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Abstract. Center fiber bundles are the generalization of center mani-
folds to nonautonomous difference equations. Following closely an idea
of Palmer, we deduce the essential stability properties of such fiber bun-
dles, namely their asymptotic phase and a reduction principle.

1 Introduction and preliminaries

With the aid of elementary tools like the variation of constants formula and Gron-
wall’s inequality, Palmer [11] proved a useful lemma in the theory of center mani-
folds for finite dimensional autonomous ordinary differential equations. It means
that as long as a solution remains in the vicinity of an equilibrium with given cen-
ter manifold, it must be close to some solution on the mentioned manifold. This
lemma is helpful, since such stability properties as asymptotic phase and Pliss’s
reduction principle are derived simply and directly. In this paper we show that
the same result also holds in the situation of nonautonomous difference equations
in arbitrary Banach spaces, with the restriction that we need a finite dimensional
center manifold to deduce its asymptotic phase and the reduction principle, since
a compactness argument is involved. The importance of a nonautonomous theory
is due to the fact that the investigation of nonconstant solutions canonically leads
to time dependent problems in form of the equation of perturbed motion. To our
best knowledge, related results under global assumptions on the nonlinearities can
be found solely in Wanner [14] and Janglajew [8], whereas our situation is more
realistic and — concerning the spectrum of the linear part — more general (cf. Hy-
pothesis 2.1). We only refer to Aulbach [2], Carr [7] and Palmer [11] for further
references on ordinary differential equations.
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Now we introduce our notation. Z stands for the integers and N is the set of
positive integers. A discrete interval is the intersection of a real interval with the
integers. For κ,K ∈ Z we write Z+

κ := {k ∈ Z : κ ≤ k} and [κ,K]Z := [κ,K] ∩ Z.
The Banach spaces X,Y are real or complex throughout this paper and their norm
is denoted by ‖·‖. L(X) is the Banach space of continuous endomorphisms on X, IX
the identity map on X and GL(X) the multiplicative group of bijective mappings
in L(X). On the Cartesian product X×Y we always use the norm

‖(x, y)‖ := max {‖x‖ , ‖y‖} . (1.1)

In a normed space, Bε(x) is the ball with center x and radius ε > 0. In case
a mapping F : Z×Y→X depends differentiably on the second variable, then its
partial derivative is denoted by D2F .

We write
x′ = f(k, x) (1.2)

to denote the difference equation x(k + 1) = f(k, x(k)), with the right-hand side
f : Z×U→X, where U is a subset of the Banach space X. A sequence ν : I→X
is said to solve (1.2) on a discrete interval I, if ν(k + 1) = f(k, ν(k)) as long as
ν exists, i.e., as long as ν(k) ∈ U holds for k ∈ I. Let ϕ denote the general
solution of equation (1.2), i.e., ϕ(·;κ, ξ) solves (1.2) and satisfies the initial condition
ϕ(κ;κ, ξ) = ξ for κ ∈ I, ξ ∈ U . In forward time, ϕ(·;κ, ξ) can be defined recursively

ϕ(k;κ, ξ) :=
{

ξ for k = κ
f(k − 1, ϕ(k − 1;κ, ξ)) for k > κ

,

as long as ϕ(k − 1;κ, ξ) ∈ U . Given an operator sequence A : Z→L(X) we define
the evolution operator Φ(k, κ) ∈ L(X) of the linear difference equation

x′ = A(k)x

as the mapping

Φ(k, κ) :=
{

IX for k = κ
A(k − 1) · · ·A(κ) for k > κ

and if A(k) is invertible (in L(X)) for k < κ, then

Φ(k, κ) := A(k)−1 · · ·A(κ− 1)−1 for k < κ.

2 Existence of center fiber bundles

In this section we repeat and summarize some basic facts about center fiber bun-
dles. For the autonomous situation, Carr [7, pp. 33–36, Section 2.8] is still a good
reference. However, our nonautonomous setting is as follows:

Hypothesis 2.1 Let U ⊆ X×Y be an open neighborhood of (0, 0), m ∈ N
and consider a system of nonautonomous difference equations{

x′=A(k)x+ F (k, x, y)
y′ =B(k)y +G(k, x, y) , (2.1)

where X,Y are arbitrary Banach spaces, A : Z→L(X), B : Z→GL(Y ) and the
mappings F : Z×U→X, G : Z×U→Y are m-times continuously differentiable with
respect to (x, y). Moreover, we assume:
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(i) Hypothesis on linear part: The evolution operators Φ and Ψ of the systems
x′ = A(k)x and y′ = B(k)y, respectively, satisfy for all k, l ∈ Z the estimates

‖Φ(k, l)‖ ≤ K1α
k−l for k ≥ l, ‖Ψ(k, l)‖ ≤ K2β

k−l for l ≥ k, (2.2)

with real constants K1,K2 ≥ 1 and α, β with 0 < α < 1, α < β.
(ii) Hypothesis on nonlinearities: We have

F (k, 0, 0) ≡ 0, G(k, 0, 0) ≡ 0 on Z,

and the partial derivatives of F and G satisfy

lim
(x,y)→(0,0)

D(2,3)(F,G)(k, x, y) = 0 uniformly in k ∈ Z. (2.3)

Remark 2.2 Let U be an open neighborhood of 0 in a Hilbert space Z. Sup-
pose that the mapping f : Z×U→Z is of class Cm, m ∈ N, in the state space
variable and satisfies the following assumptions:

(i)′ D2f(k, 0) ∈ GL(Z) for k ∈ Z, and the variational equation

z′ = D2f(k, 0)z (2.4)

possesses an exponential dichotomy on Z with growth rates α ∈ (0, 1), β > α,
(ii)′ f(k, 0) ≡ 0 on Z and limz→0D2f(k, z) = 0 holds uniformly in k ∈ Z.

Then any nonautonomous difference equation

z′ = f(k, z)

can be brought into the “decoupled” form (2.1) such that Hypothesis 2.1 is fulfilled.
This can be shown using methods from [4, Theorem 5] via a Lyapunov transforma-
tion. If, moreover, Z is finite dimensional, then the assumption D2f(k, 0) ∈ GL(Z),
k ∈ Z, can be dropped (cf. [12, p. 33, Satz 1.5.7]) and instead of (i)′ we can assume
that the dichotomy spectrum (cf. [5]) of (2.4) is disjoint from [α, β]. Finally, in case
of an arbitrary Banach space Z, and if C := D2f(k, 0) does not depend on k ∈ Z,
it is sufficient to assume that the spectrum σ(C) ⊆ C of the operator C ∈ L(Z) can
be separated into a “stable” spectral part σ1 ⊆ Bα(0), 0 < α < 1, and a disjoint
“pseudo-unstable” spectral part σ2 outside a circle with center 0 and radius β > α
in the complex plane.

Our next aim is to introduce a nonautonomous counterpart of invariant mani-
folds. Thereto let U1 ⊆ X, U2 ⊆ Y be open neighborhoods of 0 with U1×U2 ⊆ U
and let ϕ = (ϕ1, ϕ2) denote the general solution of (2.1). Then the graph

C := {(κ, c(κ, η), η) ∈ Z×X×Y : κ ∈ Z, η ∈ U2}

of a function c : Z×U2→U1 is called a locally invariant fiber bundle of the difference
equation (2.1), if the implication

(κ, ξ, η) ∈ C ⇒ (k, ϕ(k;κ, ξ, η)) ∈ C

holds for all k ∈ Z+
κ with the property ϕ2(k;κ, ξ, η) ∈ U2. Locally invariant fiber

bundles evidently satisfy the following nonlinear functional equation, denoted as
invariance equation

c (κ+ 1, B(κ)η +G(κ, c(κ, η), η)) = A(κ)c(κ, η) + F (κ, c(κ, η), η) (2.5)
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for all (κ, η) ∈ Z×U2 such that B(κ)η + G(κ, c(κ, η), η) ∈ U2. Finally, a locally
invariant fiber bundle C is called a center fiber bundle of (2.1), if the corresponding
mapping c is continuously differentiable in η ∈ U2 and if the relations

c(κ, 0) ≡ 0 on Z, lim
η→0

D2c(κ, η) = 0 uniformly in κ ∈ Z (2.6)

are satisfied. We remark that the conditions (2.6) imply that C contains the zero
solution of (2.1), and that C is fiber-wise tangent to the “pseudo-unstable” vector
bundle Z×{0}×Y . Such center fiber bundles are not unique in general, which can
be seen from the succeeding

Example 2.3 Consider the two-dimensional autonomous difference equation{
x′= e−1x

y′ = y + y2

1−y
, (2.7)

satisfying Hypothesis 2.1 with U = R× (−∞, 1), K1 = K2 = 1, α = e−1 and β = 1.
Now it is easy to verify that

Cγ :=
{

(κ, ξ, η) ∈ Z×R× (−∞, 1) : ξ = γe1/η for η < 0, ξ = 0 for η ≥ 0
}

is a center fiber bundle of (2.7) for any parameter γ ∈ R.

Nevertheless, center fiber bundles do exist under reasonable assumptions. In
fact — and for purely technical reasons — we only need the additional assumption
in Hypothesis 2.1 that X,Y are Cn-Banach spaces, n ∈ N; i.e., the norms on X,Y
have to be of class Cn away from 0. A characterization of such spaces, as well as
examples, can be found in Kriegl and Michor [9, pp. 127–152, Section 13].

Theorem 2.4 (existence of center fiber bundles) Suppose that the above Hy-
pothesis 2.1 is satisfied under the gap condition α < βn for some n ∈ {1, . . . ,m},
and that X,Y are Cn-Banach spaces. Then there exists a real number ρ0 > 0 and
a function c : Z×Bρ0(0) ⊆ Z×Y→Bρ0(0) ⊆ X with the following properties:

(a) c : Z×Bρ0(0)→X is continuous and c(κ, ·) : Bρ0(0)→X is n-times continu-
ously differentiable for any κ ∈ Z,

(b) the graph C := {(κ, c(κ, η), η) ∈ Z×X×Y : κ ∈ Z, η ∈ Bρ0(0)} is a center
fiber bundle of (2.1),

(c) if the mappings A,B and F,G are periodic in k with period θ ∈ N, then

c(κ+ θ, η) = c(κ, η) for κ ∈ Z, η ∈ Bρ0(0),

and if equation (2.1) is autonomous, then c is independent of κ ∈ Z, i.e.,
the subset C0 := {(c(η), η) ∈ X×Y : η ∈ Bρ0(0)} of the state space X×Y is
an invariant manifold of (2.1).

Proof One shows the existence of the mentioned mapping c by extending the
nonlinearities F,G smoothly such that they are defined on Z×X×Y and have glob-
ally bounded derivatives there — in this cut-off technique the fact that X,Y are
Cn-Banach spaces plays a decisive role, and the explicit construction can be found
in [12, p. 73, Lemma 2.3.2]. Then it is possible to apply a general theorem on
invariant fiber bundles (cf. [6, Theorem 4.1(b)]), where the above smoothness as-
sertion follows from [13, Theorem 5.1(b)]. The fact that c satisfies the limit relation
in (2.6) can be seen as in [12, p. 64, Korollar 2.2.15]. After all, the assertion (c)
follows from [3, Corollary 4.2].



Stability of Center Fiber Bundles for Nonautonomous Difference Equations 5

3 Stability properties of center fiber bundles

From now on we assume that Hypothesis 2.1 is satisfied with U = Bρ0(0)×Bρ0(0)
for some ρ0 > 0, and that the difference equation (2.1) possesses a center fiber
bundle C given by the mapping c : Z×Bρ0(0)→Bρ0(0). First of all, we observe that
the mappings ωF , ωG, ωc : [0, ρ0)→R,

ωF (ρ) := sup
(k,x,y)∈Z×Bρ(0)×Bρ(0)

∥∥D(2,3)F (k, x, y)
∥∥ ,

ωG(ρ) := sup
(k,x,y)∈Z×Bρ(0)×Bρ(0)

∥∥D(2,3)G(k, x, y)
∥∥ ,

ωc(ρ) := sup
(κ,η)∈Z×Bρ(0)

‖D2c(κ, η)‖

are well-defined, increasing, and obtain by Hypothesis 2.1(ii) (cf. (2.3)) and (2.6)
the limit relations

lim
ρ↘0

ωF (ρ) = 0, lim
ρ↘0

ωG(ρ) = 0, lim
ρ↘0

ωc(ρ) = 0.

Lemma 3.1 For any ρ ∈ [0, ρ0) we have

‖c(κ, η)‖ ≤ ωc(ρ) ‖η‖ for κ ∈ Z, η ∈ Bρ(0). (3.1)

Proof Using the mean value theorem (cf. [10, p. 341, Theorem 4.2]) we get

‖c(κ, η)‖ (2.6)
= ‖c(κ, η)− c(κ, 0)‖ ≤

∥∥∥∥∫ 1

0

D2c(κ, hη) dh
∥∥∥∥ ‖η‖ ≤ ωc(ρ) ‖η‖

for κ ∈ Z and η ∈ Bρ(0).

Lemma 3.2 (Palmer’s lemma) Let κ ≤ K be integers, let the real constant
γ ∈ (0,min {1, β} − α) be fixed and choose ρ ∈

(
0, ρ02

)
so small that the estimates

max {2ωG(ρ), ωc(2ρ)} < 1,

K1 (ωF (ρ) + ωc(ρ)ωG(ρ)) ≤ γ, (3.2)

K2 [ωG(2ρ)(1 + ωc(2ρ)) + 2K1ωG(ρ)] < β − α− γ

hold. If ν = (ν1, ν2) is a solution of (2.1) defined on a discrete interval [κ,K]Z and
‖ν(k)‖ < ρ for k ∈ [κ,K]Z, and if ν̃ denotes a solution of the difference equation

y′ = B(k)y +G(k, c(k, y), y), (3.3)

with ν̃(K) = ν2(K), then the following holds:
(a) ν̃ is defined on the discrete interval [κ,K]Z,
(b) ‖ν̃(k)‖ < 2ρ for all k ∈ [κ,K]Z, and
(c) ν̃ : [κ,K]Z→Y satisfies the estimate∥∥∥∥ν(k)−

(
c(k, ν̃(k))
ν̃(k)

)∥∥∥∥ ≤ (K1 + 1
2

)
‖ν1(κ)− c(κ, ν2(κ))‖ (α+ γ)k−κ (3.4)

for all k ∈ [κ,K]Z.

Proof (I) We begin the present proof by deriving a preparatory estimate. Due
to Lemma 3.1 the inequality

‖c(k, ν2(k))‖
(3.1)

≤ ωc(ρ) ‖ν2(k)‖ ≤ ωc(ρ)ρ
(3.2)
< ρ for k ∈ [κ,K]Z (3.5)
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holds, and taking the solution property of ν2 into account, one has

‖B(k)ν2(k) +G(k, c(k, ν2(k)), ν2(k))‖
(2.1)

≤ ‖ν2(k + 1)‖+ ‖G(k, c(k, ν2(k)), ν2(k))−G(k, ν(k))‖
≤ ‖ν2(k + 1)‖+ ωG(ρ) ‖c(k, ν2(k))− ν1(k)‖
≤ ρ+ ωG(ρ) (‖c(k, ν2(k))‖+ ‖ν1(k)‖)

(3.5)

≤ ρ+ 2ωG(ρ)ρ
(3.2)
< 2ρ < ρ0 for k ∈ [κ,K − 1]Z (3.6)

by the mean value inequality (cf. [10, p. 342, Corollary 4.3]) applied to G(k, ·).
Using the mean value theorem (cf. [10, p. 341, Theorem 4.2]) and the invariance
equation (2.5) we find the identity

A(k)ν1(k) + F (k, ν(k))− c
(
k + 1, B(k)ν2(k) +G(k, c(k, ν2(k)), ν2(k))

)
+c
(
k + 1, B(k)ν2(k) +G(k, c(k, ν2(k)), ν2(k))

)
−c
(
k + 1, B(k)ν2(k) +G(k, ν(k))

)
(2.5)
= A(k)

(
ν1(k)− c(k, ν2(k))

)
+ F (k, ν(k))− F (k, c(k, ν2(k)), ν2(k))

+
∫ 1

0

D2c(k + 1, ηk(h)) dh [G(k, c(k, ν2(k)), ν2(k))−G(k, ν(k))]

for all k ∈ [κ,K − 1]Z, and here we have abbreviated

ηk(h) := B(k)ν2(k) +G(k, ν(k)) + h [G(k, c(k, ν2(k)), ν2(k))−G(k, ν(k))] .

Notice that the convexity of the ball Bρ0(0) ⊆ Y and (3.6) implies ηk(h) ∈ Bρ0(0)
for k ∈ [κ,K − 1]Z, h ∈ [0, 1]. Then ∆1(k) := ν1(k) − c(k, ν2(k)) solves the linear
inhomogeneous difference equation

x′ = A(k)x+ F (k, ν(k))− F (k, c(k, ν2(k)), ν2(k))

+
∫ 1

0

D2c(k + 1, ηk(h)) dh [G(k, c(k, ν2(k)), ν2(k))−G(k, ν(k))]

on [κ,K]Z. Now the variation of constants formula (cf. [1, pp. 57–58]) gives us

∆1(k) = Φ(k, κ)∆1(κ) +
k−1∑
n=κ

Φ(k, n+ 1)
[
F (n, ν(n))− F (n, c(n, ν2(n)), ν2(n))

+
∫ 1

0

D2c(n+ 1, ηn(h)) dh [G(n, c(n, ν2(n)), ν2(n))−G(n, ν(n))]
]
,

so that applying the mean value inequality (cf. [10, p. 342, Corollary 4.3]) yields

‖∆1(k)‖
(2.2)

≤ K1α
k−κ ‖∆1(κ)‖+K1 (ωF (ρ) + ωc(ρ)ωG(ρ))

k−1∑
n=κ

αk−n−1 ‖∆1(n)‖

and consequently

‖∆1(k)‖
αk

(2.2)

≤ K1α
−κ ‖∆1(κ)‖+

K1 (ωF (ρ) + ωc(ρ)ωG(ρ))
α

k−1∑
n=κ

‖∆1(n)‖
αn

for k ∈ [κ,K]Z. By Gronwall’s lemma (cf. [1, p. 183, Corollary 4.1.2]) we obtain

‖∆1(k)‖ ≤ K1 [α+K1(ωF (ρ) + ωc(ρ)ωG(ρ))]k−κ ‖∆1(κ)‖
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and using (3.2) it follows that

‖ν1(k)− c(k, ν2(k))‖ ≤ K1 (α+ γ)k−κ ‖ν1(κ)− c(κ, ν2(κ))‖ (3.7)

for k ∈ [κ,K]Z.
(II) Now let k0 ∈ [κ,K]Z be the least integer such that ν̃(k) is defined on the

discrete interval [k0,K]Z and ‖ν̃(k)‖ < 2ρ there. Then ∆2(k) := ν2(k)− ν̃(k) solves
the linear-inhomogeneous difference equation

y′ = B(k)y +G(k, ν(k))−G(k, c(k, ν̃(k)), ν̃(k))

on [k0,K]Z and satisfies the initial condition ∆2(K) = 0. By the variation of
constants formula in backward time (cf. [1, p. 58]) it follows

∆2(k) = −
K−1∑
n=k

Ψ(k, n+ 1)
[
G(n, ν(n))−G(n, c(n, ν2(n)), ν2(n))

+G(n, c(n, ν2(n)), ν2(n))−G(n, c(n, ν̃(n)), ν2(n))
+G(n, c(n, ν̃(n)), ν2(n))−G(n, c(n, ν̃(n)), ν̃(n))

]
,

so that

‖∆2(k)‖
(3.7)

≤ K1K2ωG(ρ)
β − α− γ

(α+ γ)k−κ ‖ν1(κ)− c(κ, ν2(κ))‖

+K2ωG(2ρ)(1 + ωc(2ρ))
K∑

n=k+1

βk−n ‖∆2(n− 1)‖ (3.8)

for k ∈ [k0,K]Z. This yields

‖∆2(k)‖
βk

≤ K1K2ωG(ρ)
β − α− γ

(α+ γ)−κ
(
α+ γ

β

)k
‖ν1(κ)− c(κ, ν2(κ))‖

+
K2ωG(2ρ)(1 + ωc(2ρ))

β

K−1∑
n=k

‖∆2(n)‖
βn

and because of (3.2) we can apply Gronwall’s lemma in backward time (cf. e.g. [14,
pp. 68–69, Satz 2.1.3(b)]) to obtain

‖∆2(k)‖ ≤ K1K2ωG(ρ)
β − α− γ −K2ωG(2ρ)(1 + ωc(2ρ))

(α+ γ)k−κ ‖ν1(κ)− c(κ, ν2(κ))‖

for k ∈ [k0,K − 1]Z; it is easy to see from (3.8) that the above estimate also holds
in case k = K, which implies

‖ν2(k)− ν̃(k)‖
(3.2)

≤ 1
2 (α+ γ)k−κ ‖ν1(κ)− c(κ, ν2(κ))‖ (3.9)

for k ∈ [k0,K]Z. This, in turn, leads to

‖ν̃(k)‖ ≤ ‖ν2(k)‖+ ‖ν̃(k)− ν2(k)‖ ≤
(3.9)

≤ ‖ν2(k)‖+ 1
2 (‖ν1(κ)‖+ ‖c(κ, ν2(κ))‖) ≤

(3.5)

≤ ρ+ 1
2 (ρ+ ωc(ρ)ρ) < 2ρ for k ∈ [k0,K]Z , (3.10)

in particular, ‖ν̃(k0)‖ < 2ρ and so k0 = κ. Hence, ν̃ is defined on [κ,K]Z and the
inequalities (3.9), (3.10) hold for k ∈ [κ,K]Z. So we proved assertions (a) and (b).
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(III) In order to show the remaining estimate (3.4) we get from (3.10), as well
as from [10, p. 342, Corollary 4.3]∥∥∥∥ν(k)−

(
c(k, ν̃(k))
ν̃(k)

)∥∥∥∥
(1.1)
= max {‖ν1(k)− c(k, ν̃(k))‖ , ‖ν2(k)− ν̃(k)‖}
≤ max {‖ν1(k)− c(k, ν2(k))‖+ ‖c(k, ν2(k))− c(k, ν̃(k))‖ , ‖ν2(k)− ν̃(k)‖}

(3.7)

≤ max
{
K1 (α+ γ)k−κ ‖ν1(κ)− c(κ, ν2(κ))‖+ ωc(2ρ) ‖ν2(k)− ν̃(k)‖ ,
‖ν2(k)− ν̃(k)‖

}
(3.9)

≤ max
{
K1 + 1

2ωc(2ρ), 1
2

}
(α+ γ)k−κ ‖ν1(κ)− c(κ, ν2(κ))‖

(3.2)

≤
(
K1 + 1

2

)
(α+ γ)k−κ ‖ν1(κ)− c(κ, ν2(κ))‖

for all k ∈ [κ,K]Z. This concludes the proof.

For the rest of the paper we fix γ ∈ (0,min {1, β} − α) and choose ρ ∈
(
0, ρ02

)
so

small that the estimates (3.2) are fulfilled. As a first corollary of Lemma 3.2 we
show that small bounded solutions of (2.1) must lie on the center fiber bundle.

Theorem 3.3 (asymptotic description of C) (a) If the equation (2.1) has
a solution ν = (ν1, ν2) : Z→X×Y satisfying ‖ν(k)‖ < ρ for all k ∈ Z, then
ν1(k) = c(k, ν2(k)) holds for all k ∈ Z.

(b) If S ⊆ Z×Bρ(0)×Bρ(0) ⊆ Z×X×Y is a set such that for any (κ, ξ, η) ∈ S
the solution ϕ(·;κ, ξ, η) of (2.1) exists on Z and satisfies ‖ϕ(k;κ, ξ, η)‖ < ρ
there, then S ⊆ C.

Proof (a) Putting k = K in (3.4) we obtain from Lemma 3.2

‖ν1(K)− c(K, ν2(K))‖ ≤
(
K1 + 1

2

)
‖ν1(κ)− c(κ, ν2(κ))‖ (α+ γ)K−κ

(3.1)

≤ 2ρ
(
K1 + 1

2

)
(α+ γ)K−κ

and due to α+ γ < 1, letting κ→ −∞ gives us ν1(K) = c(K, ν2(K)). Since K ∈ Z
was arbitrary, we get the assertion.

(b) This follows from the above assertion (a) applied to the individual solutions
ϕ(·;κ, ξ, η) of (2.1) with (κ, ξ, η) ∈ S.

The next result enables us to relate the asymptotic behavior of small solutions
of equation (2.1) to solutions of (3.3), and guarantees that center fiber bundles are
exponentially attractive.

Theorem 3.4 (asymptotic phase of C) Let Y be finite dimensional, κ ∈ Z,
and let ν : Z+

κ→X×Y be a solution of (2.1) satisfying ‖ν(k)‖ < ρ for all k ∈ Z+
κ .

Then there exists a solution ν̃∗ : Z+
κ→Y of (3.3) such that∥∥∥∥ν(k)−

(
c(k, ν̃∗(k))
ν̃∗(k)

)∥∥∥∥ ≤ (K1 + 1
2

)
‖ν1(κ)− c(κ, ν2(κ))‖ (α+ γ)k−κ (3.11)

for all k ∈ Z+
κ .

Proof Let ν̃m, m ∈ Z+
κ , denote the solution of (3.3) satisfying ν̃m(m) = ν2(m).

Then Lemma 3.2 implies that ν̃m is defined on [κ,m]Z and ‖ν̃m(k)‖ < 2ρ there.
Moreover, we simply set ν̃m(k) := 0 for k ∈ Z+

κ , k > m. Hence, (ν̃m(κ))m∈Z+
κ
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is bounded and since the space Y is finite dimensional, there exists a convergent
subsequence (ν̃

m
(κ)
n

(κ))n∈Z+
κ

in Y with κ+1 ≤ m(κ)
κ . In addition, (ν̃

m
(κ)
n

(κ+1))n∈Z+
κ

is bounded and there exists a convergent subsequence (ν̃
m

(κ+1)
n

(κ+1))n∈Z+
κ

in Y with

κ + 2 ≤ m
(κ+1)
κ . Iterating this construction, we obtain a sequence (ν̃

m
(l+1)
n

)n∈Z+
κ

,

which is a subsequence of (ν̃
m

(l)
n

)n∈Z+
κ

, l ∈ Z+
κ , such that l+1 ≤ m(l)

κ and accordingly
(ν̃
m

(l)
n

(k))n∈Z+
κ

converges for k ∈ [κ, l]Z. Now we define ν̄n(k) := ν̃
m

(n)
n

(k), k ∈ Z+
κ ,

and (ν̄n(k))n∈Z+
κ

converges for any k ∈ Z+
κ , because beginning with the index n = k,

(ν̄n(k))n≥k is a subsequence of the convergent sequence (ν̃
m

(k)
n

(k))n∈Z+
κ

. Now, by
definition, (ν̄n)n∈Z+

κ
satisfies for any n ∈ Z+

κ

ν̄n(k + 1)
(3.3)
= B(k)ν̄n(k) +G(k, c(k, ν̄n(k)), ν̄n(k)) for k ∈

[
κ,m(n)

n − 1
]
Z,∥∥∥∥ν(k)−

(
c(k, ν̄n(k))
ν̄n(k)

)∥∥∥∥ (3.4)

≤
(
K1 + 1

2

)
‖ν1(κ)− c(κ, ν2(κ))‖ (α+ γ)k−κ

for k ∈
[
κ,m

(n)
n

]
Z, and passing over to the limit n → ∞ in these relations for k

fixed, we see that ν̃∗(k) := limn→∞ ν̄n(k), k ∈ Z+
κ , is a solution of the difference

equation (3.3) on Z+
κ satisfying (3.11).

Having Theorem 3.4 available, it is not difficult to maintain stability properties
(cf. e.g. [1, p. 240, Definition 5.4.1]) for (2.1) from the corresponding properties of
the zero solution of the finite dimensional difference equation (3.3).

Theorem 3.5 (reduction principle) Let Y be finite dimensional. If the zero
solution of (3.3) is stable (uniformly stable, asymptotically stable, uniformly asymp-
totically stable, exponentially stable with rate γ̃, unstable, respectively), then also the
zero solution of (2.1) is stable (uniformly stable, asymptotically stable, uniformly
asymptotically stable, exponentially stable with rate max {α+ γ, γ̃}, unstable, re-
spectively).

Proof If the zero solution of (3.3) is unstable, then by invariance of C, the
zero solution of equation (2.1) is unstable, too. Let ε > 0 and κ ∈ Z be given
arbitrarily, but w.l.o.g. ε ≤ 2ρ0. We suppose now that the zero solution 0 is stable
for (3.3); then there exists a δ > 0 such that

‖ν̃(k)‖ < ε
2 for k ∈ Z+

κ (3.12)

and any solution ν̃ : Z+
κ→Y of the reduced equation (3.3) with ‖ν̃(κ)‖ < δ. Hence-

forth let ν = (ν1, ν2) : Z+
κ→X×Y be an arbitrary solution of (2.1) with ‖ν(k)‖ < ρ

for k ∈ Z+
κ and ‖ν(κ)‖ < min

{
δ

2K1+2 ,
ε

4K1+3

}
. Then due to Theorem 3.4 there

exists a solution ν̃∗ : Z+
κ→Y of (3.3) satisfying (3.11). This, in particular, yields

‖ν̃∗(κ)‖ ≤ ‖ν2(κ)− ν̃∗(κ)‖+ ‖ν2(κ)‖
(3.11)

≤
(
K1 + 1

2

)
‖ν1(κ)− c(κ, ν2(κ))‖+ ‖ν2(κ)‖

(3.1)

≤
(
K1 + 1

2

)
(‖ν1(κ)‖+ ‖ν2(κ)‖) + ‖ν2(κ)‖ < δ
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and consequently ‖ν̃∗(k)‖ < ε
2 for k ∈ Z+

κ by (3.12). On the other hand, we have
the estimate

‖ν(k)‖ ≤
∥∥∥∥ν(k)−

(
c(k, ν̃∗(k))
ν̃∗(k)

)∥∥∥∥+
∥∥∥∥(c(k, ν̃∗(k))

ν̃∗(k)

)∥∥∥∥
(3.11)

≤
(
K1 + 1

2

)
‖ν1(κ)− c(κ, ν2(κ))‖ (α+ γ)k−κ +

∥∥∥∥(c(k, ν̃∗(k))
ν̃∗(k)

)∥∥∥∥
(3.1)

≤
(
K1 + 1

2

)
(‖ν1(κ)‖+ ‖ν2(κ)‖) (α+ γ)k−κ + ‖ν̃∗(k)‖ < ε

for all k ∈ Z+
κ and therefore, the solution ν is stable. Finally, one can show the

assertions about the remaining stability properties along the same lines.
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