Methods for inverse problems:
VI. Using higher derivatives: Halley's method
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nonlinear inverse problem
F(x) =y
such as parameter identification in PDE
A(x,u)=0 y=Cu
e.g., identification of space dependent diffusion a in elliptic PDE

{—V(aVu) =finQ
y=uory=ul,ory=ulpn

u =g on 0
e.g., identification of space dependent potential ¢ in elliptic PDE

—Au+cu=FfinQ
y=uory=ul,ory=uls

u =g on 0f2
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Newton's method relies on 1st order Taylor expansion:
y = F(x) ~ F(xx) + F'(xx)(x — xk)
X1 = xk + F'(x) "y — F(xx))

F smooth ~~ 2nd order Taylor expansion:

y = F(x) ~ F(xx) + F'(x)(x — x) + %F”(Xk)(x — Xk)2
X1 =7 quadratic operator equation

alternative: intermediate step xx. and Taylor expansion of F’:
Xkt = xk + F'(x1)"1(y — F(x«)) Newton step
F'(xke) &~ F'(xk) + F" (xk) (X — xk) =: Sk
Xk+1 = Xk + S H(y — F(x)) enhanced Newton step
uses F”, converges cubically in well-posed case ~» 2nd order method

Halley's method, method of tangent hyperbolas
[Brown'77], [Doring'70], [Ren&Argyros'12] well-posed
[Hettlich&Rundell'00] ill-posed problems



Why not just do a second Newton step?



two Newton steps:

Xy = xk + F'(x1) " (y — F(xx)) 1st Newton step
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two Newton steps:

Xk = Xk + F'(xx) "1y — F(xx)) 1st Newton step
X1 = xks + F'(xe) Yy — F(xi+)) 2nd Newton step

intermediate step xx. and Taylor expansion of F’:

Xkt = Xk + F'(x) "1y — F(xx)) 1st Newton step
F'(xkt) = F'(3) + F" (i) Ok — Xk, +) =1 Sk
Xk+1 = Xk + S H(y — F(x«)) enhanced Newton step

After 1st Newton step F”(xk)(xk+ — Xk, ) is cheaper to evaulate
than F'(xks), F(xks)!



e.g., parameter identification in PDEs:

F(xk) = CS(xx) with S(xx) = u satisfying A(xx,u) =0

derivatives:
F'(xx)h = Cii(h) with i(h) satisfying A, (xx, u)i = fi(h)
F"(x)(Xks — Xk, h) = Cii(h)  with @(h) satisfying A, (xx, u)i = fa(h)

with
fi(h) = — Ax(xk, u)h
fa(h) = = A (Xic; 1) (Xt = Xic, h) = A, 1) (h, (Xt — Xic))
= Aux (% u) (G0t = xi), h) = Aua(x, 0) (G0t — xk), )

Same PDE with same parameter for F'(xx) and F”(xk)(xk+ — xk)
with different right hand sides



e.g., identification of diffusion in elliptic PDE

—V(aVu) = f inQ
u = g ondf

from measurements y = Cu of vu.
F'(a)h = CS’(a)h~, F"(a)(h,I) = CS"(a)(h,?)
with & = S&'(a)h, o = 8" (a)(h, () defined by

—V(aVi) = V(hVS(a)) inQ
i = 0 on 00

—V(aVi) = V(hVS'(a)l) +V(VS'(a)h) inQ
i =0 on 0Q

a), F'(a), F"(a) contain the same stiffness matrix.
F’(a4) would require new stiffness matrix.

Systems for F
Evaluation of F

—



e.g., identification of potential in elliptic PDE

—Au+cu = f inQ
u = g ondf

from measurements y = Cu of u.
F'(c)h = CS’(c)hN, F"(c)(h,£) = CS"(c)(h,¥)
with & = S8'(c)h, o = 8"(c)(h,?)

—Aid+ci = hS(c) inQ
i =0 on 092

= hS'(c)l+¢S'(c)h inQ
= 0 on 0f2

Systems for F(c), F'(c), F”(c) contain the same stiffness matrix.
Evaluation of F’(c;) would require new stiffness matrix.

cun o



Halley's method for ill-posed problems



Halley's method for ill-posed problems in Hilbert spaces

Te=F(x) neo=F(x)—y°

Xy = x) — (T T+ Bil) "M Tin + B(x) — x0)}

1
Sk =T+ 5 F (D) 0xky — x4 )

Xer1 = %k — (SiSk + ) H{Sin + aw (>} — x0)}
with a priori fixed sequences of regularization parameters (k) ken,
(Bk)ken satisfying

G\, BNO, 1< M <q 1< P o
k41 Br+1
and a priori stopping rule k. = k,(d) depending on noise level
5>y’ —yll-

[Hettlich&Rundell'00]: Levenberg-Marquardt type
a posteriori regularization parameter choice,
Hilbert space setting, convergence without rates, ., .., .,



Halley's method for ill-posed problems in Banach spaces

Tk =F () n=F(p)—y°

o1 B
Xp, € argm'”X;H Ti(x —xg) + rell" + ?HX - xolP

1
Sk =Ty + EFH(XE)(XI(EJF - Xl(ja )

o1 (e
Xp1 € argmin, | S (x — x0) + riell” + ?HX - x[P

with p,r € [1,00)
a priori fixed sequences of regularization parameters (v )ken,
(B )ken satisfying

Qg Bk

ak\l07 /Bk\loa 1< qu 1§_§qa (1)
Qk+1 Br+1

and a priori stopping rule k. = k,(J) depending on noise level

5>y’ —yll-



convergence results



Theorem

Assume that a source condition
xI —xo = (T*T)*v

with p € [3,1], and ||v| sufficiently small holds.

Let F” be bounded and Lipschitz continuous in a neighborhood of
xT and let xy be suffiently close to xT.

Assume that Sk = i is chosen so that (1) holds and let k. be
chosen as the first index such that

ot
O/k*+2 < T
with T sufficiently large.
Th 2
e Ix¢. — x| = 0(52#11) asd —0.

Ifo=0

¢ — xT|| = O(af) as k — oo




Convergence with weak or no regularity of x' — xq
source condition

xt—xo = F(T*T)v (2)
with £ : (0,00) — (0, 00) continuous and strictly increasing with
A f'(a)a
f(A) >0, ——=<CasA—0, pur:= sup < 00
f(N) ac(0,a0] f()
(3)
e.g., f(\) =log(1/A)P, f(A\) =M, n<1
or no source condition N
x' — xo € N(T) (4)
a priori stopping rule: k, is chosen as the first index such that
,/ak*f(ak*) < 76
with 7 sufficiently large and — if we only have (know) (4) — just
k, — 00 V%—)Oasé—m (5)



Structural condition on F: range invariance condition

F'(%) = F'(x)R(x, X) with

R(x,X) € L(X,X), [|[R(X,x) = 1| < My||X — x|| Vx,X € Bp(XT)
F"(x)(h, 1) = F'(x)R5(h, ) with

Ry(h,-), RX(-, 1) € L(X,X), |R5|| < Ma V¥x € B,(x"), h,leX
(6)

e.g., diffusion identification from (complete, partial, boundary)

measurements of u in 1-d

e.g., potential identification from (complete, partial, boundary)

measurements of u in 3-d



Theorem

Let F satisfy the range invariance condition (6) and let xo be
suffiently close to x' and satisfy (4). Assume that B = ay, is
chosen so that (1) holds and let k. be chosen according to (5).
Then the iterates x,f* converge to x' as § — 0.

If a source condition (2) with (3) is satisfied, then the rate
I, = xtll = 0 (F(O())) = O | —miesc | 256 0.
: ©1(9)

is obtained, where ©(\) := f(A\)VA. If § = 0 we have convergence

[x¢ — xT|| = O(f(w)) as k — 0.




numerical results



Test problem: Potential identification
Identify c in

—Au+®(c)u = f inQ
u = g ondQ

from measurements y = Cu of u,
where ®(\) = SA?I[_¢ 4 + 3(2|A| — €)lp\[_z g, SO that
cel?Q) = d(c)>0and d(c) € L%(Q)

Q=(0,1)?
1
c(x1, %) =1+ 55(1 — cos(4mxy))(1 — cos(47rx2))]I(0’%)2

with ¢ € {5,7,10},
starting value ¢ = 1.
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Comparison of IRGNM (dashed) and Halley (solid)
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Comparison of IRGNM (dashed) and Halley (solid)
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Reconstructions (top) from data (bottom) with Gaussian
noise of decreasing level

0=1% 0=0.5% 0 =0.25% 0 =0.125% 0=0%

23




Reconstructions with Y = L2 (top) and Y = L} (middle)
from data (bottom) with impulsive noise of decreasing
amount from left to right




Conclusions and Outlook

@ higher order methods seem to pay off in parameter
identification for PDEs
@ existing analysis:
o convergence (rates) in high and low regularity (source
condition) case
e convergence rate under benchmark source condition in Banach
spaces
— several open questions in analysis (rates with a posteriori
regularization parameter choice, general rates in Banach
spaces,. . . )
— n stage versions of Halley’'s method

TP=0 n=F(Kx)—y°
forj=1,...ndo

J
j j— 1 m 5 m—
Ti= T+ 2 o PO e = x0™ )
m=1

n

st =X = (T T+ )™ T ne+ ol — )}

«O» 4 P AEr =
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