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nonlinear inverse problem

F (x) = y

such as parameter identification in PDE

A(x , u) = 0 y = Cu

e.g., identification of space dependent diffusion a in elliptic PDE{
−∇(a∇u) = f in Ω

u = g on ∂Ω
y = u or y = u|ω or y = u|∂Ω

e.g., identification of space dependent potential c in elliptic PDE{
−∆u + cu = f in Ω

u = g on ∂Ω
y = u or y = u|ω or y = u|∂Ω
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Newton’s method relies on 1st order Taylor expansion:

y = F (x) ≈ F (xk) + F ′(xk)(x − xk)

xk+1 = xk + F ′(xk)−1(y − F (xk))

F smooth  2nd order Taylor expansion:

y = F (x) ≈ F (xk) + F ′(xk)(x − xk) + 1
2F
′′(xk)(x − xk)2

xk+1 = ? quadratic operator equation

alternative: intermediate step xk+ and Taylor expansion of F ′:

xk+ = xk + F ′(xk)−1(y − F (xk)) Newton step

F ′(xk+) ≈ F ′(xk) + F ′′(xk)(xk+ − xk) =: Sk

xk+1 = xk + S−1
k (y − F (xk)) enhanced Newton step

uses F ′′, converges cubically in well-posed case  2nd order method

Halley’s method, method of tangent hyperbolas
[Brown’77], [Döring’70], [Ren&Argyros’12] well-posed
[Hettlich&Rundell’00] ill-posed problems
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Why not just do a second Newton step?
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two Newton steps:

xk+ = xk + F ′(xk)−1(y − F (xk)) 1st Newton step

xk+1 = xk+ + F ′(xk+)−1(y − F (xk+)) 2nd Newton step

intermediate step xk+ and Taylor expansion of F ′:

xk+ = xk + F ′(xk)−1(y − F (xk)) 1st Newton step

F ′(xk+) ≈ F ′(xk) + F ′′(xk)(xk+ − xk , ·) =: Sk

xk+1 = xk + S−1
k (y − F (xk)) enhanced Newton step
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After 1st Newton step F ′′(xk)(xk+ − xk , ·) is cheaper to evaulate
than F ′(xk+), F (xk+)!
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e.g., parameter identification in PDEs:

F (xk) = CS(xk) with S(xk) = u satisfying A(xk , u) = 0

derivatives:

F ′(xk)h = Cũ(h) with ũ(h) satisfying Au(xk , u)ũ = f1(h)

F ′′(xk)(xk+ − xk , h) = C ˜̃u(h) with ˜̃u(h) satisfying Au(xk , u)˜̃u = f2(h)

with

f1(h) =− Ax(xk , u)h

f2(h) =− Axx(xk , u)(xk+ − xk , h)− Axu(x , u)(h, ũ(xk+ − xk))

− Aux(x , u)(ũ(xk+ − xk), h)− Auu(x , u)(ũ(xk+ − xk), ũ)

Same PDE with same parameter for F ′(xk) and F ′′(xk)(xk+ − xk)
with different right hand sides
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e.g., identification of diffusion in elliptic PDE

−∇(a∇u) = f in Ω
u = g on ∂Ω

from measurements y = Cu of u.

F ′(a)h = CS ′(a)h, F ′′(a)(h, l) = CS ′′(a)(h, `)
with ũ = S ′(a)h, ˜̃u = S ′′(a)(h, `) defined by

−∇(a∇ũ) = ∇(h∇S(a)) in Ω
ũ = 0 on ∂Ω

−∇(a∇˜̃u) = ∇(h∇S ′(a)`) +∇(`∇S ′(a)h) in Ω
˜̃u = 0 on ∂Ω

Systems for F (a), F ′(a), F ′′(a) contain the same stiffness matrix.
Evaluation of F ′(a+) would require new stiffness matrix.
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e.g., identification of potential in elliptic PDE

−∆u + cu = f in Ω
u = g on ∂Ω

from measurements y = Cu of u.

F ′(c)h = CS ′(c)h, F ′′(c)(h, `) = CS ′′(c)(h, `)
with ũ = S ′(c)h, ˜̃u = S ′′(c)(h, `)

−∆ũ + cũ = hS(c) in Ω
ũ = 0 on ∂Ω

−∆˜̃u + c ˜̃u = hS ′(c)`+ `S ′(c)h in Ω
˜̃u = 0 on ∂Ω

Systems for F (c), F ′(c), F ′′(c) contain the same stiffness matrix.
Evaluation of F ′(c+) would require new stiffness matrix.
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Halley’s method for ill-posed problems
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Halley’s method for ill-posed problems in Hilbert spaces

Tk = F ′(xδk ); rk = F (xδk )− y δ

xδk+ = xδk − (T ∗kTk + βk I )
−1{T ∗k rk + βk(xδk − x0)}

Sk = Tk +
1

2
F ′′(xδk )(xδk+ − xδk , ·)

xδk+1 = xk − (S∗kSk + αk I )
−1{S∗k rk + αk(xδk − x0)}

with a priori fixed sequences of regularization parameters (αk)k∈N,
(βk)k∈N satisfying

αk ↘ 0 , βk ↘ 0 , 1 ≤ αk

αk+1
≤ q , 1 ≤ βk

βk+1
≤ q ,

and a priori stopping rule k∗ = k∗(δ) depending on noise level

δ ≥ ‖y δ − y‖ .

[Hettlich&Rundell’00]: Levenberg-Marquardt type
a posteriori regularization parameter choice,
Hilbert space setting, convergence without rates
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Halley’s method for ill-posed problems in Banach spaces

Tk = F ′(xδk ); rk = F (xδk )− y δ

xδk+ ∈ argminx
1

r
‖Tk(x − xδk ) + rk‖r +

βk
p
‖x − x0‖p

Sk = Tk +
1

2
F ′′(xδk )(xδk+ − xδk , ·)

xδk+1 ∈ argminx
1

r
‖Sk(x − xδk ) + rk‖r +

αk

p
‖x − xδk‖p

with p, r ∈ [1,∞)
a priori fixed sequences of regularization parameters (αk)k∈N,
(βk)k∈N satisfying

αk ↘ 0 , βk ↘ 0 , 1 ≤ αk

αk+1
≤ q , 1 ≤ βk

βk+1
≤ q , (1)

and a priori stopping rule k∗ = k∗(δ) depending on noise level

δ ≥ ‖y δ − y‖ .
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convergence results
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Theorem

Assume that a source condition

x† − x0 = (T ∗T )µv

with µ ∈ [ 1
2 , 1], and ‖v‖ sufficiently small holds.

Let F ′′ be bounded and Lipschitz continuous in a neighborhood of
x† and let x0 be suffiently close to x†.
Assume that βk = αk is chosen so that (1) holds and let k∗ be
chosen as the first index such that

α
µ+ 1

2
k∗
≤ τδ

with τ sufficiently large.
Then

‖xδk∗ − x†‖ = O(δ
2µ

2µ+1 ) as δ → 0 .

If δ = 0
‖xδk − x†‖ = O(αµk ) as k →∞ .
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Convergence with weak or no regularity of x† − x0

source condition
x† − x0 = f (T ∗T )v (2)

with f : (0,∞)→ (0,∞) continuous and strictly increasing with

f (λ)→ 0 ,
λ

f (λ)
≤ C as λ→ 0 , µf := sup

α∈(0,α0]

f ′(α)α

f (α)
<∞

(3)
e.g., f (λ) = log(1/λ)p, f (λ) = λµ, µ ≤ 1
or no source condition

x† − x0 ∈ N (T )⊥ (4)

a priori stopping rule: k∗ is chosen as the first index such that

√
αk∗f (αk∗) ≤ τδ

with τ sufficiently large and – if we only have (know) (4) – just

k∗ →∞ δ√
αk∗
→ 0 as δ → 0 (5)
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Structural condition on F : range invariance condition

F ′(x̃) = F ′(x)R(x , x̃) with

R(x , x̃) ∈ L(X ,X ) , ‖R(x̃ , x)− I‖ ≤ M1‖x̃ − x‖ ∀x , x̃ ∈ Bρ(x†)

F ′′(x)(h, l) = F ′(x)Rx
2 (h, l) with

Rx
2 (h, ·) , Rx

2 (·, l) ∈ L(X ,X ) , ‖Rx
2 ‖ ≤ M2 ∀x ∈ Bρ(x†) , h, l ∈ X

(6)
e.g., diffusion identification from (complete, partial, boundary)
measurements of u in 1-d
e.g., potential identification from (complete, partial, boundary)
measurements of u in 3-d
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Theorem

Let F satisfy the range invariance condition (6) and let x0 be
suffiently close to x† and satisfy (4). Assume that βk = αk , is
chosen so that (1) holds and let k∗ be chosen according to (5).
Then the iterates xδk∗ converge to x† as δ → 0.
If a source condition (2) with (3) is satisfied, then the rate

‖xδk∗ − x†‖ = O
(
f (Θ−1(δ))

)
= O

(
δ√

Θ−1(δ)

)
as δ → 0 .

is obtained, where Θ(λ) := f (λ)
√
λ. If δ = 0 we have convergence

‖xδk − x†‖ = O(f (αk)) as k →∞ .
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numerical results
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Test problem: Potential identification

Identify c in

−∆u + Φ(c)u = f in Ω
u = g on ∂Ω

from measurements y = Cu of u,

where Φ(λ) = 1
2λ

21I[−c̄,c̄] + 1
2 c̄(2|λ| − c̄)1IR\[−c̄,c̄], so that

c ∈ L2(Ω) ⇒ Φ(c) ≥ 0 and Φ(c) ∈ L2(Ω)

Ω = (0, 1)2

c(x1, x2) = 1 +
1

2
ξ(1− cos(4πx1))(1− cos(4πx2))1I(0, 1

2
)2

with ξ ∈ {5, 7, 10},
starting value c0 ≡ 1.
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Comparison of IRGNM (dashed) and Halley (solid)

relative error (left) and residual (right) for ξ = 5
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Comparison of IRGNM (dashed) and Halley (solid)

relative error (left) and residual (right) for ξ = 7
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Comparison of IRGNM (dashed) and Halley (solid)

relative error (left) and residual (right) for ξ = 10
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Reconstructions (top) from data (bottom) with Gaussian
noise of decreasing level

δ = 1% δ = 0.5% δ = 0.25% δ = 0.125% δ = 0%

ξ = 10
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Reconstructions with Y = L2 (top) and Y = L1.1 (middle)
from data (bottom) with impulsive noise of decreasing
amount from left to right

ξ = 5
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Conclusions and Outlook

higher order methods seem to pay off in parameter
identification for PDEs
existing analysis:

convergence (rates) in high and low regularity (source
condition) case
convergence rate under benchmark source condition in Banach
spaces

→ several open questions in analysis (rates with a posteriori
regularization parameter choice, general rates in Banach
spaces,. . . )

→ n stage versions of Halley’s method

T 0
k = 0 rk = F (xδk )− yδ

for j = 1, . . . n do

T j
k = T j−1

k +

j∑
m=1

1

m!
F (m)(xδk )((xδ

k+ m−1
n
− xδk )m−1, ·)

xδ
k+ j

n

= xδk − (T j
k

∗
T j
k + αj

k I )
−1
{
T j
k

∗
rk + αj

k(xδk − x0)
}
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