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NUMERICAL DYNAMICS OF INTEGRODIFFERENCE
EQUATIONS: GLOBAL ATTRACTIVITY IN A C°-SETTING*

CHRISTIAN POTZSCHET

Abstract. Integrodifference equations are successful and popular models in theoretical ecology
to describe spatial dispersal and temporal growth of populations with nonoverlapping generations. In
relevant situations, such infinite-dimensional discrete dynamical systems have a globally attractive
periodic solution. We show that this property persists under sufficiently accurate spatial (semi-)
discretizations of collocation- and degenerate kernel-type using linear splines. Moreover, convergence
preserving the order of the method is established. This justifies theoretically that simulations capture
the behavior of the original problem. Several numerical illustrations confirm our results.

Key words. Integrodifference equation, collocation method, degenerate kernel method, piece-
wise linear approximation, global attractivity, Urysohn operator, Hammerstein operator
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1. Introduction. Integrodifference equations (short IDEs) are a recursions

(Io) w1 = Fr(u),

whose right-hand side is a nonlinear integral operator

(1.1) Fi(u)(x) := G (x, /Q fe(x,y,u(y)) dy) forallt € Z, z € Q

acting on an ambient state space of functions w over a domain 2. Such infinite-
dimensional discrete dynamical systems arise in various contexts: In the life sciences
they originate from population genetics [12], but gained a remarkable popularity in
theoretical ecology [7] over the last decades. Here, they model the growth and spatial
dispersal of populations with non-overlapping generations. At the same token, they
might serve in epidemiology. In applied mathematics, IDEs occur as time-1-maps of
evolutionary differential equations or as iterative schemes to solve (nonlinear) bound-
ary value problems.

When simulating the dynamical behavior of IDEs (1), appropriate discretizations
are due in order to arrive at finite-dimensional state spaces and to replace (Io) by
a corresponding recursion. For this purpose, we apply standard techniques in the
numerical analysis of integral eqns. [1] to (1.1), namely collocation and degenerate
kernel methods. This triggers the question whether such numerical approximations
actually reflect the dynamics of the original problem (Io)?

Since the resulting discretization error typically grows exponentially in time [10,
Thm. 4.1], corresponding estimates are of little use when questions on the asymp-
totic behavior are of interest. Indeed, while the global error only yields convergence
on finite intervals, we investigate the long-term dynamics of IDEs versus their dis-
cretizations. More detailed, it is shown that global convergence of a sequence (u;);>0
generated by (Io) to a fixed point or a periodic solution, independent of the initial
function ug, persists under discretization. In addition, we prove that the original and
and the limit of the discretized equation are close to each other respecting the error
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2 CHRISTIAN POTZSCHE

order of the approximation method. This can be seen as a first contribution to the nu-
merical dynamics of IDEs, i.e. the field in theoretical numerical analysis investigating
the question, which qualitative properties of a dynamical system persist under dis-
cretization? A survey of such results addressing time-discretizations of ODEs is given
in [14], while we tackle a corresponding theory for spatial discretizations of IDEs.

In applications the existence of globally attractive solutions to (Io) is of eminent
importance and holds in various representative models. Indeed, conditions for global
attractivity of periodic solutions to IDEs were given in [2]. We study the robustness
of this property using a quantitative version of a result by Smith and Waltman [13].

The content and framework of this paper are as follows: We consider IDEs (Io)
being periodic in ¢; this assumption is well-motivated from applications in the life
sciences to describe seasonality. As state space for (Io) serve the continuous functions
over a compact domain and technical preliminaries were given in [10]. For conceptional
clarity we restrict to discretizations based on piecewise linear functions, although our
perturbation results apparently allow higher-order approximations. Moreover, the
given analysis covers semi-discretization methods only.

After summarizing the essential assumptions on and properties of (Io) in Sect. 2,
we present our crucial perturbation result given by Thm. 2.1. It is applied to spatial
discretizations of (1.1) based on collocation with piecewise linear functions. The cor-
responding interpolation estimates yield quadratic convergence (cf. Prop. 2.3), which
is numerically confirmed by two examples. Hammerstein IDEs frequently arise in ap-
plications (see [7]), where (1.1) simplifies to a Hammerstein operator. This relevant
special case particularly allows degenerate kernel approximations. In Sect. 3 we pro-
vide an adequate discretization and convergence theory. Since Hammerstein operators
have a simpler structure than (1.1), the associate Prop. 3.1 is more accessible than
the general Prop. 2.3. For illustrative purposes, we numerically study 4-periodic solu-
tions to a Beverton-Holt-type IDE, which affirms our theoretical results. An appendix
contains a quantitative version of [13, Thm. 2.1] in terms of Thm. A.1.

Notation. Let Ry := [0,00), denote the norm on linear spaces X,Y by ||-|| and
V° is the interior of a (nonempty) subset V' C X. If a function f:V — Y satisfies a
Lipschitz condition, then lip f is its smallest Lipschitz constant and

w(d, f):= sup | f(x)— f(z)]] foralldo >0

|z—z||<d

the modulus of continuity of f. The limit relation lims\ o w(d, f) = 0 holds if and only
if f is uniformly continuous. The classes 9 := {I' : R, — R4 | lim,\ o I'(p) = 0} and
M* = {I' € N | I is nondecreasing} of limit 0 functions are convenient.

Throughout this text, let  C R* denote a nonempty, compact set without iso-
lated points. If U C R4, then we write

C(Q,U) :={u:Q— U |uis continuous} , Cy = C(Q,RY)

and the maximum norm ||u|| := max,cq |u(r)| makes C (2, R?) a Banach space. The
set of u : Q — R? whose derivatives D’u up to order j < m have a continuous
extension from the interior Q° # () to Q is C™(Q,R%), m € Ny.

2. Urysohn integrodifference equations and perturbation. The right-
hand sides of (Io) are mappings F; : Uy C Cy — Cq, t € Z, defined on the space
of R%-valued continuous functions. For d = 1 we speak of scalar eqns. (Io).

A solution of (Io) is a sequence ¢ = (P )iez satisfying ¢ = Fi(¢) and ¢y € Uy
for every t € Z. If there exists a 8 € N such that ¢;19 = ¢ holds for all ¢t € Z, then
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NUMERICAL DYNAMICS OF INTEGRODIFFERENCE EQUATIONS 3

¢ is called #-periodic. Given an initial time 7 € Z and an initial state u, € U, then
the general solution of (Io) is

Ur, t=r,
Fi10...0F, t>T;

(2.1) Polt; T ur) = {

it is defined for times ¢ > 7 as long as the compositions stay in the domains Uy;.
We are dealing with IDEs (Io) being periodic in time, i.e. there exists a period
0 € N such that f; = fi19 and Gy = Giq9 hold for all ¢ € Z. Then (1.1) implies
Ft = Fryo, t € Z, and (Io) becomes a f-periodic difference equation. In case § = 1, i.e.
the right-hand sides F; are independent of ¢, one speaks of an autonomous equation.
The following standing assumptions are supposed to hold for all s € Z: Let m € N,
o f: 2 xUl — RP is continuous on an open, convex, nonempty Ul C RY and
the derivatives D] fs : Q2 x Ul — RP for 1 < j <m, Dafs: Q x U} — RPx4
may exist as continuous functions. Furthermore, for every € > 0 and z,y € Q2
there may exist a § > 0 such that

|21 — 22| <6 = |Dsfs(x,y,21) — Dafs(z,y,22)| < forall 21,29 € UL

o G,:QxU2— R4is a C™-function on an open, convex, nonempty U2 C RP.
Moreover, for every € > 0, € €2, there may exist a § > 0 such that

|21 — 22| <& = |D2Gg(x,21) — DaGg(x,20)| <& for all 21,29 € US2

and the following domain is assumed to be convex:

Us := {u cC(Q,Uh

/ fs(z,y,u(y))dy € U2 for all x € Q} )
Q

Then the Urysohn operator

22)  UC@U) -G, W) i= [ Fuloaut)dy

is completely continuous and of class C! on the interior C(Q, U!)°. Referring to [10]*
this guarantees that the general solution of (Io) fulfills:
(P1) @o(t;7,+) : Ur — Cq is completely continuous for all 7 < ¢ (see [10, Cor. 2.2]),
(P2) po(t;7,u) € C™(2°,RY) for all 7 < t, u € Cy (see [10, Cor. 2.6)),
(P3) @o(t;T,-) € CHU,,Cy) for all T <t (see [10, Prop. 2.7]).
Along with (Io) we consider difference equations

(In) U1 = Fy'(wr)
depending on a discretization parameter n € N. Defining the local discretization error
ee(u) := Fp(u) — F7(u) for all u € Uy,

we denote (In)nen as bounded convergent, if lim,, o sup,c g ||€7 (w)|| = 0 holds for all
t € Z and every bounded B C U;. One says (I.) has convergence rate v > 0, if for
every bounded B C U; there exists a K(B) > 0 such that

K(B)

llef (w)]] < forallt € Z,u € B.
Now, under appropriate assumptions we arrive at the crucial perturbation result:

LThis reference assumes a globally defined operator Fs, i.e. Us = Cy. Yet, the reader might verify
that the corresponding proofs merely require the domains U2, U2 to be convex (as assumed above).
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4 CHRISTIAN POTZSCHE

03 THEOREM 2.1. Suppose there exists a 0-periodic solution ¢* of (Io) with ¢7 € Uy
04 for allt € Z and the following properties:

05 (i) ¢* is globally attractive, i.e. the limit imy_, o ||po(t;7,ur) — @F]| = 0 holds
06 forallT €Z, u, € U,

0 (i) o(DFo(d5)- - DFL(B) C Bay(0) for some go € (0,1).

08 If a bounded convergent discretization (In)nen is 6-periodic and satisfies

09 (iii) I : Us — Cy is completely continuous, of class Ct, DI" : U, — L(Cy) are
10 bounded® (uniformly in n € N) and

111 (2.3) nll—>rrolo | Det(u)|| =0 for all u € Us,

112 (iv) there exist pg > 0 and functions T, T§,v' € M so that for all n € N one has
113 (2.4) |D7em(¢2)|| <TH(L) for all j=0,1,

H4 (2.5) DT (w) = DFL@)N < v (luw = 62ll) - for all uw € Bpy(¢7) N U,
116 (v) for every n € Ny there is a bounded set B, C Us such that UneNo B,, is

117 bounded and for every u € Cy there is a T € N with ¢, (s + T0;s,u) € B,
118 for each 1 < s < 0, then there exists a N € N such that the following holds: Every
119 discretization (I.),>N possesses a globally attractive 0-periodic solution ¢™ and there
120 exist ¢ € (go,1), K > 1 such that

K
121 (2.6) sup |9 — @7 || < ——TQ(L) foralln > N.
teZ l—¢q
122 Remark 2.2. A careful study of the subsequent proof shows:
123 (1) If ¢* is a globally attractive fixed-point of an autonomous eqn. (Io), then the
124 assumption of bounded derivatives DF? in (i) is redundant.
125 (2) The constant K > 1 in (2.6) essentially depends on Lipschitz constants of

126 F; in a vicinity of the solution ¢* (cf. (2.8)). Similarly, the larger these Lipschitz
127 constants are, and the closer one has to choose gp to 1 in (ii), the larger N becomes.

128 Proof. Let 7 € Z, uw € U, be fixed. In order to match the setting of Thm. A.1,
120 consider the parameter set A := {1 : n € N}U{0} as metric subspace of R and define
130 Ao :=0, ug := ¢k, U := U,. If ¢, denote the general solutions of (I.), n € Ny, then

=]

wo(T + 0;71,u),
On (T + 057, 1),

)

131 (2.7) I\ (u) = { ii

S

132 are the corresponding time-6-maps. It follows from (Ps) that Iy, : U, — Cy is
133 continuously differentiable. Moreover, each IIy : U, — Cy is a composition of the C'*-
134 mappings I7,...,F7 o ; (due to (iii)) and therefore also continuously differentiable
135 for all A > 0. We gradually verify the assumptions (i'—v’) of Thm. A.1 next:

ad (i’): Combining global attractivity (i) and periodicity of ¢* implies

D \lgo(r + 5057, 1) — 67 || = 0.

S5—» 00

[[TI3, () — ¢7]

ad (ii’): Using mathematical induction one easily derives from (2.1) that

Dspo(t;T,u) = DFy_1(po(t — 1;7,u)) - - DF(po(T;7,u)) forall 7 <t

2Understood as mapping bounded sets into bounded sets.
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NUMERICAL DYNAMICS OF INTEGRODIFFERENCE EQUATIONS 5

and hence DIIy,(¢}) = DFry9-1(¢r 9_1) - DI (¢;) holds. Because the spectrum
o(DFg(¢r19_1) - DF1(¢5))\{0} is independent of 7, our assumption (ii) implies the
inclusion o(DIIy,(¢%)) C Bg,(0). If we choose g € (qo, 1), then referring to [5, p. 6,
Technical lemma)] there exists an equivalent norm |[|-|| on X with ||DII,, (¢%)| < ¢ and
we use this norm from now on (without changing notation). The still owing continuity
of DII)(u) in (u, A) will be shown below.
ad (iii’): The main argument is based on error estimates having been prepared
in [10, Prop. 4.5], whose notation we adopt from now on. Due to assumption (iii),
the sets DF}(B,, (¢7)) C L(Cq) are bounded uniformly in n and consequently there
exists a f-periodic sequence (Lt)¢cz in Ry such that

(2.8) 1% (u) = F (@) < Ly lu —al| - for all u,u € By, (é7) N U

holds, yielding the required Lipschitz condition [10, (4.6)]. In [10, Prop. 4.5(a)] we
verified that there exists a Ny € N such that n > Ny implies the error estimate

t—1 t—1 t—1
llon(t; 7, ur) — @] < (H Lr> lur =3 +T0(H) > ] Zn
r=1 s=T r=s+1

Supposing n > Ny (or equivalently A < ) from now on, this leads to

(2.7) * *
ITLx (wo) — Tng (o) | "=" llon (7 + 0 7,67) — ¢o(7 + 057, ¢7)|| < To(;,),

where we define T'o(8) := T9(6) X270 [[72%"] L,.. Thanks to Ty € 0N, the assump-

S=T r=s+1
tion (A.1) is satisfied. In order to also establish (A.2), we furthermore deduce from

the inequality derived in [10, Prop. 4.5(b)] that
[IDIIx () — DIy, (wo)|| = |1 D3@n (7 + 057, u) = Dapo(7 + 057, 67|
< vo(llu =7l )

with the function

T4+6—1 'r+0 1
Z £ ’Ys p> + FO H LTa
r=s+1

where 4 (p, §) := pr;lT Lo+6Y HT sp1 Lr and £ := HZ:T IDFs(¢%)]| for every
T <t < 746. Due to v(p,d) — 0'in the limit 0,0 N\ 0, the assumption (A.2) is
verified. This eventually brings us into the position to establish (ii’) completely, i.e.
to show that (u, A) — DII\(u) is continuous:
e In pairs (dg,\) € Cy X {% i n € N} this results by the continuity of every
derivative DF?, which was required in (iii).
e In the remaining points (g, 0) we obtain

[Py (u) = DIy, (ao) || < [|DTIx(w) — DIy, (w)| + [[ DIy, (w) — DIy, (o) ]| -

The first summand tends to 0 as A — Ao, since assumption (iii) implies
convergence of the derivatives DJ7, the assumed bounded convergence of the
family (I.)nen guarantees convergence of the solutions, and thus due to the
convergence of every factor in the product,

T4+60—1 T+0-1
DIy (u H DF (pn(s;T,u)) —— DFs(po(s; 7, u)) = DIy (u).

A— Ao
S=T s=T

This manuscript is for review purposes only.
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6 CHRISTIAN POTZSCHE

The second term in the sum has limit 0 as u — @ because of the continuity
of DF ensured by (P3).
ad (iv’): Thanks to (v), the bounded sets By := B, (with A\ = L, By, := Bo
satisfy the assumption that for all u € U, there is a T € N with IT] (u) € Bi.
ad (v'): Property (P;) and assumption (iii) imply that each II(By) C Cy, A € A,
is relatively compact. Due to the Arzela-Ascoli theorem [4, p. 44, Thm. 3.3] it remains
to show that (., IT)(B)) is bounded and equicontinuous:

ad boundedness: The set B := (J,cp B, is bounded due to (v). First, as completely
continuous mapping, Il : U — Cy is bounded and there exists a Ry > 0 satisfying
the inclusion IIy,(B) C Bg,(0). Second, because (I.)pen is bounded convergent, we
obtain a Ry > 0 with ||II)(u) — Iy, (u)|| < Rz for all v € B and

Ty (w) || < [[Tag (w)]] + [|[Ta(w) — My (u)|| < Ry + Ry forallu e B, A>0

readily implies Uy IIx(Bx) € Br, 1, (0).
ad equicontinuity: Let € > 0. The assumed bounded convergence of (I.),cy guaran-
tees that there exists a A\, € A such that

(2.9) T\ (u) = My, (uw)|| < § forallu € B, A <A,

Because I, (B) is relatively compact, the Arzela-Ascoli theorem [4, p. 44, Thm. 3.3]
ensures that IT, (B) is equicontinuous and by [4, p. 43, Prop. 3.1] in turn uniformly
equicontinuous. That is, there exists a § > 0 such that the implication

(2.10) lz—yl<d = [ (u)(z) - (u)(y)] < 5
holds for all z,y € Q. Hence, for A < A\, and |z — y| < ¢ the triangle inequality yields

[T (u) (z) — Ty (u)(y)|
< Tx(u) (@) — Mg (u) ()] + [Ty, (w)(z) — Ty, (w) (y)] + [Ty, (u)(y) — Tz (u)(y)]

(2.10)

(2.9)
< 4 Iy (u)(z) — Ty (u)(y)] < 32 <e forallue B.

Therefore, the union (J,_,_ IIx(B) is equicontinuous, and as subset of this equicon-
tinuous set, also J, <A H,\(BA). Finally, because equicontinuity is preserved under

finite unions, the desired set (J,c, II5(B)) is equicontinuous.

In conclusion Thm. A.1 applies, if we choose p > 0 so small and N > Ny so
large that I'g(1) < 12—_7;1, Yo(p, ) < 12;‘1 for all n > N. Hence, there exists a globally
attractive fixed point u*(A) of IIy (where A = 1). Since the fixed points of II,
correspond to the 6-periodic solutions of (I.), we define ¢} := ¢, (t;7,u*(2)). This is
the desired 6-periodic solution of (I.). In particular, it is not difficult to see that ¢"
is globally attractive w.r.t. (I.),>n, where Thm. A.1(b) implies (2.6). |

Next we concretize Thm. 2.1 to collocation and degenerate kernel discretizations
of (In). In doing so, let us for simplicity restrict to piecewise linear approximation.

2.1. Piecewise linear collocation. Given n € N, for reals a; < b;, 1 < i < &,

we introduce the nodes 5;- =a;+J bi;‘“. Let us define the hat functions

e; : [a,b] — [0,1], eé-(:r) = max{(),l ~ |z ffﬂ} foral0<j<n

This manuscript is for review purposes only.
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NUMERICAL DYNAMICS OF INTEGRODIFFERENCE EQUATIONS 7

and assume that the domain of integration for (Io) (the habitat) is the x-dimensional
rectangle Q = [a1,b1] X - - - X [ax, be] having Lebesgue measure A, (Q) = [T, (b; — a;).
With the set of multiindices 7 := {0,...,n}" we define the projections

K

Pou:= Z eu(€ ... &), e (x) = Hefi (x,,) forallielf

Lelr i=1

from Cj into the continuous R%valued functions over Q having piecewise linear com-
ponents. These projections satisfy

(2.11) |P.]| <1 forallneN.

Introducing the partial moduli of continuity

wi(p,u) == sug{\u(wl,...,ji,...,xﬁ) — (T, Ty )| T — x| < p}
Te

over the coordinates 1 < i < k, we obtain from [11, Thm. 5.2(ii) and (iii)] (combined
with (2.11)) the interpolation estimate

(2.12) lu— Poul < 37 (B5e1) wi(%,pgu) for all n € N,
i=1
if ue CJ(Q,R?) and j € {0,1}. In case u € C?(2, R?) one even has (cf. [3, p. 227])
(2.13) lu — Poul| < %; (l’%‘l)2 max |D?u(m)| for all n € N.
The semi-discretizations (I.) may have the right-hand sides
210) T0) = P0) = 3 e (€ [ Ak ) an )
velr

This allows the following persistence and convergence result for globally attractive
periodic solutions to general IDEs (Io):

PROPOSITION 2.3 (piecewise linear collocation). Suppose that a 6-periodic solu-
tion ¢* of an Urysohn IDE (Io) with right-hand side (1.1) satisfies the assumptions
(i—i1) of Thm. 2.1 and choose q € (qo,1). If there exist a

(ic) po >0, functions 5o € N, 7,71, T € N*, and for bounded B, C U}, By C U?

there exist ’YENF}BQ en, F231 € N* so that for x,Z,y € Q one has

‘f.s(xyy?z)_fé(‘fay7z)|Sﬁ/(‘m_i‘b fOT alleBl,
Difo(w,y,2) = Difs(w,y,2)| < F5(lz = 2|) for all 2,2 € B,y (65 (y)),
‘Dst(xayvz) - Dst(jayaz)l < Y

and

B, (|[r —2z|) forall z € By

This manuscript is for review purposes only.
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(ii.) C >0 such that |fs(x,y,2)| < C for all z,y € Q, z € U}l
for each 1 < s < 60, then there exists a N € N so that every collocation discretiza-
tion (I.) with right-hand side (2.14) and n > N possesses a globally attractive 0-
periodic solution ¢™. Furthermore, there is a K > 1 such that for all n > N the
following holds:

(a) llop — o7l < £ o0, max?_y wi (252, 5o (67)) for all t € Z,

(b) if m =1, then

lor — il < ﬁ ;(bi—ai) I?Eicwi((bi—ai)p, D;i(Fs(43))) for allt € Z,
(c) if m =2, then
o7 — &7l < 81— g2 Z maxHD2 Fs (qﬁ:))” for allt € Z.

The quadratic error decay in (¢) also holds on non-rectangular Q C R”. For e.g.
polygonal Q a corresponding interpolation inequality is mentioned in [10, Sect. 3.1.3].

Remark 2.4 (functions in (i.)). In concrete applications, the functions ¥,%;, 75,

and T'p . T% I are realized by means of (local) Lipschitz or Holder conditions on f,
resp. Gs. Although they do not appear in the assertion of Prop. 2.3, the interested
reader might use them, combined with estimates in the subsequent proof, to obtain a
more quantitative version of Prop. 2.3.

Remark 2.5 (dependence of K,N). In addition to Rem. 2.2(2) concerning the
dependence of K and N on the properties of (Io), the following proof shows that these
constants also grow with the measure A\, (2) of the domain .

Remark 2.6 (dissipativity). The global boundedness assumption (ii.) appears to
be rather restrictive, but is valid in various applications (see [7]), since growth func-
tions in population dynamical models are typically bounded. Yet, a weaker condition
ensuring dissipativity is given in [9, pp. 190191, Prop. 4.1.5].

Proof. Let t € Z, u € Uy be fixed and choose v € Cy, |[v]| = 1. Suppose B; C U}
is a bounded set containing u(2). We begin with preliminaries and notation: If U,
denotes the Urysohn integral operator (2.2), then we briefly write Vi(z) := Uy (u)(z),
Vi (z) :== Us(¢;)(z) and choose By C U? so that V;(2) C Bs. Hence, (ii.) implies

(2.15) [Vi(x)] < / |fe(z,y,u(y))] dy < A (Q)C for all z € Q.
Q
Furthermore, the Fréchet derivative
(2.16)  [DFe(u)v](z) = D2Gy(x, Vt(x))/ Dsfi(z,y,u(y))v(y)dy for all z € Q
Q

exists due to (P3). Note that §-periodicity of G, f; readily extends to F; and F}'. Let
us now check the remaining assumptions of Thm. 2.1.
ad (iii): With [10, Thm. 3.1], 7 are completely continuous and of class C* with

(2.14) (2.11)
IDFY (u)|| “=" P DT (w)]| < [|DFi(u)]|

This manuscript is for review purposes only.
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NUMERICAL DYNAMICS OF INTEGRODIFFERENCE EQUATIONS 9

(2.16)
< max|D2Gt & Vi€ |H/ |Ds fi (-, y,u(y))] dyH for all n € N.

Therefore, the derivatives DF}' are bounded maps (uniformly in n € N). The func-
tions Fy : Q — L(RP,RY), Fy(z) := DyGy(z, Vi(x)) are continuous, hence uniformly
continuous on the compact set 2 and their modulus w(-, F;) of continuity satisfy the
limit relation lim,\ o w(p, Fy) = 0. Then

(DT (u)u](x) — [DF (u)o](2)
“ R - R@) [ sttt ay
IR [ 103 u)o(0) = D@, u)olo)] dy

< miax w(|z — |, F)

/ |D3fs(vy7u(y))| dy
Q

+ AH(Q)mgf(%leaéws(g)mgqu —i|) forallz,7eQ

results from the triangle inequality. Thus, the continuous function DF;(u)v :  — R?

has a modulus of continuity being uniform in v (with ||v|| = 1), which implies
| De?(u)|| = sup ||[I — P,]DFi(u u|| sup sz =% DFy(u)v) — 0
lloll=1 lvl=13= oo

and therefore (2.3) holds. In addition, we also verified (2.4) (for j = 1) with

To(p)

b | [ 1Das. (oo iw) dwamFs)

+ A () mhx max

s=1 &€

DyGy («E,/Qfs(&yﬁi(y) dy) ‘ V5, (p);

note here that T'y € 9. Moreover, for arbitrary z,z € Q we obtain

(2.2) R -
Vi) = Vi@ < [ 1l ) = (o)l dy < M@ (i =)
and consequently by the triangle inequality

15 u)(2) — T2 () (2)]
< |Gyl V@) — Gu(@, Vi(@)| + |G, Vile)) — G(2, V(@)
Pl — al) + T, (Vile) — V@) < (e — 2], 54 ().

Here, the function w(p, F;(u)) := 'y (p) + T, (Ae(2)7(p)) clearly majorizes the par-
tial moduli of continuity for F;(u) and (2.12) implies for each n € N that

K

(217)  ep)] <Y wi(b5%, Fo(u) <D (Th, (25%) + T, A (Q)7(2524))) .
=1

i=1
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This leads to the bounded convergence of (Iu)nen. If u € B, (¢}) holds, then

(2.18) Vi(z) = Vi (@)l < /Q e,y u() = filw,y, 6; ()| dy
< Al

DFo(llu — o7
and furthermore for every n € N one has

(2.14)

[DF (w)v — DT (67)vl ()]

(2.11)

[DF i (u)v — DF4(¢7 )v](2)]

N|Pu[DTy(u)o — DFy(67)u](2)

(2.16)
<

Fy(x) ; D3 fi(w,y,u(y))v(y) dy

_DQGt LE V /DBft CL’ y7¢t( )) (y)dy

<|Fito) [ (DafuCe.pouls) = D, 67 6)otw) dy]

+|<Ft< )= DaGu(o V@) [ Dl il <y>dy]
< max @) [ 1D3fu(e.uly) — Dafur,v. 1 0)] dy

n H [ 1psste i) dyH |Fy(x) — DaGir(e, Vi ()]
Q
< 0 (@) s ) 5 (s g5 )
n H [ 1pastsi) dnyuvt(w V(@)
(2.18) R §
< (@) s ) 5 (s g5 1)
n H [ 1Dastvsiw) dyH PO @0l — 61]) for all z € Q.
Q

After passing to the supremum over z € €2, the inequality (2.5) is valid with

7 () += Ax(€) micma | L (6)] %1 (o)
e | [ 1Dafu 620000 | EOW @)

note again that v' € N.

It remains to determine a function I'§ yielding the convergence rates in (2.6),
which depend on the respective smoothness properties of F;(u).

(a) The estimate (2.17) allows us to define the function

_HELXZWZ i — a;)p, Fs(0F))

Thi. iscript s fi cVIeW PUTPOSE:
This manuscript is for review purposes only
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in order to fulfill (2.4), when F(¢;) is merely continuous.
(b) For m = 1 we derive from (P») that F,(¢;) € C*(Q,R?) holds. Hence,
applying the interpolation estimate (2.12) for j = 1 leads to

lef (@)l < D bstew; (b2, Di(Fo(67))) -
=1

Thus, the inequality (2.4) will be satisfied, if we choose

K

Io(p) == PIE%;( (bi — ai)w;i ((bi — a;)p, Di(Fs (7))

(¢) For m = 2 we obtain from (P») that F;(¢;) is twice continuously differentiable.
We deduce the error [[e}(¢7)|| < iz Dory(bi — as)? | DZ(Fe(47))|| for all n € N from
(2.13), and therefore (2.4) holds for the function

2 K
0y .— P 2 0 2 x
L) =5 z;(bi — a;)” max | DI (Fs(3))]| -

1=

ad (v): Because of (2.15) the Urysohn operator U; is globally bounded. Since G;

is bounded due to [10, Thm. B.1], we obtain that F; = G; o U; is globally bounded.

Referring to (2.11) it follows that F}' = P,,J; is globally bounded uniformly in n € N.

This carries over to the general solutions ¢, for all n € Ny.

Whence, the proof is concluded. ]

2.2. Simulations. For convenience, let us restrict to interval domains 2 = [a, b]
with reals a < b, i.e. kK = 1, and scalar IDEs

b
(2.19) w1 (z) = Gy (a@/ fi(z,y,ue(y)) dy) for all = € [a, b].

We apply piecewise linear collocation based on the hat functions eq, ..., e, : [a,0] = R
(from above) with uniformly distributed nodes 7} := a + jb*Ta, 0<j<nandneN.
This yields a semi-discretization (2.14). In order to arrive at full discretizations, the
remaining integrals are approximated by the trapezoidal rule

b n—1 .
20 [ ul)dy =5 (ula) + 23 ) + u(t) - G (o

with some intermediate £ € [a, b]. This leads to an explicit recursion

(2.21) vis1 = F7 (vr)

in R"*! with general solution ¢, and whose right-hand side reads as

F2(v) 1= (Gt (15 (e 0 00425 Fo (o 0(3) + F O b,v<n>>>>>n .
1=0

j=1
Then the coordinates v; (i) approximate the solution values us(n;). As error between
the (globally attractive) #-periodic solutions ¢* of (2.19) and v™ to (2.21) we consider

n

Z|¢t 77] t )|

0—1
1
t=0 =0

err

This manuscript is for review purposes only.
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The #-periodic solutions of (2.21) are computed from the system of 6 equations

vo = Fg_1(ve—1), v1 = Ty (vo), v2 = T (1), ..., vo_1 = T§_5(ve—2)

319 using inexact Newton-Armijo iteration implemented in the solver nsoli from [6].

320 Ezample 2.7. Let Q = [0,1] and @ € R, ¢ € R;. We consider an autonomous
321 IDE (2.19) (that is § = 1) with U} = U? =R,
o
322 =—
ft(l’,y,Z) ].+(E+22’

- il 2) = 2+ 1 4 <arctan((1 +¢)V1+ 1) —arctan(ev1+z) 1)
324 ctx 14z Vit

and the constant solution ¢*(x) = Cj_m . The mean value theorem leads to the Lipschitz

estimate lip F; < % la|. For a = 2, ¢ = § the right-hand side of (2.19) is contractive

and the fixed-point u} of (I.) can be approximated by iteration. Choosing the initial
function ug(x) := z the temporal evolution of the error

erry (t) 1= %Z

325 is shown in Fig. 1 (left) for n € {1017 102, 103}; it becomes stationary after a modest

326 number of iterations. The limit is denoted by ¢™ and is a fixed-point of (I.). From

327 Fig. 1 (left) we deduce that 20 iterates yield a good approximation. The error err(n)

328  between v™ and ¢* as function of the discretization parameter n is illustrated in Fig. 1

329 (right). The slope of the curve in this diagram has the value —2.001, which confirms
the quadratic convergence of piecewise linear collocation stated in (2.13).

Gn(t:0,u0)(7) — & (1})]

10 —n=10
—n=100
n=1000 10
N
N
= =
;‘:: 10-5 L \E/
© N— “ 10
10 | | | 8
1075 5 10 15 20 1010' 10 10°
t n

Fic. 1. Quadratically decaying errors in Exam. 2.7

331 While the right-hand side in Exam. 2.7 was arbitrarily smooth, we next discuss a less
332 smooth example, being only Holder (with exponent %) in x:

333 Ezample 2.8. Let = [0,1], « € R. We anew study an autonomous IDE (2.19)
334 with Ul = U} =R,

vV +y
335 ==aq—"=, G
;;:;()j ft(xay7z) a1+$+227

A, 2) ;:z+f—a<1+(1+x—\/5)1n;i>

This manuscript is for review purposes only.
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and the constant solution ¢*(z) = y/z. In order to derive a Lipschitz estimate for the
right-hand side of (2.19) we obtain from the mean value theorem

Vzty VI+y

< 3vVB3(/aty)
1+z+22 1+z+22

= 8/it+z°

|z —z| forall z,z €R,

consequently for every w,u € C|0, 1] it results

|5 (u)(z) — F(a)(z)] < |af / STy |l — 1

SV
2v/2(4+4/2(25—3v/41
< Jo] 37 max 2 u — | = SISV o) u

and thus lipF < 0.47 |a|. For a = 2 the IDE (2.19) is contractive and the fixed-point
u’ of (In) can be approximated by iteration. Using ug(z) := x as initial function, the
temporal evolution of the error err,,(t) is shown in Fig. 2 (left) for n € {10',10%,10%}
and becomes stationary after 80 iterations, while the dependence of err(n) is illustrated
in Fig. 2 (right). The slope of the curve in this diagram has the value —2.003 yielding
quadratic convergence, although the right-hand side is not of class C? in & anymore.

"Fa=10

\ —n=100
- \\ n=1000) 107
»\M

s i 3
::: 10 4 g
5] ]0-()

10°

-8 108
1
L 20 40 60 80 10! 10% 10°
t n

F1a. 2. Quadratically decaying errors in Ezam. 2.8

Comparing Exam. 2.7 and 2.8 it is apparent that, although the same convergence rate
is reached, iteration in the less smooth Exam. 2.8 needs longer to become stationary.
The following example is less academic and mimics biological models for species,
which first disperse spatially and then grow. Here, explicit solutions are not known
and in order to determine the convergence rate v, we use an asymptotic formula

lor — o> _ <2n>~ HOWTO) | 1-27406) gy
|p2n — gin| (25)7 (4n)7 (n=(+D)  2=7 —2-27 4 O(3) N n

(as n — 0), relating the globally attractive #-periodic solutions ¢™ to (I.). After a
full discretization, the corresponding solutions v™ and v?" are provided on different
grids. To handle this, we compute the piecewise linear approximation <ZA)" i [a, 0] = R
obtained from the values v™ and work with the approximation

0—12n—1

lo" — o7 ~

o (")
27’L =0 j=0

This manuscript is for review purposes only.
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14 CHRISTIAN POTZSCHE

kernel ko (2) ri r1
GauB [| e~ | 132 | 1.31
Laplace || Ze~°lel | 1.43 | 1.42

TABLE 1
Typical convolution kernels and critical parameter values in Exam. 2.9 and 3.2

in order to obtain convergence rates. In conclusion, our indicator for convergence
2

rates is the limit of ¢(n) := log, % for large values of n.

Ezample 2.9 (periodic Beverton- Holt equation). Let Q = [—2,2] and consider
the 4-periodic sequence ay := 5+4sin I*. We study the spatial Beverton—Holt equation

2-32 cos f ke, (x ue(y) dy
L+ ‘f—z ko, (x — y)uzs(y) dy

(2.22) up1(x) = r for all x € [-2,2],

3 cos Z)z
which is of the form (1.1) with G¢(z, 2) := r%, fi(x,y,2) == kq,(x —y)z and

U} = U? =R, where k, : R — R is a dispersal kernel from Tab. 1. The growth rate
r > 0 is interpreted as bifurcation parameter and the trivial solution of (2.22) exhibits
a transcritical bifurcation for some critical v > 0. If we choose r = 4, then Fig. 3
shows the 4-periodic orbits {¢g, ¢, ¢35, 5} for the GauB- (left) and Laplace-kernel
(right). The table in Fig. 4 (left) indicates quadratic convergence of the scheme and

Gauss Laplace

Fia. 3. For Exam. 2.9 with r = 4: Attractive 4-periodic solutions of the Beverton-Holt IDE
(3.8) with 4-periodic dispersal rates (at)iez: Gauf kernel (left) and Laplace kernel (right)

thus confirms our theoretical result from Prop. 2.3(c). Moreover, the smooth Gaufl
kernel yields more accurate results than the Laplace kernel (see Fig. 4 (right)), which
is not differentiable along the diagonal.

3. Hammerstein integrodifference equations. This section deals with sys-

tems of d Hammerstein IDEs, which often arise in applications [7]. Their right-hand
side reads as

b
(3.1) Ty (u) = / Ko(9)ge (9, uly)) dy + by,

This manuscript is for review purposes only.
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10
n || Gaufl Laplace
16 || 3.401293516 | 1.697576232 ook
32 || 2.010916523 | 1.945062175
64 || 2.019632435 | 2.000945171 e
128 || 2.013192291 | 2.006543793
256 || 2.007446186 | 2.005257811 .
512 || 2.003910442 | 2.003008231 107
1024 || 2.002006939 | 2.001654344
2048 || 2.001024625 | 2.000882723 10‘700 o ot

Fi1G. 4. For Ezam. 2.9 with r = 4: Approzimations to the convergence rates c(n) (left) and
development of the error H¢>2" — (;5"” (right) forn € {22,...,211}

where we restrict to domains = [a, b] for simplicity. Higher-dimensional domains Q
can be investigated like the rectangle €2 in Sect. 2.

For kernels K; : [a,b> — R¥>P growth functions g; : [a,b] x U} — RP and
inhomogeneities hy : [a,b] — R? we assume that there exists a period § € N such that
Kt = Kt+9, gt = gi+0 and ht = ht+9, te .

Furthermore, let us impose the following standing assumptions for all s € Z:

e K, is of class C? and h, € C?[a,b]?,

e Ul C R? is open, convex and nonempty, g : [a,b] x Ul — RP is a continu-
ous function, the derivative Dags : [a,b] x UL — RP*9 exists as continuous
function and for all € > 0, = € [a, b] there exists a § > 0 such that

|21 — 22| <& = |Dags(x,21) — Dogs(x,20)| < e for all 21,25 € U;.

Since Hammerstein eqns. (Io) are a special case of the IDEs studied in Sect. 2 with

Ug :Rda Gs(xvz) ::Z+hs(x)v fs(x7yvz) = Ks(xvy)gs(yaz)

and convex domains U, := C([a,b],U}), s € Z, this guarantees the properties (P;—Ps)
of their general solution ¢g (cf. [10, Sect. 3.2]). In particular, the compact Fréchet
derivative of JF is

b
DFs(u)v = / Ks(-,y)Dags(y,u(y))v(y)dy  for all u € Uy, v € Cy.

Formally, a degenerate kernel discretization of (3.1) is given as

b
(3.2) 57 (u) = / K2 ()01 (> u(y)) dy + e,

where KJ* : [a,b]? — R¥*P serves as approximation of the original kernel K;. In the
following we discuss two possibilities, in which e; := e} : [a,b] — [0,1] denote the hat
functions introduced in Sect. 2.1 with notes §; := a + %(b —a) for 0 <j <n.

3.1. Linear degenerate kernels. A piecewise linear approximation of Ky(-,y),
y € [a, b] fixed, yields the degenerate kernels

n

Kl (z,y) :== ZKt(fi,y)ej(m) forall n € N, z,y € [a,b].
i=0

This manuscript is for review purposes only.
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16 CHRISTIAN POTZSCHE

The resulting discretization (3.2) essentially coincides with the collocation method
discussed in Sect. 2.1. In fact, applying the projection operator P, € L(Cy) onto
span{eg,...,e,} to the right-hand side (3.1) yields F7'(u) = P,Fi(u) + hy — Pphy.
Thus, apart from an occurrence of the term h; — P,h;, the convergence analysis is
covered by Prop. 2.3.

3.2. Bilinear degenerate kernels. In order to obtain an alternative semi-
discretization (I.) of the Hammerstein IDE (Io), we apply the degenerate kernels

n n
K[ (z,y) := Z Z K&, 85, )e, (x) forallmeN, z,y € [a,b];

this yields a piecewise linear approximation of K. Since the kernels were assumed to
be of class C?, the interpolation estimate [3, p. 267] applies to each matrix entry and
using the matrix norm induced by the maximum vector norm, leads to

\Kf(x,y) Kt(x Y | = max Z |K €z y Jijz Kt(xvy>j1j2‘

J2 1
< M f
(3.3) S g hax Z Z | DPK(+)j,5,| for all 2,y € [a, b].

j2 1[1

We arrive at the semi-discretization (I.) with right-hand sides

(34) ??(u) = Z <Z / 612 Kt(xuaxzz)gt(y’ut( )) dy) €, + ht
i2=0

i1=0

and the subsequent persistence and convergence result:

PROPOSITION 3.1 (bilinear degenerate kernel). Suppose that a 0-periodic solu-
tion ¢* of a Hammerstein IDE (Lo) with right-hand side (3.1) satisfies the assumptions
(i—ii) of Thm. 2.1 and choose q € (qo,1). If there exists a

(tag) po >0 and a function 41 € M* such that for all y € [a, b] holds

(3:5)  |D2gs(y,2) — Dags(y, 2)l < (lz = 2[)  for all z,Z € By, (¢5(y)),

(iiag) C >0 such that |gs(y,z)| < C for ally € [a,b], z € U}
and each 1 < s < 0, then there exists a N € N so that every degenerate kernel
discretization (I.) with right-hand side (3.4) and n > N possesses a globally attractive
O-periodic solution ¢™. Moreover, there is a K > 1 such that for all n > N the
following holds:

K
(1—g)n?

We point out that Rem. 2.5 and 2.6 also apply in the present situation.

ot — o7l < for allt € Z.

Proof. Let n € N. Before gradually verifying the assumptions of Thm. 2.1 applied
to the right-hand sides (3.1) and (3.4), we begin with a convenient abbreviation

(b—a)2 d L 2
e 1= 7111%)(2 ZHDZ Kt()]l]QH forallt € Z
=1

This manuscript is for review purposes only.
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and an elementary estimate

(3.3) e
(36) K (z,y)| < |Ki(z, )| + [KY (z,y) — Ke(z,y)| < Kl + n% =: Cy(n)

for allt € Z and x,y € [a,b]. Clearly, the constants C¢(n) are nonincreasing in n € N.
First, O-periodicity of K, g: and h; extends to J}'. For t € Z, u € U; fixed and

v € Cq with ||v]| = 1, we obtain the local discretization error
(3 4)
e (u / K@, y) — K (2, 9)] e (y, u(y))| dy
(? 3)
“ / lg:(y,u(y))| dy for all = € [a,b].

Second, from [10, Thm. 3.5(b)] we see that every F} is continuously differentiable and

b
|[Def (w)ol(z)] < / [Ki(2,y) — Ki'(2,9)] [ D2g:(y, u(y))v(y)| dy

(3:3) e
< o / |D2gi(y,u(y))| dy for all z € [a, b].

Passing to the supremum over x € [a,b] in the previous two estimates leads to

b .
(3.7) |Dep )] < %% [ | Doty utu)| dy for ail j € {0.1}.

Among the several consequences of this error estimate (3.7), we initially note that,
because the substitution operator induced by the continuous function g; is bounded,
it follows from [10, Thm. B.1] that (I.),en is bounded convergent.

ad (iil): It results using [10, Thm. 3.5] that all semi-discretizations F}* are com-
pletely continuous. The estimate (3.7) for j = 1 readily yields (2.3). Thanks to

DF (u)v = / KP (-, y) Dagi(y, u(y))v(y) dy

it results
(3.6) b
DT () < Gy / |Dage(y, u())] dy,

from which we furthermore observe that D37} are bounded uniformly in n € N,
because of C(n) < Cy(1). Moreover, (3.7) for j = 0 implies lim,, . ||} (u)| = 0.
ad (iv): Again keeping an eye on the estimate (3.7), one can define

b
Ly(p) == p? glgfes/ D3gs(y: ¢5(y))| dy  for all j € {0,1}
- a

and consequently (2.4) holds. Moreover, given u € B, (¢}), the estimate
[DFF (w)v — DI (7)ol ()|

b
< / K7 (2,9)| | Dage(y, u(y)) — Dage(y, & ()] [o(w)] dy
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18 CHRISTIAN POTZSCHE

3.6 b
(Ekmm/NDM@m@»@%m@@Mdy

(3.5)
< (b—a)Ce(n)n(Jlu—&f|]) for all x € [a,b],

after passing to the supremum over z € [a, b], allows us to choose

- 0
7' (p) = (b — a)F1(p) max Cy(1)
in the final required inequality (2.5).
ad (v): The boundedness assumption (iigy) implies that both JF;, as well as the
semi-discretizations J}' are globally bounded uniformly in n € N. This evidently
extends to the general solutions ¢,, for all n € Ny and the proof is finished. ]

3.3. Simulations. Consider a scalar Hammerstein IDE

b
(38) (@) = [ oo~ g)gunly)dy for allw € [o,l

with convolution kernels k, : R — R (see Tab. 1) depending on dispersal parameter
a; > 0 and a (nonlinear) growth function g : R — R.
The degenerate kernel semi-discretization (3.4) of (3.8) simplifies to

n b

i =3 Zm%ﬂw/wmwm@%,w:wﬁ%

J1=0 \J2=0 @

If we discretize the remaining integrals by the trapezoidal rule (2.20), then the full
discretization (2.21) has the right-hand side

n

37 (0) 1= 2 (o (0 =) (000D +2 X o (0 =1 )90 ) o D)
j=1

=0

Here, the values v (i) approximate u:(n;) for 0 < i < n.
We now consider a situation dual to Exam. 2.9 in the sense that (3.8) models
populations which first grow and then disperse.

Ezample 3.2 (periodic Beverton-Holt equation). On Q = [-2,2] we study the
xr
% to describe growth and use the 4-periodic
sequence (a¢)iez from Exam. 2.9 as dispersal parameters. Again the growth rate
r > 0 is interpreted as bifurcation parameter. The trivial solution of (3.8) exhibits a
transcritical bifurcation for some critical 71 > 0. Due to [2, Thm. 5.1] the nontrivial
4-periodic solution ¢* is globally attractive for r > r;. In particular for r = 4, Fig. 5
illustrates the orbit {¢g, @7, @5, @5 }. As theoretically predicted by Prop. 3.1, quadratic
convergence is confirmed by the table in Fig. 6 (left). Again, the errors ¢(n) for the

smooth GauB} kernel are smaller than for the Laplace kernel (see Fig. 5 (right)).

Beverton-Holt function g(z) :=r

Appendix A. Robustness of global stability. Assume U C X is a nonempty,
open, convex subset of a Banach space X and (A,d) denotes a metric space. The
subsequent result is a quantitative version of [13, Thm. 2.1]:

This manuscript is for review purposes only.
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Gauss

Laplace

FiG. 5. For Ezam. 3.2 with r = 4: Globally attractive 4-periodic solutions of the Beverton-Holt
IDE (3.8) with 4-periodic dispersal rates (at)iez: Gaufy kernel (left) and Laplace kernel (right)

10
n || Gaufl Laplace
16 || 4.094543296 | 1.96612629 ook
32 || 1.993927677 | 2.006424007
64 || 2.018281087 | 2.013700027 2,000
128 || 2.012291764 | 2.009501587 5
256 || 2.006785445 | 2.005516125 .
512 || 2.003552025 | 2.002888726 1077
1024 || 2.001813352 | 2.001476866
2048 || 2.000915199 | 2.000748714 10‘(;00 e o

F1G. 6. For Ezam. 3.2 with v = 4: Approzimations to the convergence rates c(n) (left) and
development of the error H(bQ" — ¢”|| (right) for n € {22, ceey 211}

55 THEOREM A.1. Let g € [0,1), Ao € A and assume that Ty € N, 7o : RZ — Ry
56 are functions with lim,, ,,~0%0(p1,p2) = 0. If the Ct-mappings I\ : U — U, X € A,
457  satisfy the following properties
458 (i’) there exists a ug € U with lim,_, oo 113, (u) = ug for allu e U,
59 (ii’) (u, A) — DIIy(u) exists as continuous function with | DILy, (uo)| < g,
460 (111°) there exists a po > 0 such that for all uw € B, (up) NU, X € A it holds

161 (A1) T () — T, (o) | < To(d(A, Ao)),
162 (A2) | DI (w) — DIy, (o) < vo(llu = woll , d(, Ao)),

)<

464 (iv’) for every X € A there is a sel By C U such that for each u € U, there exists
465 a T € N such that IIX (u) € By,

466 (v") Uxea I1\(By) is relatively compact in U

167 and p € (0,po), 0 > 0 are chosen so small that B,(ug) C U,

65 (A3) o) < 5p, 0(p,0) < 151,
1470 then there ezists a continuous mapping u* : Bs(Xo) — B,(uo) with
471 (a) u*(Ao) = ug and Iy (u*(A)) = u*(A) on Bs(Ao),

=~
no

(0) lluw*(N) = uoll < $2;To(d(X, X)),
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(¢) limy_oo IT§ (u) = w*(X) for allu € U, X € Bs(\o).
Proof. (a) For all u € B,(ug), A € Bs(\) one concludes the relation

(A.2) (A.3)
DI (u) || < [|DILy, (uo)|| + [|DTIx(w) — DIy, (wo) | < g +70(p6) < L5t <1

from (ii’). The mean value theorem [8, p. 341, Thm. 4.2] and the convexity of U imply
1
M (@) — M (u)]| < /0 [P (u + 9(a — )| 49 [lu — al] < 52 [lu— al

for all u,u € B,(ug), A € Bs(\o). Referring to (i’), the continuity of II), guarantees
that I, (ug) = up and thus

ITx(u) —uoll < [[TIx(w) — Tx(uo) || 4 [[TTx (uo) — Tx, (uo) |

(A1) lig (A.3) - -
< Fhu—wuol +To(dX Ao)) < Fp+ Fip=0p.

The latter two estimates imply that ITy : B,(ug) — B,(uo) is both well-defined and

a contraction uniformly in A € Bs(Ag). The uniform contraction principle guarantees

that there exists a unique fixed point function u* : Bs(\g) — B,(uo) satisfying (a).
(b) For all A € Bs(\o) the estimate (b) readily results from

[ (A) = woll - < [[Tx(uw"(A)) = Tx (uo) | + [[TTx (uo) — Tx, (wo) |

AD Lo
< FH[ut(A) = uoll + To(d(A, Ao))-
(c) The global attractivity of u*(\) w.r.t. the mapping I, for A € Bs()\g) can be

shown just as in [13, proof of Thm. 2.1]. d
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