a nonempty, open set O ⊆ X and a nonlinear C1-map F : O → Y , one speaks of a Fredholm map
F : O → Y with index 0, if DF (x) ∈ Φ0(X,Y ) holds for all x ∈ O.

Typically dealing with mappings G : O × Λ → Y depending on two variables, it is convenient to abbreviate
Gλ := G(·, λ) : O → Y . The elementary proof of the next result is left to the reader:

Lemma 1.2 Let Λ be a metric space. If a continuous mapping G : X × Λ→ Y satisfies

(i) {G(x, ·) : Λ→ Y | x ∈ B} is equicontinuous for all bounded B ⊆ X ,

(ii) Gλ : X → Y , λ ∈ Λ, is proper on every bounded, closed subset of X ,

then G is proper on every product B × Λ0 with B ⊂ X bounded, closed and Λ0 ⊆ Λ compact.

A generalized Fredholm homotopy of index 0 is a continuous map H : O × [0, 1] → Y with continuous
derivative (x, t) 7→ DHt(x) ∈ Φ0(X,Y ) for every t ∈ [0, 1].

Finally, norms on finite-dimensional linear spaces are denoted by |·|.

2 Homoclinic solutions of ordinary differential equations

The aim of this section is to illustrate Thm. 1.1 by means of a nontrivial application. Let us thereto consider
parametrized ordinary differential equations (ODE for short)

ẋ = f(t, x, λ) (Dλ)

having a right-hand side f : R × Ω × Λ → Rd. Here, Ω = U ⊆ Rd, where U is an open convex neighborhood
of 0 and, for the sake of consistency with the above, the parameter space Λ is a connected (metrizable Banach)
manifold. An entire solution to (Dλ) stands for a differentiable function φ : R → Ω satisfying the solution
identity φ̇(t) ≡ f(t, φ(t), λ) on R.

Assume from now on that f : R× Ω× Λ→ Rd fulfills for j ∈ {0, 1}:

(H0) f : R× Ω× Λ→ Rd, D2f : R× Ω◦ × Λ→ L(Rd) exist as continuous functions and

sup
t∈R

sup
x∈B∩Ω◦

∣∣∣Dj
2f(t, x, λ)

∣∣∣ <∞ for all λ ∈ Λ and every bounded B ⊆ Ω,

(H1) for every compact set K ⊂ Ω, ε > 0 and λ0 ∈ Λ there exists a δ > 0 such that for all λ ∈ Bδ(λ0) holds

|x− y| < δ and |t− s| < δ ⇒ sup
t∈R

∣∣∣Dj
2f(t, x, λ)−Dj

2f(s, y, λ0)
∣∣∣ < ε,

for all x, y ∈ K ∩ Ω◦, t, s ∈ R,

(H2) lim
t→±∞

f(t, 0, λ) = 0 for all λ ∈ Λ.

Remark 2.1 It is not hard to see that the derivativeD2f : R×Ω◦×Λ→ L(Rd) can be extended to R×Ω×Λ
(this extension will be denoted by the same symbolD2f ). In particular, the extended derivativeD2f is continuous
on R×Ω×Λ. Moreover, f : R×Ω×Λ→ Rd and D2f : R×Ω×Λ→ L(Rd) satisfy (H0) and (H1) on B∩∂Ω
and K ∩ ∂Ω, respectively.
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If M denotes a metric space and Y ⊂ E, where E is a normed space with a norm ‖ · ‖, then C(M,Y )
are the continuous and BC(M,Y ) the bounded continuous mappings g : M → Y . In particular, we abbreviate
C(Y ) := C(R, Y ), C := C(Rd) and similarly for other function spaces. Note that ‖φ‖0 := sup

x∈M
|φ(x)| defines a

norm on BC(M,Rd). For any Y ⊆ E containing 0, we define the set

C0(Rm, E) :=

{
g ∈ C(Rm, E)

∣∣∣ ‖g(x)‖ −−−−→
|x|→∞

0

}
.

In particular, for m = 1, we will briefly write C0(Y ) := C0(R, Y ) and C0 := C0(Rd), respectively. This yields
Banach spaces C0 ⊂ BC w.r.t. the natural norm ‖·‖0.

Moreover, C1(Ω) with Y = Ω are the continuously differentiable functions φ : R→ Ω and

C1
0(Ω) :=

{
φ ∈ C1(Ω) | φ, φ̇ ∈ C0

}
.

We equip C1
0 with the norm

‖φ‖1 := max
{
‖φ‖0 , ‖φ̇‖0

}
and obtain the continuous embedding C1

0 ↪→ C0. Finally, throughout, we will consider the shift (linear) operator
Ss : C(Ω)→ C(Ω) given by (Ssφ)(t) = φ(t+s) for all φ ∈ C(Ω) and t ∈ R, where s ∈ R is a fixed real number.

2.1 Fredholm properties of linear ODEs

We now develop the required Fredholm theory for our purposes. Consider a linear ODE

ẋ = A(t)x (L)

with continuous coefficient A : R→ L(Rd) and associated evolution matrix U : R2 → L(Rd).
Suppose J ⊆ R is an unbounded interval. An invariant projector is a function Π: J → L(Rd) of projections

Π(t) ∈ L(Rd) such that

U(t, s)Π(s) = Π(s)U(t, s) for all t, s ∈ J.

A linear ODE (L) has an exponential dichotomy (ED for short, [5]) on J with invariant projector Π, if there exist
reals K > 1, α > 0 such that

|U(t, s)Π(s)| 6 Ke−α(t−s), |U(s, t)[idRd −Π(t)]| 6 Keα(s−t) for all s 6 t (2.1)

and t, s ∈ J hold. The constant dimension of N(Π(t)), t ∈ J , is called Morse index of (L). The associate
dichotomy spectrum (cf. [12, pp. 82ff]) becomes

ΣJ(A) := {γ ∈ R | ẋ = [A(t)− γ idRd ]x admits no ED on J}

and we conveniently write Σ+(A) := ΣR+
(A), Σ−(A) := ΣR−(A), Σ(A) := ΣR(A) for the forward, backward

and all time spectrum of (L). The evolution matrix of the adjoint equation

ẋ = −A(t)Tx, (L∗)

is given by U∗(t, s) := U(s, t)T for all s, t ∈ R. IfA is additionally bounded, then we define two linear operators
LA, L

∗
A ∈ L(C1

0,C0) by

(LAφ)(t) := φ̇(t)−A(t)φ(t), (L∗Aφ)(t) := φ̇(t) +A(t)Tφ(t) for all t ∈ R. (2.2)

Lemma 2.2 The following statements are equivalent:

(a) 0 6∈ Σ+(A) and 0 6∈ Σ−(A) with corresponding projectors Π+ resp. Π−,
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(b) LA is Fredholm with indLA = rk Π+(0)− rk Π−(0).

P r o o f. The implication (a)⇒ (b) follows from [16, Lemma 4.2], while the proof of the converse implication
(b)⇒ (a) can be found in [17].

In applications, (L) will be a variational equation. More detailed, suppose that φ∗ : R → Ω is a continuous
function (not necessarily a solution) and consider the variational equation

ẋ = D2f(t, φ∗(t), λ)x, (Vλ)

whose half-line dichotomy spectra are denoted by Σ+(λ),Σ−(λ) for λ ∈ Λ. One says that φ∗ is hyperbolic, if
(Vλ) has an ED on R, i.e. 0 6∈ Σ(λ). One speaks of a weakly hyperbolic function, if 0 6∈ Σ+(λ), 0 6∈ Σ−(λ) and
the corresponding projectors satisfy rk Π+

λ (0) = rk Π−λ (0). Clearly, hyperbolicity implies weak hyperbolicity,
but means a significantly stronger assumption.

2.2 Substitution operators

Rather than as an ODE, we will consider (Dλ) as abstract equation between function spaces. This, first of all,
requires to consider substitution operators

F : C0(Ω)× Λ→ C0, F (φ, λ) := f(·, φ(·), λ). (2.3)

Given a closed and totally disconnected set Z ⊂ Y ⊂ Rd we define

CZ(Y ) :=

{
φ ∈ BC(R, Y )

∣∣∣ lim
|t|→∞

distZ(φ(t)) = 0

}
and borrow the following compactness criterion from [22]:

Lemma 2.3 (compactness in CZ) A subset F ⊂ CZ(D), where D ⊂ Rd is closed with Z ⊂ D, is relatively
compact if and only if

(i) F is bounded,

(ii) F is uniformly equicontinuous, that is, for every ε > 0 there exists a δ > 0 such that |t− s| < δ implies
|φ(t)− φ(s)| < ε for all φ ∈ F and t, s ∈ R,

(iii) if there are sequences (φn)n∈N in F and (sn)n∈N in R such that lim
n→∞

|sn| = ∞ and Ssnφn → ϕ ∈
BC(R,D) pointwise on R, then ϕ(R) ⊂ Z.

In particular, if Z ⊂ Rd is compact, then for all z ∈ Z, C{z}(D) ⊂ CZ(D) and F ⊂ C{z}(D) is relatively
compact in C{z}(D) if and only if F is relatively compact in CZ(D).

It is convenient to state the special case Z = {0} separately:
Corollary 2.4 (compactness in C0(Ω)) A subset F ⊂ C0(Ω) is relatively compact if and only if

(i) F is bounded,

(ii) F is uniformly equicontinuous,

(iii) if there are sequences (φn)n∈N in F and (sn)n∈N in R such that lim
n→∞

|sn| = ∞ and Ssnφn → ϕ ∈
BC(R,Ω) pointwise on R, then ϕ(t) ≡ 0.

The next result ensures that F admits good properties:
Proposition 2.5 (properties of substitution operators) The operator F : C0(Ω) × Λ → C0 is well-defined,

continuous and has the following properties for all φ, φ0 ∈ C0(Ω) and λ ∈ Λ:

(a) D1F : C0(Ω)×Λ→ L(C0) exists as a continuous function with D1F (φ, λ)ψ(t) = D2f(t, φ(t), λ)ψ(t) for
all ψ ∈ C0,
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(b) D1F (φ, λ)−D1F (φ0, λ) ∈ L(C0) is compact.

P r o o f. Well-definedness and continuity of F , as well as assertion (a), were shown in [19, Sec. 3] or [15,
Sec. 2].

(b): As sums of compact operators are compact (see [25, p. 278, Thm. (i)]), it suffices to show that the
differenceD1F (φ, λ)−D1F (φ0, λ) ∈ L(C0) is compact for all φ ∈ C0(Ω). Again, D1F (φ, λ)−D1F (φ0, λ) =
M holds with the multiplication operator M ∈ L(C0) given by

(Mψ)(t) := (D2f(t, φ(t), λ)−D2f(t, φ0(t), λ))︸ ︷︷ ︸
=:A(t)

ψ(t) for all t ∈ R

(see (2.3)). In order to show that M is compact, we apply the criterion Cor. 2.4 to the set F := MB1(0) with
B1(0) ⊂ C0 and define C := supt∈R |A(t)|:
ad (i): For every φ ∈ F there is a ψ ∈ B1(0) ⊂ C0 with

|φ(t)| = |A(t)ψ(t)| 6 C ‖ψ‖0 6 C for t ∈ R.

ad (ii): Let ε > 0. Since A : R → L(Rd) is continuous and lim
t→±∞

A(t) = 0, there exists a δ1 > 0 so that

|t− s| < δ1 yields |A(t)−A(s)| < ε/2 for t, s ∈ R. If we set δ := min {δ1, ε/(2C)}, then

|φ(t)− φ(s)| 6 |A(t)(ψ(t)− ψ(s))|+ |(A(t)−A(s))ψ(s)|
6 C |ψ(t)− ψ(s)|+ |(A(t)−A(s))ψ(s)|
6 C |ψ(t)− ψ(s)|+ |A(t)−A(s)| sup

t∈R
|ψ(t)|

6 C |t− s|+ |A(t)−A(s)| < ε/2 + ε/2 = ε

for all t, s ∈ R, |t− s| < δ, φ ∈ F, by the mean value estimate. So, F is uniformly equicontinuous.
ad (iii): This follows from the limit relation

0 6 |φ(t)| = |A(t)ψ(t)| 6 |A(t)| −−−−→
t→±∞

0 for all φ ∈ F.

In conclusion, F ⊂ C0 is relatively compact and thus M is compact.

As a result of Prop. 2.5 the operator

G : C1
0(Ω)× Λ→ C0, G(φ, λ) := φ̇− F (φ, λ) (2.4)

is well-defined (see [19, Cor. 3.5]) and we obtain the elementary, yet crucial

Proposition 2.6 ([19, Thm. 3.6(b)]) Let λ ∈ Λ andG be given in (2.4). If φ ∈ C0 solves (Dλ), then φ ∈ C1
0(Ω)

and (Oλ) hold. Conversely, if φ ∈ C1(Ω)∩C0 solves the operator equation (Oλ), then φ is a homoclinic solution
to (Dλ) with φ ∈ C1

0.

With Prop. 2.5(a) our assumptions imply that D1G : C1
0(Ω)× Λ→ L(C1

0,C0) exists and

D1G(φ, λ)ψ = ψ̇ −D1F (φ, λ)ψ for all ψ ∈ C1
0 (2.5)

is a continuous function satisfying:

Lemma 2.7 If φ0 ∈ C1
0(Ω) is weakly hyperbolic, then the following holds for φ ∈ C1

0(Ω), λ ∈ Λ:

(a) D1G(φ0, λ) ∈ Φ0(C1
0,C0),

(b) D1G(φ0, λ) ∈ Φ0(C1
0,C0)⇔ D1G(φ, λ) ∈ Φ0(C1

0,C0).
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P r o o f. Above all, the function A(t) := D2f(t, φ0(t), λ) is bounded and continuous.
(a): This is an immediate consequence of Lemma 2.2.
(b): In (a) we established D1G(φ0, λ) ∈ Φ0(C1

0,C0). Using (2.5) one shows that

D1G(φ, λ) = D1G(φ0, λ) +D1F (φ0, λ)−D1F (φ, λ) for all φ ∈ C1
0(Ω)

and Prop. 2.5(b) guarantees that D1G(φ, λ) is a compact perturbation of an index 0 Fredholm operator. By [24,
p. 165, Thm. 6.40(b)] the Fredholm index is not affected and we accordingly arrive at D1G(φ, λ) ∈ Φ0(C1

0,C0).

In App. A we collected basic concepts from topological dynamics. Here, the hull of a nonautonomous ODE
(Dλ) is abbreviated as H(λ) and ω(λ), α(λ) ⊆ H(λ) denote the ω- resp. α-limit set; the topology is induced by
the metric (A.1). A subset G ⊆ H(f) is called admissible, if:

• ZG := {x ∈ Ω | ∃g ∈ G : g(t, x) ≡ 0 on R} is compact and totally disconnected,

•
{
φ ∈ C1(Ω) ∩BC | φ̇(t) ≡ g(t, φ(t)) on R

}
consists only of constant functions for all g ∈ G.

Remark 2.8 It is not hard to see if A : R → L(Rd) is continuous and bounded, then a subset G ⊂ H(A) is
admissible if and only if for any B ∈ G all nontrivial solutions of a differential equation φ̇(t) = B(t)φ(t), for all
t ∈ R, are unbounded.

Lemma 2.9 Let λ ∈ Λ. If α(λ)∪ω(λ) is admissible, then Gλ : C1
0(Ω)→ C0 is proper on all bounded, closed

subsets B ⊂ C1
0(Ω).

P r o o f. We neglect the dependence on the fixed λ ∈ Λ in our notation. Note that the claim, namely Gλ|B is
proper on each bounded, closed B ⊆ C1

0(Ω), is equivalent to the implication

(G(φn))n∈N converges in C0 for some bounded sequence (φn)n∈N in C1
0(Ω)

⇒ (φn)n∈N has a convergent subsequence.

Accordingly, let (φn)n∈N be a bounded sequence in C1
0(Ω) such that (G(φn))n∈N converges in C0 to ϕ. We

thus need to show the existence of a convergent subsequence (φnk)k∈N in C1
0(Ω) using Lemma 2.3 with F :=

{φn}n∈N. Above all, there exist a real R > 0 with

max{|φn(t)| , |φ̇n(t)|} 6 R for all n ∈ N, t ∈ R. (2.6)

ad (i): From (2.6) one obtains {φn(t) ∈ Rd | n ∈ N, t ∈ R} ⊆ BR(0).
ad (ii): The mean value estimate implies

|φn(t)− φn(s)|
(2.6)
6 R |t− s| for all n ∈ N, t, s ∈ R (2.7)

and therefore F is uniformly equicontinuous.
ad (iii): The set Z := {x ∈ Ω | ∃g ∈ α(λ) ∪ ω(λ) : g(t, x) ≡ 0 on R} with 0 ∈ Z is compact and totally dis-
connected by the admissibility assumption. We choose a sequence in F ⊂ C{0}(Ω) ⊂ CZ(Ω), which clearly
is a subsequence of (φn)n∈N and w.l.o.g. denoted as (φn)n∈N again. For a real sequence (sn)n∈N satisfying
lim
n→∞

|sn| = ∞, let us suppose that ψn := Ssnφn ∈ C1
0(Ω) converges pointwise to some ψ ∈ BC. In the

following steps, we establish ψ(R) ⊆ Z. Abbreviating fn := Ssnf and Fn : C1
0(Ω)→ C0, Fn(φ) := fn(·, φ(·)),

we obtain

ψ̇n(t)− fn(t, ψn(t)) ≡ φ̇n(t+ sn)− f(t+ sn, φn(t+ sn)) ≡ G(φn)(t+ sn) on R

and consequently

ψ̇n = Fn(ψn) + SsnG(φn) for all n ∈ N. (2.8)
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(I) Claim: (Fn(ψn))n∈N converges compactly to F (ψ).
First, (ψn)n∈N in C1

0(Ω) is bounded and like in (2.7) also uniformly equicontinuous. Hence, on every compact
subset J ⊂ R the Arzelá-Ascoli theorem (see [25, p. 85]) applies as in the proof of Lemma A.1 and there exists a
sequence of functions, again denoted by (ψn)n∈N, which converges compactly to ψ. Second, due to Lemma A.1
there also exists a subsequence, denoted as (fn)n∈N, which converges compactly to some f0 ∈ α(λ) ∪ ω(λ).
Choose ρ > 0 so large that Bρ(0) ⊂ Rd contains the ranges of ψn and ψ. Since fn converges uniformly to f0 on
J × (Bρ(0) ∩ Ω) one has

sup
t∈J
|fn(t, ψn(t))− f0(t, ψn(t))| −−−−→

n→∞
0.

Because (ψn)n∈N converges compactly to ψ and since Lemma A.1 ensures compact convergence of (fn)n∈N to
f0, we conclude

lim
n→∞

sup
t∈J
|f0(t, ψn(t))− f0(t, ψ(t))| = 0.

Combining the last two limit relations in the inequality

|fn(t, ψn(t))− f0(t, ψ(t))| 6 |fn(t, ψn(t))− f0(t, ψn(t))|+ |f0(t, ψn(t))− f0(t, ψ(t))|

for all t ∈ J , n ∈ N establishes the present claim.
(II) Claim: (SsnG(φn))n∈N converges compactly to 0.

This follows readily from the inequality

|SsnG(φn)(t)| 6 |G(φn)(t+ sn)− ϕ(t+ sn)|+ |ϕ(t+ sn)| .

(III) Passing to n→∞ in (2.8) shows that (ψ̇n)n∈N converges compactly to F (ψ) by step (I) and (II), which
in turn implies that ψ ∈ BC(Ω) is differentiable and solves (Dλ). The solution identity ψ̇(t) ≡ f0(t, ψ(t)) on R
even guarantees ψ ∈ BC1(Ω) by (H2). Thus, the assumed admissibility of α(λ)∪ω(λ) enforces ψ to be constant
x0 ∈ Ω and consequently

f0(t, x0) ≡ f0(t, ψ(t)) ≡ ψ̇(t) ≡ 0 on R.

Hence, by definition it is ψ(R) ⊆ Z.
In summary, we verified the conditions of Lemma 2.3 and thus the sequence (φn)n∈N has a subsequence

(φn)n∈N (denoted by the same symbol) that converges to a function ϕ̃ in C0. It remains to show convergence in
the C1

0-topology: Continuity of F : C0(Ω)→ C0 (see [19, Lemma 3.3]) implies

lim
n→∞

‖F (φn)− F (ϕ̃)‖0 = 0.

Since (G(φn))n∈N is assumed to converge uniformly to ϕ, it follows that φ̇n = F (φn) + G(φn) converges to
F (ϕ̃) +ϕ. Hence ϕ̃ is differentiable and ψ̇ = F (ϕ̃) +ϕ. Consequently, (φn) converges to ϕ̃ in the C1

0-topology.
This completes the proof.

Proposition 2.10 (properness) If α(λ)∪ω(λ) is admissible for all λ ∈ Λ, thenG : C1
0(Ω)×Λ→ C0 is proper

on every product B × Λ0 with B ⊂ C1
0(Ω) bounded, closed and Λ0 ⊆ Λ compact.

P r o o f. Thanks to Prop. 2.5 the mapping G : C1
0(Ω) × Λ → C0 is continuous and it remains to check the

assumptions of Lemma 1.2:
ad (i): Given a bounded B ⊂ C1

0(Ω), λ0 ∈ Λ, choose ε > 0. Due to (H2) there exists a δ > 0 so that
|λ− λ0| < δ implies

‖G(φ, λ)−G(φ, λ0)‖ = sup
t∈R
|f(t, φ(t), λ)− f(t, φ(t), λ0)| < ε

for all λ ∈ Λ. Thus, {G(φ, ·) | φ ∈ B} is equicontinuous.
ad (ii): Lemma 2.9 implies that Gλ : C1

0(Ω) → C0, λ ∈ Λ, is proper on the bounded, closed subsets of
C1

0(Ω).
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mn header will be provided by the publisher 9

C

λ∗ λ∗

Λ Λ

C1
0(Ω) C1

0(Ω)

φ∗ φ∗
Fig. 1 Illustration of Thm. 3.1, where the grey shaded area
symbolizes O × Λ: For every parameter value λ there exists
a homoclinic solution of (Dλ) (left). Yet, only the solution
branch C in the right figure covers the entire parameter space Λ
and is guaranteed by Thm. 3.1.

3 Continuation of homoclinic solutions

After these preparations, we finally arrive at the promised application of Thm. 1.1 showing that (Dλ) admits a
continuum of homoclinic solutions. We study the structure of the solution set

S =
{

(φ, λ) ∈ C1
0(Ω)× Λ | φ̇(t) ≡ f(t, φ(t), λ) on R

}
.

In comparison to related global implicit function theorems for homoclinic solutions from [20] or [13, 9, 15],
we do not assume the existence of a hyperbolic homoclinic solution φ∗ of (Dλ∗) for some parameter λ∗ ∈
Λ. We indeed drop the hyperbolicity assumption, but strengthen the solution property φ̇∗(t) ≡ f(t, φ∗(t), λ∗)
(abstractly, G(φ∗, λ∗) = 0) to the degree condition

deg(Gλ∗ , O, 0) 6= 0. (3.1)

Theorem 3.1 (continua of homoclinic solutions) Suppose beyond (H0-H2) that the following assumptions
hold for all λ ∈ Λ:

(i) α(λ) ∪ ω(λ) is admissible,

(ii) there is a weakly hyperbolic function φ∗λ ∈ C1
0(Ω).

If there exists a λ∗ ∈ Λ so that the degree condition (3.1) holds and G−1(0) ∩ (∂O × Λ) = ∅, then (see
Fig. 1(right))

(a) for every λ ∈ Λ there exists a solution φλ ∈ C1
0(Ω) of (Dλ),

(b) all these homoclinic solutions φλ are contained in a component of S,

where the mapping G is defined in (2.4) and O = C1
0(Ω)◦.

Remark 3.2 (1) Once the limit sets are known, checking the admissibility assumption (i) requires two aspects:
First, verifying that the constant solutions are totally disconnected is basically an algebraic condition on the
solutions to a nonlinear equation. Second, more substantial is to show that the bounded entire solutions of the
limit systems are constant. This can be done by showing that a limit system has the trivial solution and a unique
bounded solution. Conditions for the latter are wide-spread and we only mention the prototypical [6, p. 297,
Thm. 4.1].

(2) For the weak hyperbolicity assumption (ii) one needs to verify EDs on both half-lines. Numerical tools for
this endeavor were given e.g. in [7].

P r o o f. The argument is based on Thm. 1.1 with the Banach spaces X = C1
0, Y = C0 and the open set O =

C1
0(Ω)◦. The mapping G : O × Λ→ C0 from (2.4) characterizes the homoclinic solutions to (Dλ) via Prop. 2.6.

The linear mapping ψ 7→ ψ̇ between C1
0 and C0 is bounded; thus Prop. 2.5 implies that G : C1

0(Ω) × Λ → C0

is continuous. By Prop. 2.5(a) the partial derivative D1F exists as a continuous function and it results that also
D1G exists with

D1G : O × Λ→ L(C1
0,C0), D1G(φ, λ)ψ = ψ̇ −D1F (φ, λ)ψ

Copyright line will be provided by the publisher



10 Christian Pötzsche and Robert Skiba: A Continuation Principle for Fredholm maps II

being continuous. We check the further conditions of Thm. 1.1:
ad (A1): By assumption the parameter space Λ is a connected (metrizable Banach) manifold.
ad (A2): Thanks to (i) we can conclude from Prop. 2.10 that G fulfills the desired properness.
ad (A3): Due to (ii) the linear equation (Vλ) has EDs on both half-lines and Lemma 2.2 implies thatD1G(φ∗λ, λ)

is Fredholm with index 0. Hence, Lemma 2.7 ensures D1G(φ, λ) ∈ Φ0(C1
0,C0) for all φ ∈ C1

0(Ω) and conse-
quently, Gλ|O is a Fredholm operator of index zero.

Finally, since (A4) holds by assumption, Thm. 1.1 implies the assertion.

The concluding example illustrates how to understand Thm. 3.1 as perturbation result. Following the termi-
nology from Ex. A.3 enables us to state rather explicit assumptions:

Example 3.3 (asymptotically periodic equations) Let g : R×Rd ×Rp → Rd be continuous with continuous
derivative D2g. We consider an asymptotically periodic ODE ẋ = g(t, x, µ0) whose right-hand side depends on
a fixed parameter µ0 ∈ Rp and its perturbation (Dλ) given by

f(t, x, λ) := g(t, x, µ0 + diag(λ1, . . . , λp)µ(t))

with µ ∈ C0(Rp) and parameters λ = (λ1, . . . , λp) ∈ Rp =: Λ. In order to apply Thm. 3.1 several further
assumptions on g are due:

• If g,D2g are bounded and continuous in (x, µ) uniformly in t, then (H0-H1) are satisfied.

• lim
t→±∞

g(t, 0, µ0) = 0 implies the limit condition (H2).

• There exist p±-periodic functions g± : R× Rd → Rd and A± : R→ L(Rd) such that

lim
t→±∞

sup
x∈B

∣∣g(t, x, µ0)− g±(t, x)
∣∣ = 0, lim

t→±∞

∣∣D2g(t, 0, µ0)−A±(t)
∣∣ = 0.

This ensures λ-independent limit sets (cf. Ex. A.3)

α(λ) =
{
Stg− : R× Rd → Rd| t ∈ [0, p−]

}
, ω(λ) =

{
Stg+ : R× Rd → Rd| t ∈ [0, p+]

}
.

In order to have them admissible, suppose {x ∈ Ω : g±(t, x) ≡ 0 on R} are totally disconnected and that
the only bounded entire solutions to ẋ = g±(t, x) are constant ones. Whence, assumption (i) is fulfilled.

• If U± : R2 → L(Rd) denote the evolution matrices of

ẋ = A±(t)x, (3.2)

then σ(U±(p±, 0)) ∩ S1 = ∅ and the corresponding stable subspaces have the same dimension. So both
limit systems (3.2) have an ED on R with the same Morse index. Choosing φ∗λ = 0 for every parameter
λ ∈ Rp, this implies the weak hyperbolicity assumption (ii).

Provided the degree condition (3.1) can be satisfied, for every λ ∈ Rp the equation (Dλ) has a homoclinic solution
φλ which is contained in a continuum.

By imposing conditions both on the ODE (Dλ) and the abstract map G, Thm. 3.1 is plagued by somewhat
entangled assumptions. However, one possibility to verify (3.1) is given next:

4 Nonzero degree via a Landesman-Lazer condition

When it comes to applications of Thm. 3.1, sufficient criteria for the degree condition (3.1) are crucial, yet
nontrivial. Our subsequent argument is based on the homotopy invariance of the degree and a Landsman-Lazer
condition. Throughout, we suppose the assumptions of Thm. 3.1 are fulfilled and for simplicity, let us set Ω :=
Rd. Nonetheless, additional assumptions are due:
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In this regard suppose there exists a parameter λ∗ ∈ Λ so that (Dλ∗) has a homoclinic solution φ∗ : R→ Rd;
both φ∗ and λ∗ are kept fixed throughout. We consider a family of ODEs

ẋ = A(t)x+ sr(t, x) (Ds)

depending on a parameter s ∈ [0, 1] and

A(t) := D2f(t, φ∗(t), λ∗),

r(t, x) := f(t, x+ φ∗(t), λ∗)− f(t, φ∗(t), λ∗)−D2f(t, φ∗(t), λ∗)x,
(4.1)

for which we observe:

• Every equation (Ds), s ∈ [0, 1], has the trivial solution, while particularly (D0) coincides with the varia-
tional equation (Vλ∗) and (D1) is nothing but the equation of perturbed motion for the solution φ∗ of the
ODE (Dλ∗).

• Due to (H0-H1) the functions r : R×Rd → Rd andD2r : R×Rd → L(Rd) are bounded and uniformly con-
tinuous on compact subsets of Rd (in the sense of App. A). Moreover, it holds r(t, 0) ≡ 0 andD2r(t, 0) ≡ 0
on R. Finally, the function R 3 t 7→ A(t) ∈ L(Rd) is bounded and uniformly continuous on R.

We begin with a summary of the Fredholm theory from [18]. Since φ∗ is weakly hyperbolic by assumption
(ii) of Thm. 3.1 we derive from Lemma 2.2 that the operator LA from (2.2) is Fredholm of index

indLA = dimR(Π+(0))− dimR(Π−(0)) = 0

and

N(LA) = {U(·, 0)ξ ∈ C1
0 | ξ ∈ R(Π+(0)) ∩N(Π−(0))},

R(LA) =

{
ψ ∈ C0

∣∣∣ ∫
R
〈φ(s), ψ(s)〉ds = 0 for all φ ∈ C1

0 solving (L∗)
}
, (4.2)

where Π+,Π− are the dichotomy projectors for (L). Suppose that

R(Π+(0)) ∩N(Π−(0)) = span {ξ1, . . . , ξm} ,
m = dimN(LA) = dim

(
R(Π+(0)) ∩N(Π−(0))

)
,(

R(Π+(0)) +N(Π−(0))
)⊥

= span {η∗1 , . . . , η∗m} ,

m = codimR
(
LA) = dim(R(Π+(0)) +N(Π−(0))

)⊥
with linearly independent ξi ∈ Rd (resp. η∗j ∈ Rd). Without loss of generality one can assume that

〈ξi, ξj〉 = δij and
〈
η∗i , η

∗
j

〉
= δij for all 1 6 i, j 6 m, (4.3)

since otherwise we can use the Gram-Schmidt procedure to create the corresponding set of orthonormal vectors.
Furthermore (cf. [18, Lemma 3.7]), one has

N(LA) = span {U(·, 0)ξ1, . . . , U(·, 0)ξm} ,
N(L∗A) = span

{
U(0, ·)T η∗1 , . . . , U(0, ·)T η∗m

}
.

(4.4)

Remark 4.1 Any φ ∈ N(LA) admits a (unique) representation

φ =

m∑
i=1

αiU(·, 0)ξi (4.5)

with coefficients α1, . . . , αm ∈ R and one defines an isomorphism J : N(LA) → N(L∗A) mapping the basis
elements U(·, 0)ξi of N(LA) to the basis elements U(0, ·)T η∗i of N(L∗A). In particular,

J

(
m∑
i=1

αiU(·, 0)ξi

)
= U(0, ·)T

m∑
i=1

αiη
∗
i

and it is convenient to denote this mapping by φ 7→ φ?.
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The above facts enable us to construct the projector (see also Appendix C)

Q ∈ L(C0), (Qφ)(t) :=

m∑
i=1

ωi(t)
∫
R
〈
U(0, s)T η∗i , φ(s)

〉
ds

|U(t, 0)ηi|
· U(t, 0)η∗i

onto the complement of R(LA), where ωi ∈ C0((0,∞)) satisfies∫
R
ωi(s)|U(s, 0)η∗i |−1ds = 1.

Note that if U(0, ·)T η∗i ∈ N(L∗A), then U(·, 0)ηi is not necessarily bounded, where ηi satisfies the conditions
formulated in (4.3). This follows from the identity〈

U(0, s)T η∗i , U(s, 0)η∗i
〉
≡ 1 on R

and U(0, ·)T η∗i ∈ C0. Hence, the definition of Q involves a function ωi(·)|U(·, 0)ηi|−1U(·, 0)η∗i ∈ C0. The
space of integrable functions φ : R→ Ω is denoted by L1(Ω) and

L1 := L1(Rd), ‖φ‖L1 :=

∫
R
|φ(s)|ds

is a Banach space. It is not hard to see that (2.1) and (4.5) imply the following fact: If φ ∈ N(LA), then
‖φ‖L1 <∞ (the same holds for φ∗ ∈ N(L∗A)).

In our considerations we will need a function rp : R× Rd × [1,∞)→ Rd defined by

rp(t, x, µ) :=
r(t, µx)

µ
. (4.6)

The functions in (Ds) are assumed to fulfill:

(lr1) The limit set α(A) ∪ ω(A) is admissible.

(lr2) (Landesman-Lazer condition) There exist Cr > 0 and θ ∈ C0(R2, [0,∞)) such that

|r(t, x)− r(s, x)| 6 Cr|t− s| and |r(t, x)− r(t, y)| 6 θ(t, |x− y|)|x− y|, (4.7)∫
R

lim inf
x→ϕ(t)
µ→∞

〈rp(t, x, µ), ϕ?(t)〉dt > 0, (4.8)

for all x, y ∈ Rd, t, s ∈ R and for all ϕ ∈ N(LA) ⊂ C1
0 with ‖ϕ‖1 = 1.

It is clear that (4.8) rules out linear ODEs where r = 0. Note that (lr2) has a geometric interpretation: Roughly
speaking, r : R × Rd → Rd must intersect the range R(LA) transversally. In other words, the inequality from
(4.8) means that a function t 7→ r(t, φ(t)) is not contained in the kernel N(LA). This follows from the well
known identity 〈φ(t), ψ(t)〉 ≡ 0 on R for all φ ∈ N(LA) and ψ ∈ N(L∗A).

Some comments about the functions r ∈ C(R× Rd,Rd) and θ ∈ C0(R2, [0,∞)) are due:
Remark 4.2 Notice that a function r : R× Rd → Rd satisfying (4.7) induces that

|rp(t, x, µ)− rp(s, y, µ)| 6 |rp(t, x, µ)− rp(s, x, µ)|+ |rp(s, x, µ)− rp(s, y, µ)|
6 Cr|t− s|+ θ(s, µ|x− y|)|x− y|,

(4.9)

for all µ ∈ [1,∞), x, y ∈ Rd and t, s ∈ R. Furthermore,

|rp(t, x, µ)| = |rp(t, x, µ)− rp(t, 0, µ)| 6 θ(t, µ|x|)|x| 6 Lθ|x|, (4.10)

for all x ∈ Rd and µ > 1, where Lθ := sup
t,u∈R

|θ(t, u)|.

Since θ ∈ C0(R2, [0,∞), it follows that for all ε > 0 there exists δ > 0 such that

|(t, u)| > δ ⇒ |θ(t, u)| < ε.

In particular, if |u| > δ, then |θ(t, u)| < ε for all t ∈ R.
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Now we prove a consequence of the Landesman-Lazer assumption:
Lemma 4.3 If (lr1-lr2) hold, there exists a real Mr > 0 such that∫

R
〈r(t, ϕ(t)), ϕ?(t)〉dt > 0 for all ϕ ∈ N(LA) ⊂ C1

0 with ‖ϕ‖1 >Mr.

P r o o f. Assume on the contrary that no such Mr > 0 exists, i.e., we find (ϕn)n∈N in N(LA) such that

‖ϕn‖1 > 1 with ‖ϕn‖1 →∞ and
∫
R
〈r(t, ϕn(t)), ϕ?n(t)〉dt 6 0.

Because ψn := ‖ϕn‖−1
1 ϕn (resp. ψ?n := ‖ϕ?n‖−1

1 ϕ?n) define bounded sequences in the finite-dimensional sub-
spaces N(LA) (resp. N(L∗A)), we can assume w.l.o.g. that (ψn)n∈N (resp. (ψ?n)n∈N) converges to some element
ψ ∈ N(LA) (resp. to ψ? ∈ N(L∗A)). Furthermore, (4.4) implies that there exist αnj , αj ∈ R, where j = 1, ...,m
and n > 1, such that

ψ?n(t) =
m∑
j=1

αnj · U(0, t)T η∗j and ψ?(t) =

m∑
j=1

αj · U(0, t)T η∗j . (4.11)

Let γ : R→ R be defined as follows

γ(t) =

m∑
j=1

βj ·
∣∣U(0, t)T η∗j

∣∣ , (4.12)

where βj := sup{|αnj | n ∈ N}, for j = 1, ...,m. Notice that βj < ∞ since αnj → α0 as n → ∞, for
j = 1, ...,m. What is more, Lemma C.1 implies that γ ∈ L1 and

|ψ?n(t)| 6 γ(t) for all t ∈ R and n ∈ N.

What is more, (lr2) implies that there exists Lθ > 0 such that

|rp(t, ψn(t), µ)| 6 Lθ|ψn(t)| 6 Lθ,

for all t ∈ R, µ ∈ [1,∞) and n ∈ N.
We have ∫

R
〈r(t, ϕn(t)), ϕ?n(s)〉dt 6 0 ⇐⇒

∫
R
〈rp(t, ψn(t), ‖ϕn‖1), ψ?n(t)〉dt 6 0

and

lim inf
n→∞

〈rp(t, ψn(t), ‖ϕn‖1), ψ?n(t)〉 = lim inf
n→∞

〈rp(t, ψn(t), ‖ϕn‖1), ψ?(t)〉

> lim inf
x→ψ(t)
µ→∞

〈rp(t, x, µ), ψ?(t)〉 . (4.13)

Furthermore, from (lr1) and the Cauchy-Schwarz inequality it follows that

|〈rp(t, ψn(t), ‖ϕn‖1), ψ?n(t)〉| 6 |rp(t, ψn(t), ‖ϕn‖1)| · |ψ?n(t)| 6 Lθ|ψ?n(t)| 6 Lθγ(t).

Consequently, this together with (4.13) enables us to apply Fatou’s lemma, which gives the contradiction

0 > lim inf
n→∞

∫
R
〈rp(t, ψn(t), ‖ϕn‖1), ψ?n(t)〉dt >

∫
R

lim inf
n→∞

〈rp(t, ψn(t), ‖ϕn‖1), ψ?n(t)〉dt

>
∫
R

lim inf
x→ψ(t)
µ→∞

〈rp(t, x, µ), ψ?(t)〉dt
(4.8)
> 0

and completes the proof.
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We consider the substitution operator R0 : C1
0 → C0 induced by r : R×Rd → Rd. According to (H0-H1) it is

continuously differentiable with derivative

(DR0(φ)ψ)(t) = (D2f(t, φ∗(t) + φ(t))−D2f(t, φ∗(t)))ψ(t) for all t ∈ R, φ, ψ ∈ C0.

Furthermore, also the operator

Gs : C1
0 → C0, Gs(φ)(t) := φ̇(t)−A(t)φ(t)− sr(t, φ(t)) for all t ∈ R, s ∈ [0, 1]

is well-defined and allows the representation

Gs(φ) = LAφ− sR0(φ)

with (LAφ)(t) := φ̇(t)−A(t)φ(t) and (R0(φ))(t) := r(t, φ(t)).
Lemma 4.4 For each s ∈ [0, 1] the operator Gs : C1

0 → C0 is Fredholm of index zero. Moreover, if (lr1)
holds, then Gs proper on closed, bounded sets.

P r o o f. First, since φ∗ is weakly hyperbolic, Lemma 2.2 shows LA ∈ Φ0(C1
0,C0) and we have to establish

LA − sDR0(φ) ∈ Φ0(C1
0,C0) for all φ ∈ C1

0.

However, as in the proof of Prop. 2.5(b) one shows that the perturbation DR0(φ) = DR0(φ) − DR0(0) is
compact and therefore has no effect on the Fredholm properties of LA (cf. [24, p. 165, Thm. 6.40(b)]). Second,
Lemma 2.9 and (lr1) yield the properness of Gs on all bounded, closed B ⊂ C1

0.

Lemma 4.5 If (lr1-lr2) hold, there exists a ρ >Mr such that

(a) Gs(φ) 6= 0 for all s ∈ (0, 1] and φ ∈ C1
0 with ‖φ‖1 > ρ,

(b) QR0(φ) 6= 0 for all φ ∈ N(LA)− {0} with ‖φ‖1 > ρ.

P r o o f. (a): Assume no such ρ > 0 exists, i.e., we find (φn)n∈N in C1
0 and (sn)n∈N in (0, 1] such that

‖φn‖1 > 1 with ‖φn‖1 →∞ and LAφn − snR0(φn) = 0. (4.14)

Let ψn := ‖φn‖−1
1 φn, F := {ψn | n ∈ N} and Z := Zα(A)∪ω(A). Notice that 0 ∈ Z. This follows directly from

the assumption (H2). Furthermore, since α(A) ∪ ω(A) is admissible, ti follows that Z is compact.
We prove that F is relatively compact in CZ (and hence in C0, see Lemma 2.3). First of all, it is clear that

(ψn)n∈N is bounded. Since (ψn)n∈N is bounded in C1
0, the sequence (ψ̇n)n∈N is bounded and therefore all

functions in F are Lipschitz with the same constant, which implies that F is uniformly equicontinuous. Now we
are to show that F satisfies (iii). For this purpose, take any sequence (tn)n∈N in R satisfying lim

n→∞
|tn| =∞ and

a subsequence (ψn)n∈N ⊂ F (denoted by the same symbol as the elements of F) such that

χn(t) := ψn(t+ tn) −−−−→
n→∞

χ(t) for all t ∈ R and for some χ ∈ BC.

Without loss of generality we can assume that either tn → −∞ or tn → ∞ (we will consider both cases
simultaneously). We have to show χ(R) ⊂ Z using the Arzelá-Ascoli theorem [25, p. 85]: By passing to a
subsequence (if necessary) we may assume

• (χn)n∈N converges to χ uniformly on compact intervals,

• (Bn)n∈N converges to some B ∈ α(A)∪ω(A) (w.r.t. (A.5)), where Bn := StnA (i.e., Bn(t) = A(t+ tn)).

Whence, Bnχn converges to Bχ (with respect to the compact-open topology in C0) and (4.10) leads to

|rp(t+ tn, χn(t), ‖φn‖1) 6 θ(t+ tn, ‖φn‖1 · |χn(t)|)|χn(t)|
6 θ(t+ tn, ‖φn‖1 · |χn(t)|) −−−−→

n→∞
0,
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uniformly on any compact interval J ⊂ R (this follows from Remark 4.2 and the fact that for any compact
interval J and δ > 0 there exists n0 such that |tn + t| > δ for all n > n0 and for all t ∈ J). Moreover, (4.14)
implies that

χ̇n(t) = Bn(t)χn(t) + snrp(t+ tn, χn(t), ‖φn‖1),

where sn ∈ (0, 1]. Consequently, (χ̇n)n∈N converges to Bχ uniformly on compact intervals of R. This in turn
proves that the limit χ is differentiable and that {χ̇n}n∈N converges, uniformly on compact intervals, to χ̇; hence,
χ̇(t) ≡ B(t)χ(t) on R. Since χ is bounded and α(A) ∪ ω(A) is admissible by (lr1), it follows that χ is constant
with χ(R) = {c} ⊆ Z, which establishes that F is relatively compact in CZ (and hence in C0).

Since F is relatively compact in C0, we can assume w.l.o.g. that (ψn)n∈N converges to ψ in C0. Now we will
show that (ψ̇n)n∈N also converges to ψ̇ in C0. For this aim, observe that (4.14) implies that

ψ̇n(t) = A(t)ψn(t) + snrp(t, ψn(t), ‖φn‖1) for all t ∈ R. (4.15)

Now, taking into account (4.15) and reasoning as above, we can deduce that ψ0 is differentiable and that {ψ̇n}n∈N
converges, uniformly on compact intervals, to ψ̇ satisfying the equation

ψ̇(t) = A(t)ψ(t) for all t ∈ R.

Furthermore, we have

|ψ̇n(t)− ψ̇(t)| 6 |A(t)ψn(t)−A(t)ψ(t)|+ |rp(t, ψn(t), ‖φn‖1)|

6

(
sup
u∈R
|A(u)|

)
|ψn(t)− ψ(t)|+ θ(t, ‖φn‖1|ψn(t)|)|ψn(t)|

6MA|ψn(t)− ψ(t)|+ 1[0,ε)(|ψn(t)|)Lθε+ 1[ε,∞)(|ψn(t)|)θ(t, ‖φn‖1|ψn(t)|)
6MA|ψn(t)− ψ(t)|+ Lθε+ 1[ε,∞)(|ψn(t)|)θ(t, ‖φn‖1|ψn(t)|),

(4.16)

for all t ∈ R, where 1S : R → {0, 1} denotes the characteristic function of a set S ⊂ R, and ε > 0 (recall that
|ψn(t)| 6 1). Now we are ready to show that (ψ̇n)n∈N converges to ψ̇ in C0. Let ε > 0. Then there exists n0

such that

|ψn(n)(t)− ψ(t)| < ε for all t ∈ R and n > n0,

θ(t, ‖φn‖1|z|) < ε for all t ∈ R, z ∈ Rd with |z| > ε and n > n0 (see Remark 4.2).
(4.17)

Hence, in view of (4.16) and (4.16), we have

|ψ̇n(t)− ψ̇(t)| < (MA + Lθ + 1)ε for all t ∈ R and n > n0,

which proves the desired conclusion. The above considerations can be concluded with the following remark

‖ψn − ψ‖1 −−−−→
n→∞

0,

which in turn implies that ψ is a nontrivial solution of (L) in C1
0. Indeed, for if it were not, then we would have

the following contradiction:

1 =
∥∥∥‖φn‖−1

1 φn

∥∥∥
1

= ‖ψn‖1 = ‖ψn − ψ‖1 −−−−→
n→∞

0.

Now observe that N(LA) = {0} yields the assertion, because we get a contradiction to 0 6= ψ ∈ N(LA). Thus,
from now on, we can assume that N(LA) 6= {0}.

Hence from (4.15) we obtain〈
ψ̇n(t), ψ?(t)

〉
≡ 〈A(t)ψn(t), ψ?(t)〉+ sn 〈rp(t, ψn(t), ‖φn‖1), ψ?(t)〉 on R
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16 Christian Pötzsche and Robert Skiba: A Continuation Principle for Fredholm maps II

for all n ∈ N. Integrating the above equality shows∫
R

〈
ψ̇n(t), ψ?(t)

〉
dt =

∫
R
〈A(t)ψn(t), ψ?(t)〉dt+ sn

∫
R
〈rp(t, ψn(t), ‖φn‖1), ψ?(t)〉dt.

On the other hand, since ψ? ∈ C1
0, it follows (via integrating by parts) that∫

R

〈
ψ̇n(t), ψ?(t)

〉
dt = −

∫
R

〈
ψn(t), ψ̇?(t)

〉
dt

=

∫
R

〈
ψn(t), A(t)Tψ?(t)

〉
dt =

∫
R
〈A(t)ψn(t), ψ?(t)〉dt

and hence

0 =

∫
R
〈rp(t, ψn(t), ‖φn‖1), ψ?(t)〉dt.

Observe that

lim inf
n→∞

〈rp(t, ψn(t), ‖φn‖1), ψ?n(t)〉 = lim inf
n→∞

〈rp(t, ψn(t), ‖φn‖1), ψ?(t)〉

> lim inf
x→ψ(t)
µ→∞

〈rp(t, x, µ), ψ?(t)〉 , (4.18)

for all t ∈ R. Finally, repeating the estimations as in (4.13) and using Fatou’s lemma, we arrive the contradiction

0 = lim inf
n→∞

∫
R
〈rp(t, ψn(t), ‖φn‖1), ψ?n(t)〉dt >

∫
R

lim inf
n→∞

〈rp(s, ψn(s), ‖φn‖1), ψ?n(t)〉dt

>
∫
R

lim inf
x→ψ(t)
µ→∞

〈rp(t, x, µ), ψ?(t)〉dt
(4.8)
> 0.

This completes the proof.
(b): Assume once again that there exists a sequence (φn)n∈N in N(LA) satisfying

‖φn‖1 →∞ and QR0(φn) = 0 for all n ∈ N.

Due to the equivalences

QR0(φn) = 0⇐⇒
∫
R

〈
U(0, s)T η∗i , r(s, φn(s))

〉
ds = 0 for all 1 6 i 6 r

⇐⇒
∫
R
〈r(s, φn(s)), ϕ?(s)〉ds = 0 for all ϕ? ∈ N(L∗A)

we are in the same position as in the proof of (a), which verifies assertion (b).
However, as for the proof of part (b), here we do not need the assumption (lr1). It follows from the fact that the

condition dimN(LA) <∞ implies that the sequence ψn := ‖φn‖−1
1 φn ∈ N(LA) ⊂ C1

0 is relatively convergent
in C1

0.

Consequently, Lemma 4.4 and 4.5 allow us to apply the Benevieri-Furi degree of App. B to Gλ∗ :
Proposition 4.6 (degree condition with the nontrivial kernel) Suppose that (lr1-lr2) hold. If N(LA) 6= {0},

then the condition (3.1) holds on O = Bρ(0) with ρ >Mr given in Lemma 4.5.

Note that N(LA) = {0} implies

deg(LA −R0, Bρ(0), 0) = deg(LA, Bρ(0), 0) 6= 0.

This equality follows from Lemma 4.5(a) and the homotopy invariance of the Benevieri-Furi degree from App. B.
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P r o o f. Note that Gλ∗ = LA −R0. First, observe that Prop. B.1 implies

deg(LA −R0, Bρ(0), 0) = degB(−QR0|Bρ(0)∩N(LA), Bρ(0) ∩N(LA), 0)

= (−1)dimN(LA) degB(QR0|Bρ(0)∩N(LA), Bρ(0) ∩N(LA), 0)

and it remains to show

degB(QR0|Bρ(0)∩N(LA), Bρ(0) ∩N(LA), 0) 6= 0.

For this, we will use the homotopy invariance (bf2) from App. B and remark

(QR0φ)(t) =

m∑
i=1

ω(t)
∫
R〈U(0, s)T η∗i , r(s, φ(s))〉ds

|U(t, 0)ηi|
U(t, 0)ηi (4.19)

We represent φ as in (4.5) with coefficients α1, . . . , αm ∈ R,

ωi(t) :=
ω(t)U(t, 0)ηi
|U(t, 0)ηi|

for all t ∈ R (4.20)

and taking (4.19) and (4.5) into account, we define a homotopy H : (Bρ(0) ∩N(LA))× [0, 1]→ C0 by

H(φ, τ)(t) :=

m∑
i=1

ωi(t)

∫
R

〈
U(0, s)T η∗i , hi(s, φ(s), τ)

〉
ds,

where

hi : R× (Bρ(0) ∩N(LA))× [0, 1]→ C0, hi(t, φ, τ) := (1− τ)r(t, φ(t)) + ταiωi(t).

This homotopu satisfies

H(φ, 0) = QR0(φ) and H(φ, 1) = γr

m∑
i=1

αiωi,

Clearly, H(φ, 1) is an isomorphism and hence

degB(H(φ, 1), Bρ(0) ∩N(LA), 0) 6= 0.

It remains to show that

H−1(0) ∩ (∂Bρ(0) ∩N(LA)) = ∅.

Assume the contrary, that is, there are

φ0 =

m∑
i=1

α0
iU(·, 0)ξi ∈ (∂Bρ(0) ∩N(LA)), τ0 ∈ [0, 1] with H(φ0, τ0) = 0.

Then

〈H(φ0, τ0)(t), Tφ0(t)〉 ≡ 0 on R with the isomorphism (see (4.20)),

T : N(LA)→ span {ω1(·), . . . , ωm(·)} , U(·, 0)ξi 7→ ‖ωi‖−2
0 ωi(·).

Thus, if φ0 ∈ ∂Bρ(0) ∩N(LA) has a decomposition as in (4.5), then

〈H(φ0, τ0)(t), Tφ0(t)〉 = 0 ⇐⇒
m∑
i=1

α0
i

∫
R

〈
U(0, s)T η∗i , hi(s, φ0(s), τ0)

〉
ds = 0
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18 Christian Pötzsche and Robert Skiba: A Continuation Principle for Fredholm maps II

and
m∑
i=1

α0
i

∫
R

〈
U(0, s)T η∗i , (1− τ0)r(s, φ0(s))

〉
ds = −

m∑
i=1

α0
i

∫
R

〈
U(0, s)T η∗i , τ0α

0
iωi(s)

〉
ds.

On the other hand, by Lemma 4.3, for each τ0 ∈ [0, 1] one has

m∑
i=1

α0
i

∫
R

〈
U(0, s)T η∗i , (1− τ0)r(s, φ0(s))

〉
ds

= (1− τ0)

∫
R

m∑
i=1

α0
i

〈
U(0, s)T η∗i , r(s, φ0(s))

〉
ds

= (1− τ0)

∫
R
〈r(s, φ0(s)), φ?0(s)〉ds =

{
> 0, if τ0 ∈ [0, 1),

0, if τ0 = 1

and

−
m∑
i=1

α0
i

∫
R

〈
U(0, s)T η∗i , τ0α

0
iωi(s)

〉
ds

= −τ0
m∑
i=1

(α0
i )

2

∫
R

〈
U(0, s)T η∗i , ωi(s)

〉
ds

= −τ0
m∑
i=1

(α0
i )

2 =

{
< 0, if τ0 ∈ (0, 1],

0, if τ0 = 0;

a contradiction.

We close this section with two examples illustrating the applicability of our results and particularly the
Landesman-Lazer conditions. It is supposed that the ODE (Dλ) is globally defined, such that O = C1

0(Ω)
has empty boundary, Λ is a connected (metrizable Banach) manifold and λ∗ ∈ Λ is fixed.

Example 4.7 Let Ω = R and m ∈ N \ {1, 2}. Consider a scalar ODE (Dλ) whose right-hand side f : R ×
R× Λ→ R fulfills (H0-H2) and moreover

• f(t, 0, λ∗) ≡ 0 on R, i.e. (Dλ∗) has the trivial solution φ∗ = 0,

• the limits β±k (λ) := lim
t→±∞

Dk
2f(t, 0, λ) for 0 6 k < m and

β±m(λ) := lim
t→±∞

∫ 1

0

(1− h)m−1

(m− 1)!
Dm

2 f(t, hx, λ) dh

satisfy β±k (λ) 6= 0 for all odd k > 1, β±k (λ) = 0 for all even k > 0 and

β±k (λ)

β±1 (λ)
> 0 for all λ ∈ Λ and odd k > 3. (4.21)

Hence, (Dλ) is asymptotically autonomous. In particular, Taylor’s Formula yields

f(t, x, λ) =

m−1∑
k=0

Dk
2f(t, 0, λ)

k!
xk +

∫ 1

0

(1− h)m−1

(m− 1)!
Dm

2 f(t, hx, λ) dhxm

and consequently we arrive at

lim
t→±∞

f(t, x, λ) = β±1 (λ)x+ β±3 (λ)x3 + . . .+ β±m(λ)xm
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= β±1 (λ)x
(

1 +
β±
3 (λ)

β±
1 (λ)

x2 + . . .+
β±
m(λ)

β±
1 (λ)

xm−1
)
.

Thus, the limit functions are autonomous ODEs, whose only equilibrium is zero (cf. (4.21)) and the limit set
union α(λ) ∪ ω(λ) is admissible. We next check that φ∗ = 0 is weakly hyperbolic:
Case 1: β±1 (λ) < 0 shows that (Vλ) has an ED on R with Πλ(t) ≡ 1, thus φ∗ = 0 is hyperbolic.
Case 2: β−1 (λ) < 0 < β+

1 (λ) leads to an ED on R+ with Π+
λ (t) ≡ 0 and an ED on R− with Π−λ (t) ≡ 1. Since

the projectors have different ranks, φ∗ is not weakly hyperbolic.
Case 3: β+

1 (λ) < 0 < β−1 (λ) gives the dual situation of an ED on R+ with Π+
λ (t) ≡ 1 and an ED on R− with

Π−λ (t) ≡ 0; again φ∗ is not weakly hyperbolic
Case 4: 0 < β±1 (λ) guarantees and ED on R with Πλ(t) ≡ 0, φ∗ = 0 is even hyperbolic.
As a consequence, the assumption (ii) of Thm. 3.1 requires β+

1 (λ)β−1 (λ) > 0. We furthermore get

A(t) = D2f(t, 0, λ∗),

r(t, x) =

m−1∑
k=2

Dk
2f(t, 0, λ∗)

k!
xk +

∫ 1

0

(1− h)m−1

(m− 1)!
Dm

2 f(t, hx, λ∗) dhxm.

It remains to verify the triviality of the kernel N(LA):
Case 1: β±1 (λ∗) < 0 implies N(LA) = {0} and (4.8) hold trivially.
Case 4: 0 < β±1 (λ∗) leads to an ED on R with Πλ(t) ≡ 0 and N(LA) = {0} implies (4.8).

In conclusion, Thm. 3.1 applies and not only yields a homoclinic solution φλ of (Dλ) for all λ ∈ Λ, but also
states that they are contained in a continuum.

Example 4.8 Given Ω = R2 and m ∈ N \ {1} with Λ = Rk, now consider a planar ODE (Dλ) with

f(t, x, λ) := A(t)x+ b(t, x, λ) + c(t, λ),

where A : R→ L(R2) is defined by

A(t) :=

(
−a(t) 0

0 a(t)

)
, a(t) :=


−1, t < −1,

t, −1 6 t 6 1,

1, 1 < t,

(4.22)

and b : R× R2 × Rk → R2 and c : R× Rk → R2 satisfy the following conditions:

(i) b, and D2b (resp. c and D1c ) are uniformly continuous and bounded on R × K for any compact set
K ⊂ R2 × Rk (resp. for any compact set K ⊂ Rk).

(ii) b(t, 0, λ) ≡ 0 on R× {0} × Rk and cλ ∈ C0(R,R2) for all λ ∈ Rk.

In addition, we assume that there exists λ∗ ∈ Λ = Rk with the following properties:

(iii) Dbλ∗ exists with Dbλ∗ ∈ C0(R× R2, L(R× R2,R2)), D2b(t, 0, λ
∗) = 0 and c(t, λ∗) ≡ 0, for all t ∈ R.

(iv) There exists a measurable and bounded function b∞ : R× [−1, 1]× [−1, 1]→ R2 such that

lim inf
x→z
µ→∞

πi(b(t, µx, λ
∗))

µ
= πi(b∞(t, z)) for all t ∈ R, z ∈ [−1, 1]2 and i = 1, 2, and

π2(b∞(R× (0, 1]× {0})) ⊂ (0,∞) and π2(b∞(R× [−1, 0)× {0})) ⊂ (−∞, 0).

(4.23)

It is not hard to see that the above assumptions (i.e., (4.22) together with (i)) imply that f satisfies (H0-H1). Note
that

lim
t→±∞

f(t, 0, λ) = lim
t→±∞

c(t, λ) = 0
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20 Christian Pötzsche and Robert Skiba: A Continuation Principle for Fredholm maps II

guarantees (H2). These assumptions also lead to autonomous, linear and hyperbolic limit systems ẋ = f±(x)
with

f+(x) :=

(
−1 0
0 1

)
x, f−(x) :=

(
1 0
0 −1

)
x

and limit set union α(λ) ∪ ω(λ) = {f−, f+}, which is not only independent of λ, but also admissible; that is
(i) holds. Concerning the weak hyperbolicity assumption (ii), for every λ ∈ Λ we choose φ∗λ := 0 and readily
obtain the identity

D2f(t, φ∗λ(t), λ) ≡ D2f(t, 0, λ) ≡ A(t) on R.

Now (L) has the evolution matrix

U(t, s) =



(
exp(t− s) 0

0 exp(s− t)

)
, t, s < −1,

(
exp

(
(s2 − t2)/2

)
0

0 exp
(
(t2 − s2)/2

)) , t, s ∈ [−1, 1],

(
exp(s− t) 0

0 exp(t− s)

)
, 1 < t, s,

whose cocycle property U(t, τ) = U(t, s)U(s, τ) for all τ, s, t ∈ R leads to explicit representations of U(t, s)
for arbitrary t, s ∈ R. Then (L) has an ED on both half-lines R+ and R− with projectors

Π+(t) =

(
1 0
0 0

)
, Π−(t) =

(
0 0
0 1

)
and φ∗λ is weakly hyperbolic, i.e. (ii) is verified. It remains to satisfy the degree condition (3.1), for which we
employ Prop. 4.6. It follows from the above assumptions that (Dλ∗) has the trivial solution φ0 = 0 yielding the
nonlinearity

r(t, x) = b(t, x, λ∗).

What is more, by using the mean value theorem for the function bλ∗ ∈ C1(R × R2,R2) and the fact that its
derivative Dbλ∗ belongs to the space C0(R× R2, L(R× R2,R2)), one can show that the function r satisfies the
first condition in (4.7) in (lr2). As for the second condition in (lr2), we observe

R(Π+(0)) ∩N(Π−(0)) = R(Π+(0)) +N(Π−(0)) = Re1

and choose ξ1 = ξ∗1 = e1, η∗1 = e2; ei denote the canonical unit vectors. The explicit form

U(t, 0) =



(
exp((1− 2 |t|)/2) 0

0 exp((2 |t| − 1)/2)

)
, |t| > 1,

(
exp(−t2/2) 0

0 exp(t2/2)

)
, |t| 6 1,

U(0, t)T =



(
exp((2 |t| − 1)/2) 0

0 exp((1− 2 |t|)/2)

)
, |t| > 1,

(
exp(t2/2) 0

0 exp(−t2/2)

)
, |t| 6 1
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leads to N(LA) = Rue1, N(L∗A) = Rue2 with the positive function u : R→ [0, 1] given by

u(t) :=

{
exp((1− 2 |t|)/2), |t| > 1,

exp(−t2/2), |t| 6 1.
(4.24)

Therefore, we obtain ‖ϕ‖1 = 1 for all functions ϕ± = u±e1 ∈ N(LA), while Rem. 4.1 leads to ϕ?± = u±e2,
where u± := ±u. Finally, observe that (4.23) implies that

π2(b∞(t, (±u(t), 0)))(±u(t)) > 0 for all t ∈ R

and hence ∫
R

lim inf
x→ϕ±(t)
µ→∞

〈
rp(t, x, µ), ϕ?±(t)

〉
dt =

∫
R

lim inf
x→ϕ±(t)
µ→∞

π2(rp(t, x, µ))π2(ϕ?±(t))dt

=

∫
R

lim inf
x→ϕ±(t)
µ→∞

π2(rp(t, x, µ))u±(t)dt =

∫
R
π2(b∞(t, (±u(t), 0)))(±u(t)) ds > 0.

(4.25)

Thus, (4.25) guarantees (4.8). In conclusion, Thm. 3.1 applies to our planar ODE (Dλ) and yields a continuum
of homoclinic solutions covering Rk.

5 Perspectives

First, if Λ is locally compact, then Assumption (H1) can be weakened to the following:

(H1’) there exists γ > 0 such that for every ε > 0, λ0 ∈ Λ there exists a δ > 0 such that for all λ ∈ Bδ(λ0) holds

|x− y| < δ and |t− s| < δ ⇒
∣∣∣Dj

2f(t, x, λ)−Dj
2f(s, y, λ0)

∣∣∣ < ε,

for all x, y ∈ Bγ(0), t, s ∈ R and j ∈ {0, 1}.

Nevertheless, the substitution operator F : C0(Ω) × Λ → C0 from (2.3) and G : C1
0(Ω) × Λ → C0 from (2.4)

are still well-defined and continuous. In conclusion, for locally compact Λ and Assumption (H1) replaced by
(H1’), all results from this paper remain true. The proof relies on the subsequent lemma, which appears to be of
independent interest:

Lemma 5.1 Suppose that Λ is locally compact and that (H0) and (H1’) hold. Let φ ∈ C1
0(Ω) and λ0 ∈ Λ.

Then for every ε > 0 there exists a ξ > 0 such that

|t− s| < ξ ⇒ sup
t∈R

∣∣∣Dj
2f(s, ψ(s), λ)−Dj

2f(t, φ(t), λ0)
∣∣∣ < ε, (5.1)

for all ψ ∈ Bξ(φ), λ ∈ Bξ(λ0), t, s ∈ R and j ∈ {0, 1}.

P r o o f. Take ε > 0 and λ0 ∈ Λ. Since φ ∈ C1
0(Ω), it follows that there exists T > 0 such that φ(s) ∈ Bγ/2(0)

for all |s| > T . Take δ > 0 as in Assumption (H1’) for ε/2 and λ0 ∈ Λ. Without loss of generality one can assume
that δ < γ/2 and one can assume that B̄δ/2(λ0) is compact. Observe that if ψ ∈ Bδ(φ), then ψ(s) ∈ Bγ(0)

for all |s| > T . Since φ([−T, T ]) ⊂ Ω is compact, there exists an open subset Ω′ ⊂ Ω such that Ω′ ⊂ Ω is
compact with φ([−T, T ]) ⊂ Ω′. Hence there exists δ1 > 0 such that if ψ ∈ Bδ1(φ), then ψ(s) ∈ Ω′ for all
s ∈ [−T, T ]. Since φ ∈ C1

0, it follows that the derivative of φ is bounded on R and hence φ is Lipschitz on R
with some constant Lφ. Let δ2 := (1/2) min{δ, δ1, δ1/Lφ}. Then

|t− s| < δ2 and ψ ∈ Bδ2(φ)⇒ |ψ(s)− φ(t)| < δ.

Consequently from Assumption (H1’) it follows that

|t− s| < δ2 ⇒
∣∣∣Dj

2f(s, ψ(s), λ)−Dj
2f(t, φ(t), λ0)

∣∣∣ < ε (5.2)
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for all |t|, |s| > T, λ ∈ Bδ2(λ0), ψ ∈ Bδ2(φ), j ∈ {0, 1}.
On the other hand, since [−T − δ2, T + δ2]×Ω′ ×Bδ2/2(λ0) is compact, we deduce from Assumption (H0)

that the corresponding restrictions

f : [−T − δ2, T + δ2]× Ω′ ×Bδ2/2(λ0)→ Rd,

D2f : [−T − δ2, T + δ2]× Ω′ ×Bδ2/2(λ0)→ L(Rd)

are uniformly equicontinuous, and therefore there exists ρ < δ2/2 such that

|t− s| < ρ⇒
∣∣∣Dj

2f(s, ψ(s), λ)−Dj
2f(t, φ(t), λ0)

∣∣∣ < ε (5.3)

for all |s|, |t| 6 T + δ2, λ ∈ Bρ(λ0), ψ ∈ Bρ(φ), j ∈ {0, 1}. Finally, putting ξ := ρ and taking into account (5.2)
and (5.3), we obtain the desired conclusion from (5.1).

Second, our overall approach can be generalized to Carathéodory differential equations (Dλ), whose right-
hand side f is only assumed to be measurable in the time variable. Here solutions are merely absolutely con-
tinuous and not of class C1 anymore. Hence, the appropriate functional analytical setting is to work with the
spaces W1,∞

0 (weakly differentiable functions with limit 0) and L∞0 (essentially bounded functions decaying to
0). It remains to apply compactness criteria in these spaces in order to arrive at corresponding conditions for the
properness of G : W1,∞

0 × Λ→ L∞0 , that is, a counterpart to Prop. 2.10.
Third, it would be an interesting endeavor to obtain global continuation results or a global continuation prin-

ciple, which applies to bounded entire solutions, rather than homoclinic solutions. A crucial difficulty in this
setting is to obtain Fredholm properties of G acting between the spaces C1(Ω) and C.

Appendices

A Topological dynamics

This final appendix collects preliminaries from topological dynamics (cf. [23, 4]) and properties of the Bebutov
flow. Let Ω = U ⊆ Rd, where U is an open convex neighborhood of 0. Given a continuous function f : R×Ω→
Rd satisfying (H0-H1),

H(f) := {f(·+ s, ·) : R× Ω→ Rd| s ∈ R} ⊆ C(R× Ω,Rd)

defines its hull, where the closure is taken in C(R × Ω,Rd) with the compact-open topology. Recall that the
compact-open topology in H(f) is induced by the following metric:

d(g, ḡ) :=

∞∑
k,l=1

1

2k+l
|g − ḡ|k,l , (A.1)

where |g − g|k,l := sup
|t|6k

sup
|x|6l
|g(t, x)− g(t, x)| . This allows to introduce the mentioned Bebutov flow

Ss : H(f)→ H(f), Ssg := g(·+ s, ·) for all s ∈ R (A.2)

induced by f . Thus, (A.2) defines a continuous dynamical system R×H(f) 3 (s, g) 7→ Ssg ∈ H(f) (cf. [4]).
Moreover, the construction of the Bebutov flow equips us with tools from dynamical systems and, e.g.

ω(f) := {g ∈ H(f)| ∃sn →∞ | lim
n→∞

d(f(·+ sn, ·), g) = 0}

defines the ω-limit set of f , while the α-limit set becomes

α(f) := {g ∈ H(f)| ∃sn →∞ | lim
n→∞

d(f(· − sn, ·), g) = 0}.

The following lemma is well-known (see [14, Lemma 4.5] and [13, 20]):
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Lemma A.1 The set H(f) admits the following properties:

(a) H(f) is nonempty and compact. In particular, α(g), ω(g) 6= ∅ are compact for all g ∈ H(f),

(b) If g ∈ H(f), then g is bounded and uniformly continuous on R×K, for any compact set K ⊂ Ω.

(c) For every sequence (sn)n∈N in R with lim
n→∞

|sn| = ∞ there exists g ∈ H(f) and a subsequence (snk)k∈N

so that (Ssnk f)k∈N converges to g (with respect to the compact-open topology).

Example A.2 Almost periodic and almost automorphic functions f yield a compact hull H(f) (see [4,
Prop. 3.9]) and thus compact limit sets.

Example A.3 (asymptotically periodic equations) A function f is called asymptotically periodic, if there exist
p+, p− > 0 and limit functions f± : R× Ω→ Rd satisfying

f±(t, x) = f±(t+ p±, x), lim
t→±∞

sup
x∈B

∣∣f(t, x)− f±(t, x)
∣∣ = 0 for all B ⊂ Ω bounded;

if f± do not depend on time, one denotes f as asymptotically autonomous. The limit sets

α(f) =
{
Stf− : R× Ω→ Rd| t ∈ [0, p−]

}
, ω(f) =

{
Stf+ : R× Ω→ Rd| t ∈ [0, p+]

}
,

are topological circles (singletons in the asymptotically autonomous case) and hence compact.
Lemma A.4 The set {x ∈ Ω | ∃g ∈ G : g(t, x) ≡ 0 on R} is closed for G ∈ {α(f), ω(f)}.

P r o o f. Let Ω0 := {x ∈ Ω | ∃g ∈ ω(f) : g(t, x) ≡ 0 on R} and suppose that (xn)n∈N is a convergent se-
quence in Ω. To establish that its limit x0 is contained in Ω0, we proceed as follows: By definition, there exist
gn ∈ ω(f) with

0 ≡ gn(t, xn) ≡ lim
k→∞

f(t+ snk , xn) on R and for all n ∈ N (A.3)

and some real sequence (snk )k∈N with lim
k→∞

snk =∞. Let N ∈ N and set K := {xn : n ∈ N0}. The convergence

of (xn)n∈N to x0 and the assumed uniform continuity of f implies that there exists an integer n = n(N) > 0
such that

|f(t, x0)− f(t, xn)| < 1/N for all t ∈ R.

On the compact set [−N,N ] ×K we derive from (A.3) that there exists a m = m(N) ∈ N such that snm > N
and

|f(t+ snm, xn)| < 1/N for all t ∈ [−N,N ]

hold. Consequently, this leads to

|f(t+ snm, x0)| 6 |f(t+ snm, x0)− f(t+ snm, xn)|+ |f(t+ snm, xn)| < 2/N

for all t ∈ [−N,N ]. Then the sequence sN := s
n(N)
m(N) satisfies

|f(t+ sN , x0)| < 2/N, lim
N→∞

sN =∞, lim
N→∞

f(t+ sN , x0) = 0. (A.4)

By Lemma A.1 there exists a subsequence (sNn)n∈N with

lim
n→∞

SsNn f = g for some g ∈ ω(f).

From (A.4) we derive g(t, x0) ≡ 0 on R and hence x0 ∈ Ω0 follows. Thus, the set Ω0 ⊆ Ω is closed. The proof
for α(f) is analogous.
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A similar skew-product construction as in case of nonlinear functions f is possible for continuous functions
A : R→ L(Rd): One defines the hull

H(A) := {A(·+ s) : R→ L(Rd) | s ∈ R},

on which the Bebutov flow becomes

Ss : H(A)→ H(A), SsB := B(·+ s) for all s ∈ R.

The closure in this definition of H(A) is again taken in the compact-open topology, i.e. uniform convergence on
bounded sets induced by the metric

d(A, Ā) :=

∞∑
l=1

1

2l
sup

t∈[−l,l]

∣∣At − Āt∣∣ (A.5)

and the limit sets now become

ω(A) := {B ∈ H(A) | ∃sn →∞ : lim
n→∞

d(A(·+ sn), B) = 0},

α(A) := {B ∈ H(A) | ∃sn →∞ : lim
n→∞

d(A(· − sn), B) = 0}.

Lemma A.5 If A ∈ BC(R, L(Rd)), then α(A) 6= ∅ and ω(A) 6= ∅.

P r o o f. The claim follows as in Lemma A.1.

B The Benevieri-Furi degree

Following [1], let C(T ) denote the correctors of a linear operator T ∈ L(X,Y ), that is, the set of all K ∈
L(X,Y ) with dimR(K) < ∞ and T + K ∈ GL(X,Y ). We call K1,K2 ∈ C(T ) equivalent, if det((T +
K1)−1(T + K2)|X0) > 0, where X0 is a finite-dimensional subspace of X containing the range R((T +
K1)−1(K1 − K2)). Then C(T ) contains exactly two equivalence classes and C(T ) 6= ∅ holds if and only if
T ∈ Φ0(X,Y ). An orientation of T ∈ Φ0(X,Y ) is an equivalence class of correctors for T according to the
above equivalence relation; by the opposite orientation of T we mean the complementary equivalence class in
C(T ). An oriented linear Fredholm operator is a pair (T, σ) consisting of a T ∈ Φ0(X,Y ) and an orientation σ.

A closed subspace Y0 ⊆ Y is called transversal to T ∈ Φ0(X,Y ), ifR(T )+Y0 = Y and Y0 is complemented
in Y (or T−1(Y0) is complemented in X). For an oriented Fredholm map (T, σ) and Y0 ⊆ Y transversal to T
one has:

• If X0 := T−1(Y0), then the inherited orientation of T0 := T |X0
is

σ0 := {K|X0
∈ L(X0, Y0) | K ∈ σ and R(K) ⊆ Y0} , (B.1)

T |(X0,Y0) ∈ Φ0(X0, Y0) and dimY0 <∞ implies dimX0 = dimY0,

• Y0 is transversal to T if and only if there are closed subspaces Y1 ⊆ Y and X1 ⊆ X satisfying Y = Y0⊕Y1

and X = X0 ⊕X1 such that T |(X1,Y1) ∈ GL(X1, Y1).

This concept can be extended to a continuous map from a metric space Λ to Φ0(X,Y ). Namely, an orientation of
a continuous map h : Λ → Φ0(X,Y ) can be given by assigning a family {(Ui, Ai) | i ∈ I}, called an oriented
atlas of h, satisfying the following properties:

{Ui | i ∈ I} is an open covering of Λ;

given i ∈ I, Ai is a corrector of any h(λ), for all λ ∈ Ui;
if λ ∈ Ui ∩ Uj , then Ai is equivalent to Aj with respect to h(λ).

(B.2)
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In particular, one can prove, by using the covering space theory, that if Λ is simply connected and locally path
connected, then any continuous map h : Λ → Φ0(X,Y ) is orientable (see [2]). Furthermore, the above concept
allows us to define a notion of orientation for nonlinear Fredholm maps of index zero between open subsets of
Banach spaces. Let O be an open subset of X and let f : O → Y be Fredholm of index zero. By an orientation

of f we shall mean an orientation of O 3 x Df7−→ Df(x) ∈ Φ0(X,Y ). Thus f is orientable if and only if so is
Df according to (B.2).

Let F : O → Y denote an oriented Fredholm map of index 0 on an open subset O ⊆ X and with the compact
set F−1(0). An oriented submanifold Y0 ⊆ Y is called transversal to F onM ⊆ O, if for each x ∈M∩F−1(Y0)
the subspace TF (x)Y0 ⊆ Y is transversal to DF (x). What is more, if F : O → Y is oriented, then the restriction
F0 : M0 → Y0 is still an oriented Fredholm map of index zero (see [1, 2, 24] and (B.1)). In [1, 24] it is shown
how the orientations of F and Y0 give an orientation on M0, that we shall refer to as induced orientation.

Then the Benevieri-Furi degree deg(F,O, 0) ∈ Z (resp. deg(F,O, 0) ∈ Z2 in the nonoriented case) is con-
structed as follows:

Let Y0 ⊂ Y be a finite-dimensional submanifold transversal to F on an open neighborhood O0 ⊂ O of
F−1(0), F oriented on O0. The intersection X0 := O0 ∩F−1(Y0) is either empty or an oriented submanifold of
the same dimension as Y0 and of class C1 (see [24, Thm. 8.55]). If dimY0 > 0, then F0 := F |X0 ∈ C1(X0, Y0)
satisfies the reduction property

deg(F,O, 0) = degB(F0, X0, 0), (B.3)

where degB is the C1-Brouwer degree. For X0 = ∅ the right-hand side is set to be zero. In the oriented situation,
the orientation of F0 is defined as in (B.1). The sign of an oriented Fredholm operator (T, σ) is sgnT = 1 if
0 ∈ σ, sgnT = −1 otherwise and sgnT = 0 if T 6∈ GL(X,Y ).

Such a degree is uniquely determined and particularly satisfies (see [1, 24]):

(bf2) (homotopy invariance) If H : O × [0, 1] → Y is a generalized (oriented) Fredholm homotopy of index 0
with H−1(0) being compact, then deg(H0, O, 0) = deg(H1, O, 0).

Recall that a generalized Fredholm homotopy of index 0 is a continuous map H : O × [0, 1] → Y with
continuous derivative (x, t) 7→ DHt(x) ∈ Φ0(X,Y ) for every t ∈ [0, 1]. We will say that H is orientable
if for any t ∈ [0, 1], the map O 3 x 7→ DHt(x) ∈ Φ0(X,Y ) is orientable. In fact, one can show that a
generalized Fredholm homotopy H is orientable if and only if there exists at least one t0 ∈ [0, 1] such that the
map Ht0 : O → Y is orientable (see [1, 2, 24]).

By means of a Lyapunov-Schmidt-like technique we illustrate how the reduction property (B.3) can be used
in explicit calculations of the Benevieri-Furi degree. For this endeavor, assume that O ⊆ X is open, bounded,
simply connected and for every s ∈ [0, 1] we suppose

• L ∈ Φ0(X,Y ) with N(L) 6= {0},

• R : O × [0, 1]→ Y is continuous and R(·, s) ∈ C1(O, Y ),

• F : O × [0, 1]→ Y , F (x, s) := Lx+ sR(x, s) is Fredholm of index 0.

Now define X1 := N(L), Y1 := R(L) and choose topological complements X2 and Y2 with X = X1 ⊕X2

and Y = Y1 ⊕ Y2. Notice that these closed complements exist because X1 has a finite dimension and Y1 a
finite co-dimensional. There exist projections P ∈ L(X), Q ∈ L(Y ) such that R(P ) = X1, N(P ) = X2,
R(Q) = Y2, N(Q) = Y1. Thus, the restriction LP := L|X2

: X2 → Y1 of L to X2 is an isomorphism and F
admits the decomposition

F (x, s) = (Lx+ s((idY −Q) ◦R)(x, s), sQR(x, s)).

Since F (·, 0) = L is linear, it suffices to study the zeros of F (x, s) = 0 for s ∈ (0, 1]. But then

F (x, s) = 0 ⇐⇒ F̃ (x, s) = 0 for all s ∈ (0, 1],

where

F̃ : O × [0, 1]→ Y, F̃ (x, s) = (Lx+ s((idY −Q)R)(x, s), QR(x, s)).
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What is more, with the mapping Fs : O → Y also F̃s : O → Y , s ∈ [0, 1], are Fredholm maps of index zero,
which follows from

F̃ (x, s)− F (x, s) = (0, (1− s)QR(x, s)),

where the right-hand side of the latter equality is a finite dimensional function. This enables us to study properties
of F̃ induced by F .

We close with a result being central in our above application:
Proposition B.1 If F̃ : O × [0, 1]→ Y is proper and satisfies

(i) F̃ (x, s) 6= 0 for all 0 < s 6 1 and x ∈ ∂O,

(ii) QR(x, 0) 6= 0 for all x ∈ X1 ∩ ∂O,

then deg(F̃1, O, 0) = degB(QR0|X1∩O, X1 ∩O, 0).

P r o o f. Since O is simply connected, F̃ is orientable and the oriented Benevieri-Furi degree applies. The
properness of the mapping F̃ implies that the set {(x, t) ∈ O × [0, 1] | F̃ (x, t) = 0} is compact. The homotopy
invariance (bf2) yields

deg((L,QR0), O, 0) = deg(F̃0, O, 0) = deg(F̃1, O, 0).

Finally, the subspace Y2 is transversal to F̃0, F̃−1
0 (Y2) = N(L)∩O = X1∩O and consequently (B.3) guarantees

that

deg((L,QR0), O, 0) = degB(QR0|X1∩O, X1 ∩O, 0),

which concludes the proof.

C Projector methods

In this section we review a few results about projectors strictly associated with the Fredholm maps considered in
this paper. Before this, we must recall the following two facts:

Lemma C.1 If ϕ ∈ N(LA), then
∫
R |ϕ(s)|ds <∞ and the same holds for all ϕ∗ ∈ N(L∗A).

P r o o f. The assertion it suffices to prove for ϕ ∈ N(LA) of the form ϕ(t) := U(t, 0)ξi, where

ξi ∈ R(Π+(0)) ∩N(Π−(0)) = span{ξ1, . . . , ξm}.

Thus using the assumed dichotomy estimates (see (2.1)), we can estimate |ϕ(t)| as follows

|ϕ(t)| = |U(t, 0)ξi| =
{
|U(t, 0)Π+(0)ξi| 6 Ke−αt|ξi| if 0 6 t,
|U(t, 0)(idRd −Π−(0))ξi| 6 Keαt|ξi| if t 6 0.

Hence ∫
R
|ϕ(t)|dt =

∫ 0

−∞
|ϕ(t)|dt+

∫ ∞
0

|ϕ(t)|dt

6
∫ 0

−∞
Keαt|ξi|dt+

∫ ∞
0

Ke−αt|ξi|dt =
2K

α
|ξi|.

Lemma C.2 Under the above assumptions, the linear functionals µi : C0 → R given by

µi(h) =

∫
R
〈U(0, s)T η∗i , h(s)〉ds for all h ∈ C0 and 1 6 i 6 m

are continuous with ‖µi‖ 6 2Kα−1|η∗i | and R(LA) =
⋂m
i=1N(µi).
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P r o o f. The corresponding estimation follows directly from Lemma C.1, while the second assertion can be
deduced easily from (4.2).

Consequently, the above lemmas allows us to construct the following projectors.
Lemma C.3 Under the above assumptions, two mappings P ∈ L(C1

0) and Q ∈ L(C0) given by

(Pφ)(t) : =

m∑
i=1

〈ξ,iφ(0)〉U(t, 0)ξi,

(Qφ)(t) : =

m∑
i=1

ω(t)
∫
R〈U(0, s)T η∗i , φ(s)〉ds
|U(t, 0)η∗i |

U(t, 0)η∗i

are bounded projections onto N(LA) and the complement of R(LA), respectively, where ω ∈ C0(R, (0,∞)) is a
continuous function satisfying∫

R
ω(s)|U(s, 0)ηi|−1ds = 1.

P r o o f. First we will prove that P is a projection onto N(LA). Observe that (4.4) implies that Pφ ∈ N(LA)
for all φ ∈ C1

0. Moreover, P 2 = P holds because

P 2φ = P (Pφ) = P

(
m∑
i=1

〈ξi, φ(0)〉U(·, 0)ξi

)

=

m∑
j=1

〈
ξj ,

(
m∑
i=1

〈ξi, φ(0)〉U(0, 0)ξi

)〉
U(·, 0)ξj

=

m∑
i,j=1

〈ξi, φ(0)〉〈ξj , ξi〉U(·, 0)ξj =

m∑
i,j=1
i=j

〈ξi, φ(0)〉〈ξj , ξi〉U(·, 0)ξj

=

m∑
i=1

〈ξi, φ(0)〉U(·, 0)ξi = Pφ.

Furthermore, P is a bounded projector because of the following estimate:

‖Pφ‖1 =

∥∥∥∥∥
m∑
i=1

〈ξi, φ(0)〉U(·, 0)ξi

∥∥∥∥∥
1

6
m∑
i=1

‖〈ξi, φ(0)〉U(·, 0)ξi‖1

=

m∑
i=1

|〈ξi, φ(0)〉| · ‖U(·, 0)ξi‖1 6
m∑
i=1

|ξi| · ‖φ‖1 · ‖U(·, 0)ξi‖1

= ‖φ‖1

(
m∑
i=1

|ξi| · ‖U(·, 0)ξi‖1

)
.

Now we will prove that Q is a bounded projection onto the complement of R(LA). It is easy to see that Q is well
defined, i.e., Qφ ∈ C0 for any φ ∈ C0. Furthermore, the boundedness of Q follows from the following estimates:

‖Qφ‖0 =

∥∥∥∥∥
m∑
i=1

ω(·)
∫
R〈U(0, s)T η∗i , φ(s)〉ds
|U(·, 0)ηi|

U(·, 0)η∗i

∥∥∥∥∥
0

6
m∑
i=1

∥∥∥∥∫
R
〈U(0, s)T η∗i , φ(s)〉ds

∥∥∥∥
0

· ‖ω‖0

6

(
r∑
i=1

2Kα−1

)
‖φ‖0 · ‖ω‖0,
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28 Christian Pötzsche and Robert Skiba: A Continuation Principle for Fredholm maps II

where the last inequality follows from Lemma C.2. What is more, Lemma C.2 implies that N(Q) = R(LA).
Finally, it suffices to prove that Q2 = Q. Indeed, let

vj(t) :=
ω(t)U(t, 0)η∗j
|U(t, 0)η∗j |

for 1 6 j 6 m.

Then

Q2φ = Q(Qφ) = Q

(
m∑
i=1

∫
R
〈U(0, s)T η∗i , φ(s)〉ds · vi(·)

)

=

m∑
j=1

∫
R

〈
U(0, s)T η∗j ,

(
r∑
i=1

∫
R
〈U(0, s)T η∗i , φ(s)〉ds · vi(·)

)〉
ds

=

m∑
i=1

m∑
j=1

∫
R
〈U(0, s)T η∗i , φ(s)〉ds ·

∫
R

〈
U(0, s)T η∗j , vi(s)

〉
ds · vj(·).

But 〈
U(0, s)T η∗j , vi(s)

〉
=
〈
U(0, s)T η∗j , ω(s)|U(s, 0)ηi|−1U(s, 0)η∗i

〉
= ω(s)|U(s, 0)ηi|−1

〈
η∗j , U(0, s)U(s, 0)η∗i

〉
= ω(s)|U(s, 0)η∗i |−1

〈
η∗j , η

∗
i

〉
= ω(s)|U(s, 0)η∗i |−1δj,i

where δj,i denotes the Kronecker symbol. Continuing the calculations from above, we have

m∑
i,j=1

∫
R
〈U(0, s)T η∗i , φ(s)〉ds ·

∫
R

〈
U(0, s)T η∗j , vi(s)

〉
ds · vj(·) =

m∑
j=1

∫
R
〈U(0, s)T η∗j , φ(s)〉ds ·

∫
R
ω(s)|U(s, 0)η∗i |−1ds · vj(·) =

m∑
j=1

∫
R
〈U(0, s)T η∗j , φ(s)〉ds · 1 · vj(·) = Qφ,

which completes the proof that Q2 = Q.
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