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Adaptive discretization of parameter identification problems in PDEs for variational and iterative regularization

Overview

» motivation: parameter identification in PDE
> ideas on adaptivity for inverse problems

> principles of goal oriented error estimators
» variational regularization

> iterative regularization

» conclusions and outlook
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Motivation: Parameter Identification in PDE
Some Model problems:
» a-example: identify the diffusivity a = a(x) in
—V(a(x)Vu)=f inQ

from measurements of the state u
~> nonlinear inverse problem

» c-example: identify the potential ¢ = ¢c(x) in
—Au+c(x)u=f inQ

from measurements of the state u.
~> nonlinear inverse problem
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Motivation: Parameter Identification in PDE

Some Model problems:

» inverse source problem: identify the source f = f(x) in
—Au="f(x) inQ
from measurements of the state u.

~> linear inverse problem

» nonlinearity identification: identify the heat conductivity
g =q(u) in
-V (q(u)Vu)=f inQ

from measurements of the state wu.
~> nonlinear inverse problem
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Motivation: Parameter Identification in PDE

Some Model problems:
-V (aVu) =f —Au=f
—Au+cu="f —V(q(u)Vu) =f
» The majority of parameter identification problems in PDEs
leads to nonlinear inverse problems

» From now on all parameters will be called “coefficients” and
denoted by q.

» The forward operator F maps the coefficient g to the
measurement u (or Cu)
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A(q,u)(v)= (f,v) YveV ... PDE in weak form
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Motivation: Coefficient Identification in PDE

Abstract formulation:

A(q,u)(v)= (f,v) YveV ... PDE in weak form

Cu= g ... measurements

or equivalently
Flq) =g

F...forward operator: F(q) = (CoS)(q) = Cu
where u = S(q) solves PDE;  S... coefficient-to-state-map

Hilbert spaces Q, V, G: g€ Q 3 uevV £>g€G
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Motivation: Coefficient Identification in PDE

Abstract formulation:

A(q,u)(v)= (f,v) YveV ... PDE in weak form

Cu= g ... measurements

or equivalently
Flq) =g

F...forward operator: F(q) = (CoS)(q) = Cu
where u = S(q) solves PDE;  S... coefficient-to-state-map

Hilbert spaces Q, V, G: g€ Q 3 uevV £>g€G

inverse problem: identify g from measurements g° of g
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Motivation: Relation to Optimization

operator equation minimization problem

A(g,u)(v) = (f,v) VYveV

ming, |[Cu—g°|>
Cu = g e

st. A(q,u)(v)=(f,v) VveVv

or equivalently or equivalently

o -e ming [|F(q) — &
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Motivation: Relation to Optimization

operator equation minimization problem

A(g,u)(v) = (f,v) VYveV

ming,, [|Cu—g°|>
Cu = g o

st. A(q,u)(v)=(f,v) VveV

or equivalently or equivalently

fla e ming |1F(q) — &1

... plus regularization:
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Motivation: Relation to Optimization

e.g. Tikhonov regularization:!

Minimize Jo(q,u) = ||Cu—g°||> + |q||> over g€ @, u e V

under the constraint A(q, u)(v) = (f,v) VYveV
or equivalently

Minimize ja(q) = [|F(q) — &°|1* + al|q|[* over g € Q,

~» PDE constrained optimization

1There exist many other regularization methods!
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Motivation: Relation to Optimization

e.g. Tikhonov regularization:!

Minimize Jo(q,u) = ||Cu—g°||> + |q||> over g€ @, u e V
under the constraint A(q, u)(v) = (f,v) VYveV

or equivalently

Minimize ja(q) = [|F(q) — &°|1* + al|q|[* over g € Q,

~» PDE constrained optimization

additional issue: choice of «!

1There exist many other regularization methods!
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e.g., Discrepancy Principle?

assume noise level § > ||g — g°|| to be known;
fix constant 7 > 1 independent of ¢;
determine v = «, such that

IF(qS,) - &°| =76

(relaxed version 7252 < [|F(q?.) — g°|2 < 7°6)
where qg is the Tikhonov minimizer
~~ nonlinear 1-d equation ¢(a) = 0 for «;

each evaluation of ¢ requires minimization of Tikhonov functional!

2There exist many other regularization parameter choice strategies!
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Motivation: Coefficient Identification in PDE

computational issues:
> instability:
amplification of numerical errors

» computational effort:
several reg. inversions to determine regularization parameter
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Motivation: Coefficient Identification in PDE

adaptive discretization:

examples : :
refine grid for u and g
at jumps or large gradients
close to measurements
at locations with large error contribution
location of large gradients / large errors
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Motivation: Coefficient Identification in PDE

adaptive discretization:

» examples —V(qVu) =f; —Au+qu="1f, —Au=gq:
refine grid for u and g
> at jumps or large gradients
> close to measurements
» at locations with large error contribution
— location of large gradients / large errors a priori unknown
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Motivation: Coefficient Identification in PDE

adaptive discretization:
» examples —V(qVu) =f; —Au+qu="1f, —Au=gq:
refine grid for u and g
> at jumps or large gradients
> close to measurements
» at locations with large error contribution
— location of large gradients / large errors a priori unknown

» example —V(q(u)Vu) = f:

» no direct relation between refinement regions for v and g
— general strategy for mesh generation separately for g and u
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Some Ideas on Adaptivity for Inverse Problems

>

Haber&Heldmann&Ascher'07: Tikhonov with BV type reg.:
Refine for u to compute residual term sufficiently precisely;
Refine for q to compute regularization term sufficiently precisely
Neubauer'03, '06, '07: moving mesh reg., adaptive grid reg.:
Refine where q has jumps or large gradients
Borcea&Druskin'02: optimal finite difference grids (a priori):
Refine close to measurements

Chavent&Bissell'98, Ben Ameur&Chavent& Jaffré'02, BK&Ben Ameur'02:
Refine to reduce data misfit and coarsen to reduce number of dofs
(refinement and coarsening indicators)

Becker&Vexler'04, Griesbaum&BK&Vexler'07, Bangerth& Joshi'08,
Beilina et. al.’05,’06,’09,'10,'11,'12, BK&Kirchner&Vexler'11,
BK&Kirchner& Veljovic& Vexler'13:

Refine to obtain sufficient precision in some quantity of interest
(goal oriented error estimators)
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(goal oriented error estimators)
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Variational Regularization



Adaptive discretization of parameter identification problems in PDEs for variational and iterative regularization

Coefficient Identification in PDE as Operator Equation

A(q,u)(v)= (f,v) VYveV ... PDE in weak form

Cu= g ... measurements

or equivalently
Flq)=¢

F...forward operator: F(q) = (Co S)(q) = Cu
where u = 5(q) solves PDE;  S... coefficient-to-state-map

Hilbert spaces Q, V, G: g€ Q 3 uev £>g€G

inverse problem: identify g from measurements g° of g
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Tikhonov Regularization

Minimize Jjo(q) = [F(q) — &°|]*> + a|q||? over g € Q,

or equivalently

Minimize J,(q,u) = ||Cu— g°|> + |/q||> over g € @, u € V
under the constraint A(q,u)(v) = (f,v) VYveV
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Tikhonov Regularization and the Discrepancy Principle

Minimize ju(q) = [|[F(q) — &°|I* + al|q||* over g € Q,
Choice of a: discrepancy principle (fixed constant 7 > 1)
IF(ab.)— &’ =76

~~ nonlinear 1-d equation ¢(a) = 0 for «;
evaluation of ¢ requires minimization of Tikhonov functional

Convergence analysis as § — 0:
[Engl& Hanke& Neubauer 1996] and the references therein
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Goal Oriented Error Estimators in PDE Constrained Optimization
[Becker&Kapp&Rannacher'00], [Becker&Rannacher'01], [Becker&Vexler '04, '05]

Minimize J(q,u) overqe Q, ueV
under the constraint A(q,u)(v) =f(v) VveV

Lagrange functional:

L(q,u,z) = J(q,u) + f(z) — Alg, u)(z).

First order optimality conditions:

L'(q,u,2)[(p,v,y)] =0 V(p,v,y) € @x V xV (1)
Discretization Q, C Q, Vj, C V ~ discretized version of (1).

Estimate the error due to discretization in some quantity of interest /:

I(q,u) — I(qn,un) <7
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Goal Oriented Error Estimators (1)
Auxiliary functional:
M(q,u,z,p,v,y) = 1(q,u) + L(q,u,2)[(p, v, y)]
Consider additional equations:
MI(Xh)(dXh) =0 Vdxpe X,= (Qh x Vp x Vh)2 (*)

Theorem (Becker&Vexler, J. Comp. Phys., 2005):
1 - -
I(q,u) — I(gn, up) = E,f\/l/(xh)(x —%n) +O(|Ix — xnl|?) V& € Xp.

:;77

After computing a stationary point (g, up, z5), computation of
xn = (qh, Un, Zn, P, Vh, yn) from (x) only requires one more Newton step:

|
0=Migun(xn) = Hguz(an un)+ LG, (G un z0)[(Phs Vi, yi)]
0= My, (xn) L' (qh, un, zn)[(Phs vhs yn)] since (Gn, un, zn) stat. point
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Goal Oriented Error Estimators (I11)

1
10, 4) — 1(an, un) = 5 M () (x = 5) +O(Ix = x4*) ¥ € Xp

:;’)”

Error estimator 7 is a sum of local contributions due to either g, u, z, ..
Nq N,_, N, Np Ny Ny
_ q
n=Y ol +> Y mEEY Y o+ > 0l
i=1 i=1 i=1 i=1 i=1 i=1

~> local refinement at large error contributions n{
separately for g € Qp, u € Vj, z€ Vy, ...
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Choice of Quantity of Interest /(q, u)?

First guess:
Since we wish to reconstruct the coefficient g = g(x),
all I,(q, u) :== q(x), x € Q are quantities of interest.
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Choice of Quantity of Interest /(q, u)?

First guess:
Since we wish to reconstruct the coefficient g = g(x),
all I,(q, u) :== q(x), x € Q are quantities of interest.

These are by far too many!
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Choice of Quantity of Interest /(q, u)?

aim: recover infinite dimensional convergence results
for Tikhonov + discrepancy principle
in the adaptively discretized setting

challenge: carrying over infinite dimensional results is . ..

... straightforward if we can guarantee smallness of operator norm
I|IFn — F|| ~> huge number of quantities of interest!

... not too hard if we can guarantee smallness of
IFa(q") — F(q")|| ~ large number of quantities of interest!

... but we only want to guarantee precision of
< 3 quantities of interest

~> have a look into the proofs
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|dea of proof for Tikhonov & Discrepancy Principle 3

* gt. . exact solution of inverse problem F(gq') = Cut = g
g2, Tikhonov minimizer, 1, = S(q3). .. corresponding state

Q. .. regularization parameter according to discrepancy principle
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|dea of proof for Tikhonov & Discrepancy Principle 3
» minimality in Q of Tikhonov minimizer qg* and ¢f € Q

= Jo.(q2,,u,) < |F(qh) — &°)1% + allq"||? < 62 + vl qT||?

Qs

* gt. . exact solution of inverse problem F(gq') = Cut = g
g2, Tikhonov minimizer, 1, = S(q3). .. corresponding state

Q. .. regularization parameter according to discrepancy principle
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|dea of proof for Tikhonov & Discrepancy Principle 3
» minimality in Q of Tikhonov minimizer qg* and ¢f € Q

= Jo (@, ) S IF(a") = &°1° + aullg"|]® < 8 + aullqT|?
» discrepancy principle 726% < [|F(q),) — &°|I°

= Jo. (@0, b)) = [IF(a2.) — &°17 + @l |17 = 226% + ol qd, |12

g'...exact solution of inverse problem F(q') = Cu' =g

g2, Tikhonov minimizer, 1, = S(g3). .. corresponding state

Q. .. regularization parameter according to discrepancy principle
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ldea of proof for Tikhonov & Discrepancy Principle 3
» minimality in Q of Tikhonov minimizer qg* and ¢ € @
= Jo (@0, 1) < IF(a") — &°I° + aullgT* < 6 + aulq |
» discrepancy principle 7262 < ||F(q2,) — &°||?
= Jo (a0, 00.) = [F(a0.) — &°11 + oull@g, |17 > 2262 + anl 42, |12
> sum up, use 7262 > 6%, divide by . = ||¢%_|I> < |lq|?

= weakly convergent subsequence qg* —gasd—0.

3
qT

g’ Tikhonov minimizer, ud = S(g3). .. corresponding state

... exact solution of inverse problem F(q') = Cu' =g

Q. . . regularization parameter according to discrepancy principle
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ldea of proof for Tikhonov & Discrepancy Principle 3
» minimality in Q of Tikhonov minimizer qg* and ¢ € @
S a(db ) < IF(ah) — &2+ aullg P < 8 + aulqT2
» discrepancy principle 7262 < ||F(q2,) — &°||?
S Jan(al 8.) = I F(a,) = 81 + a8, 2 = 120% + 2. |
> sum up, use 7262 > 6%, divide by . = ||¢%_|I> < |lq|?
= weakly convergent subsequence qg* —gasd—0.
» discrepancy principle ||F(q2.) — g°|> <762 § =+ 0

= F(@)=¢
t

* g'.. . exact solution of inverse problem F(g") = Cuf = g
g’ Tikhonov minimizer, ud = S(g3). .. corresponding state

Q. . . regularization parameter according to discrepancy principle
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|dea of proof for Tikhonov & Discrepancy Principle

» minimality in @ of Tikhonov minimizer qg* and ¢ € Q
= Jo (@0, 15.) < [IF(q") — &°17 + cullgt]® < 6% + el g
> discrepancy principle 726% < [|F(q3,) — &°|1°
= Jo. (G0, 10,) = IF(a2.) — &°IPP + axllad, |I> > £26% + alq,

> sum up, use 7262 > 6, divide by on, = 165112 < llqf|

= 3 weakly convergent subsequence qg* —gasd—0.
» discrepancy principle ||F(q2.) — g°||> <762 § = 0
= F(@) =g

2

2
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|dea of proof for Tikhonov & Discrepancy Principle

» minimality in Q of Tikhonov minimizer qg* and ¢ € @

with [Jo. (a8 u2.) — 1o (. ui*h)| < < (22 - 1)

= o (@0 U3, 1) < NF(a) = &1 + aullq P+ < 6% + ol -+
» discrepancy principle 7'262 < ||Fh(qg* ) —g%|?

= Jo (a0, U0 ) = IF(a 1) — 817 + aullag 4l1? = 220% + aullqg, 412
> sum up, use 7262 > 6%+, divide by a, = an*th < |lq"I?

= 3 weakly convergent subsequence qg*h —gasd—0.

» discrepancy principle |[Fx(q5 ) — g°[> <762 6 — 0
with [|F(¢2.,) — &1 — | Fu(al, ) — &*|2|< 12— 0 as 6 = 0
= F(@) =g



Adaptive discretization of parameter identification problems in PDEs for variational and iterative regularization

Convergence Analysis ~» Choice of Quantities of Interest

Theorem [Griesbaum&BK& Vexler'07], [BK&Kirchner& Vexler'11]:
e = i (6,8%) and Qp x Vi, x V4 such that
720% < ||Fa(a} ..) — &°lI% = ICu} . — &°lI% <76°

h(q,u,a) = Jo(q, u) = ||Cu — &°|IF + alql1?

satisfies | /(g . u) . o) — Il(qu*, ugia*,a*)\ < (12 - 1)8?

b(u,a) = ||F(gna.) — &°lI% = IICu— g°lI%
§

satisfies | (), ) — h(up o) < ch(u) o)

Then qg* —~qglasd—0.

(Optimal rates under source conditions of logarithmic/Holder type.)
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Remarks

» Also works for stationary points qg «, instead of global
minimizers if F is not too nonlinear

» Also works in Banach spaces with general data misfit and
(convex) regularization term *
Ja(q, u) = S(Cu,g°) + aR(q)

4see, e.g., the PhD theses of Christiane Pdschl 2008 (Otmar Scherzer), Jens
Flemming 2011 (Bernd Hofmann), Frank Werner 2012 (Thorsten Hohage) for
the continuous setting.
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Efficient Computation of @ ~~ Choice of Qol

Choice of «a: discrepancy principle (fixed constant 7 > 1)
IF(ad.) — &°ll = 6

~~ 1-d nonlinear equation ¢(a) = 0 for «
“less nonlinear” version 1(3) = ¢([—13) =0 for g

~> solve by Newton's method

»(B8)
W'(8%)

,8k+1 — ,Bk _
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Efficient Computation of a ~~ Choice of Qol

Theorem [Griesbaum&BK& Vexler'07], [BK& Kirchner&Vexler'11]:
h(q,u) = v(8) =(3) = [|F(q) - &°lIz — 726% = ||Cu — g°||§ — %67
/2(q7 U) = W(ﬂ)

k
gkl = gk — % (approximate Newton method)
h
for k < ky — 1 with k, = min{k € N | ik — 7252 < 0} with
[W(BK) — K| < ek, (3R = f| < 2K ek % sufficiently small.

Then 3% satisfies quadratic convergence estimate and

=2
7%6% < ||Fh(an, ) — &°llg <762
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Remarks

» computation of error estimators for ¢(3):
just one more SQP type step after £'(q, u, z)[(p, v,y)] = 0;
» evaluation of ¢/(3):
can be directly extracted from quantities computed for error
estimators for ¥ ()
» error estimators for ¢'(3):

stationary point of another auxiliary functional
by another SQP step
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Numerical Tests
nonlinear inverse source problem:

—Au+ 10000 = g in Q@ = (0,1)> + homogeneous Dirichlet BC

Identify g from distributed measurements of u at 10 x 10 points in Q

1 X224, 22
p(——( 1) o) ) o =001

(@) q'(xy)=5—5ex —
(b) a'(x.y) = qi(x.y) + q2(x, y)

2 2 _

1 1 S;x—% s,-y—% 0=01

9i=5_3P |5 + , S1=2,

o o o 5 =08

1 x<

t _ <

©  den={g 33

Computations with Gascoigne and RoDoBo.

NN =
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Numerical Tests

exact par q

(a),

e A
i
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Numerical Results (1)

Computations with 1% random noise:
number of nodes on finest grid:

@] G| (<

uniform 263169 | 66049 | 66049

adaptive 14157 | 18035 | 56409

reduction of CPU time 2% | 53% | 10%

adaptive grids:
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Numerical Results (1)

Computations with 1% random noise:
number of nodes on finest grid:

@] G| (<

uniform 263169 | 66049 | 66049

adaptive 14157 | 18035 | 56409

reduction of CPU time 2% | 53% | 10%

adaptive grids:

wrong regularization term
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Numerical Results (I1)

exact par q

(a),

computed par ( “ | : ‘
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Numerical Results (III)

Convergence as 0 — 0 for example (a),

linear inverse source problem

with o = 0.05 with & = 0.01
S _ AT 6 _ 4T

o | e | 1o o | e | Ve
8% | 0761 | 156390 || 8% |0860 | 2396281
4% |0502 | 660.930 || 4% |0.776 | 9044.374
2% | 0414 | 2426100 || 2% |0.744 | 24364.804
1% | 0288 | 7047472 || 1% | 0734 | 55017.364
05% | 0220 | 17042.825 || 0.5% | 0.731 | 117560.866
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Iterative Regularization
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Coefficient Identification in PDE as Operator Equation

A(q,u)(v)= (f,v) VYveV ... PDE in weak form

Cu= g ... measurements

or equivalently
Flq)=¢

F...forward operator: F(q) = (Co S)(q) = Cu
where u = 5(q) solves PDE;  S... coefficient-to-state-map

Hilbert spaces Q, V, G: g€ Q 3 uev £>g€G

inverse problem: identify g from measurements g° of g
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Newton type Regularization

Newton step as least squares problem:
Gisr = argmin || F(qR)(q — ab) + F(ai) — 8”1,

Iteratively Regularized Gauss-Newton Method IRGNM
qp41 = argming ||F'(a2)(q — q&) + F(a2)—&°II” + allg — gol*,
—————— N~

Cw Cu
or equivalently
Minimize
geq
k(g u,w) = [ C(w + u) — g°|Iz + akllg — qo]|* over v eV
weV

under the constraints
A(qy, u)wl(v) + Ay(qp, u)lg — qpl(v) =0 Vv eV,
A(q),u)(v) =f(v) YveV,
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Newton type Regularization and the Discrepancy Principle

Iteratively Regularized Gauss-Newton Method IRGNM

Gpy1 = arg min IF'(a)(q — ap) + F(q}) — &°|1* + axllg — qol|?,
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Newton type Regularization and the Discrepancy Principle

Iteratively Regularized Gauss-Newton Method IRGNM
Ghs1 = a8 min IF'(a%)(q — a%) + F(aR) — &° 1> + exllq — aol?,
a posteriori selection of a (inexact Newton)

01F(ax) = &°ll < IF'(ar)(qrr1 — ak) + Flqk) — &°ll < 0] F(ax) — &l
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Newton type Regularization and the Discrepancy Principle

Iteratively Regularized Gauss-Newton Method IRGNM
Ghs1 = a8 min IF'(a%)(q — a%) + F(aR) — &° 1> + exllq — aol?,
a posteriori selection of a (inexact Newton)

01F(ax) = &°ll < IF'(ar)(qrr1 — ak) + Flqk) — &°ll < 0] F(ax) — &l

a posteriori selection of k, (discrepancy principle)

K =min{k €N : [[F(q) — g’ <76}
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Idea of Proof

» minimality of g, in Q, compare with gf
~~+ boundedness

> show that ||F(gl') —g°|| = 0asd —0

h
(744
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Convergence Analysis ~~» Choice of Qol

|/i,,(i—1’—1 B /ik+1| < 77;(—’_17 s {1727374} (*)

where for fixed q;‘(" and variable q,’jH, W,f, ul’(’, “ll<7+1
Cwlﬁ’ Cu,’(7
k+1 1 H h H H 4112 h 2
Iih = I Fa(a (a1 — a) + Fr(ar') —8°11° + cllgi 41 — qoll
k+1 Hy( .h H H 5112
12,7: = |IFh(a )(ak1 — ak') + Fr(ax') — &°|l
k+1 H 5
B = |IFa(ad) — &°I17
k h 5
It = I Fa(ai) —&°l1%
——
CLILLl

Theorem [BK&Kirchner& Veljovic& Vexler'12]:
Let (%) hold with 7% sufficiently small. Then qi P gl as § — 0.

1
(Optimal rates under source conditions of logarithmic/Holder type).
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AT <t e {1,230 (%)

]

where for fixed q,'("’ and variable qll<1+1' W,f, u,’(’, u,’(’+1

K = NFad) (i — a) + Fa(al) — &°17 + axllai 1 — qoll?
Bt = I1Fh(at) gk — af) + Falaf) — &°117
~ solution of a linear PDE
k
Bt = lIFa(af) - &°IP

~~ solution of a nonlinear PDE
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AT <t e {1,230 (%)

]

where for fixed q,'("’ and variable qll<1+1' W,f, u,’(’, u,’(’+1

K = NFad) (i — a) + Fa(al) — &°17 + axllai 1 — qoll?
Bt = I1Fh(at) gk — af) + Falaf) — &°117
~ solution of a linear PDE
k
Bt = lIFa(af) - &°IP

~~ solution of a nonlinear PDE

~~ all-at once formulations
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A Least Squares Formulation (1)

measurements: Cu = gin G i F(u,q) =
PDE: Alg,u) = finV* e

~ |teratively Regularized Gauss-Newton Method IRGNM
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A Least Squares Formulation (1)

measurements: Cu = gin G o F(u,q) =
PDE:  A(q,u) = finV* e

~ Iteratively Regularized Gauss-Newton Method IRGNM

a1 q; 5 5 56 o\
— . / *E/
< “i+1 )—( 0 ) <F(qk7uk) F(qk7uk)+ak(0 0))

« <F'(q2,ui)*(F(qg,ug) g+ a < i ))
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A Least Squares Formulation (1)

measurements: Cu = gin G o F(u,q) =
PDE:  A(q,u) = finV* e

~ Iteratively Regularized Gauss-Newton Method IRGNM

a1 q; 5 5 56 1o\
— . / *E/
( “i+1 )—( 0 ) <F(qk7uk) F(Q;«“k)*‘ak(o 0))

« <F'(qi,u2)*(F(qg,ug) g+ a ( i ))

or equivalently: unconstrained quadratic minimization

1)
(8552 ) = raming., 14 ar. (@~ 00) + Ao~ ) + A ) ~ 117

+H|Cu—g°IIz + onllg — aoll
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A Least Squares Formulation (I1)

(qi+1> Ui+1)
=argming, ||L(g — qk) + K(u — uk) + A(qk, uk) — fH%/*
+|Cu— &°lI% + axllg — qoll% -

with K = Az(qk, uk), L= Ag(qk, uk).
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A Least Squares Formulation (I1)

(q£+1>”£+1)
=argming, ||L(g — qk) + K(u — uk) + A(qk, uk) — fH%/*
+|Cu— &°lI% + axllg — qoll% -

with K = Az(qk, uk), L= Ag(qk, uk).

K regular . L*L + ol L*K .\ -
0>0 } = Hessian ( KL CC + K*K ) positive definite.
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Least Squares Newton Type Regularization and the

Discrepancy Principle
Iteratively Regularized Gauss-Newton Method IRGNM

9 qp 5 5 55 1o\
— . / *x/
(u2+1>‘<ui> (F(qk,uk)F(qk,uk)mk(O 0))

5 _
< (Plah ey et ) - ) o (T )
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Least Squares Newton Type Regularization and the

Discrepancy Principle
Iteratively Regularized Gauss-Newton Method IRGNM

qurl q, 18 SNKEI (A6 16 I 0 -
(&)= (%) - (et drr@dro( o o))
F 1) 5*F 6 ,,0) _ o0 qi_qO
X (g2, up)*(F(qp, up) — g°) + o 0

a posteriori selection of a (inexact Newton)

0|IF(quux) — &°|| < HF'(qk,Uk)<qk+lqk>+ F(awux) — 8°|| < 0||F(qrux) — &° ||

Ugy1— Uk
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Least Squares Newton Type Regularization and the

Discrepancy Principle
Iteratively Regularized Gauss-Newton Method IRGNM

q£+1 q, 18 SNKEI (A6 16 I 0 -
(&)= (%) - (et drr@dro( o o))
F 1) 5*F 6 ,,0) _ o0 qi_qO
X (g2, up)*(F(qp, up) — g°) + o 0

a posteriori selection of a (inexact Newton)

0|IF(quux) — &°|| < HF'(qk,Uk)<qk+lqk>+ F(awux) — 8°|| < 0||F(qrux) — &° ||

Ug41— Uk
a posteriori selection of k, (discrepancy principle)

k* =min{k € N : ||F(qk, ux) — g°|| < 70}
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Convergence Analysis ~~» Choice of Qol

|/i,,(i—1’—1 B /ik+1| < 77;(—’_17 s {1727374} (*)

where for fixed q,’(" and variable q2+1, W,?, uL’, ”l’:+1
h
k+1 H Hy\(9k+1—9 H H 5 h 2
5 = IRl )+ Faallel) ') + ol — ol
k+1 " Yk
k+1 1o H H qZ — 4y H H 5
Ly = lFx(ax,ui < att :>+ Fr(asug) —g°ll
Up g — Uy
k41 H H 5112
13,7: = [[Fn(qy,u) —&°|
k41 h h 5112
/4_)7 - HFh(qurl' Uk+1) - g)H

Theorem [BK&Kirchner& Veljovic& Vexler'12]:
Let (x) hold with 7% sufficiently small. Then qi P gl as§ — 0.

1
(Optimal rates under source conditions of logarithmic/Holder type).
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Convergence Analysis ~ Choice of Qol

= <t i e{1,2,3F (%)

where for fixed q,’(" and variable q,’ZH, W,f, U/IZ: “ll<1+1

k+1 q H H )

5 = IR (T ")+ Pl - €+ anlals — al?
k+1 k

k1 G- p

= Rl )( i 5>+Fh<qk,uk) g
+

~ evaluate residual of a linear PDE
k+1
it = |Fa(af, uf) — "I

~ evaluate residual of a nonlinear PDE
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Remarks

» Also works in Banach spaces with general data misfit and
(convex) regularization term °
Ji(q, u) = S1(Cu, °) + Sa(Li(q — k) + Ki(u — uk) + A(qk, uk), f) + axR(q, u)

» Use this to avoid equal treatment of both equations in

measurements: Cu = gin G
PDE: A(g,u) = fin V*

by least-squares approach.
(“more confidence in PDE than in measurements g° ~ g")

®see, e.g., the PhD thesis of Frank Werner 2012 (Thorsten Hohage) for the
continuous setting.
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A Generalized Newton Method (1)

1)
q . 1
(i) = argming, 1Cu— g1 + % o — ol
st Al(ar, u))(g —ap) + Au(al, up)(u— uf) + Algy, u) = f

or equivalently (by exactness of /* penalty):

B

q .

( f§+1> = argming, 5/|Cu — g°II% + % llg — g0l
U1

+pl|Aq (i uie)(q — qic) + Au(qi, ui)(u — ui) + Algi, uk) — fllv-

with p sufficiently large (but finite).



Adaptive discretization of parameter identification problems in PDEs for variational and iterative regularization

A Generalized Newton Method (1)

o1 Qe
(Ghs1 Uisa) = argmin 5 || Cu = g3 + 7]l — qoll
s.t. L(g — qi) + K(u — uk) + A(qi, ux) — F =0

with K = A’u(qk, uk), L= A;(qk, uk).
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A Generalized Newton Method (1)

1 o

56 : 512 k 2

(GRs1) Uks1) = arg min SlCu—g°lle + —lla — allg
s.t. L(g — qi) + K(u — uk) + A(qi, ux) — F =0

with K = A’u(qk, uk), L= A;(qk, uk).

First order optimality system:

agl 0 L* gk+1 akqo
0 C*C K* Uk+1 = C*g6
L K 0 Zk+1 Lgx + Kuk — A(qk, ux) + f
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Generalized Newton Type Regularization and the
Discrepancy Principle

4
q .
(k) = angeming. Bl cu— £ + %la - ol

st. Al(ag),ud)(q—ap) + AL(ag, ud)(u— u) + A(q), uf) = f
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Generalized Newton Type Regularization and the
Discrepancy Principle

4
q .
(k) = angeming. Bl cu— £ + %la - ol

st Ag(als u)(a — ap) + Au(ad, u)(u — uf) + A(gp, up) = f
a posteriori selection of ay
(I € (ux) - g°I17 + pllA(gk, ux) — fII) < [[C(uks1) — &°lIZ
< 0(|Cuk) = &°I17 + Pl Alax, uk) — 1))
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Generalized Newton Type Regularization and the
Discrepancy Principle

4
q .
(i) = argrming. Hlcu— £ + %l - ol

st. Al(ag),ud)(q—ap) + AL(ag, ud)(u— u) + A(q), uf) = f

a posteriori selection of ay
O(1C(ue) — &°117 + pllAaw: ue) = FIl) < [ C(ura) = &°l15
< 0(/C(ux) — &°I17 + pllAqk: ux) — f1])

a posteriori selection of k, (discrepancy principle)

k* = min{k eN : HC(Uk) — g5”2 + pHA(qk7 Uk+1) _ f” < T252}
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Convergence Analysis ~~» Choice of Qol

‘Iilji—:-l - Iik+1| < 77,{(4_11 S {1a273} (*)

where for fixed ql’j and variable q2+1, W,f, uL’, ”/’<7+1

K = C(ufy) — &°l1% + axllaiy — aoll%

Bt = IC(ufy) - &°l%

Bt = Cup) = g°12 + pllAlal, uf) — ]

LG = 1C(uf) — 8°1% + pllA(ak . uf ) — Fllve

Theorem [BK&Kirchner& Veljovic&Vexler'12]:
Let () hold with ™" sufficiently small. Then g}, — q' as 6 — 0.
(Optimal rates under source conditions of logarithmic/Holder type).

Idea of proof: equivalence to exact /* penalty formulation
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Outlook

other regularization methods: e.g., regularization by discretization
other parameter choice strategies: e.g., balancing principle

other noise models: e.g., Poisson noise

other PDEs: e.g., time adaptivity

other error estimators: e.g., functional estimators ~~ residuals

L4 4L Ll
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Thank you for your attention!



