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overview

@ Newton's method

© Levenberg-Marquardt
@ Monotonicity of the errors
o Convergence
o Convergence rates

© Iteratively regularized Gauss-Newton method (IRGNM)
@ Convergence and convergence rates



Newton's method

F'(x0)(xer = x0) = v° = F(xQ). (1)

formulation as least squares problem
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~> ill-posedness ~~ apply Tikhonov regularization:
Levenberg-Marquardt method:

min ly® = FOx) = F/)0x = xII? + allx = xl1%, - (2)

Iteratively regularized Gauss-Newton method (IRGNM)

e ly® = F(R) = F'0) (x = x0)1% + awllx = x> (3)
choice of sequence «y and convergence anaylsis different for both

methods.



Levenberg-Marquardt

X1 =%+ (FOR)F Q) +ar) T FOR) (v = FO)), (4)
Choice of ay:
Iy’ = FO) = F/() (1 (en) = <)l = qlly’ = FO)I - (5)

for some g € (0,1) ~ inexact Newton method.
(5) has a unique solution «y provided that for some v > 1

ly® = Fx) = FO)(xT =%l < 21y° = FeR)l (6)
which can be guaranteed by a condition on F: Vx,X € Bo,(x0) C D(F)
IF(x) = F(%) = F/()(x = K|l < cllx = K[HIF(x) = FRI (7)
Choice of stopping index k,: discrepancy principle:
Iy’ = FOEI <76 < |y’ =FO)Il,  0<k<k, (8)

[Hanke 1996]
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Levenberg-Marquardt: Monotonicity of the errors

Theorem

Let 0 < g < 1 <~ and assume that F(x) = y has a solution and

that (6) holds so that o can be defined via (5). Then, the
following estimates hold:
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1@ = xT1% = Ilx@y = xT1% > [Ix@4s — X211, (9)

g = X112 — [0 = xTI1
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Levenberg-Marquardt: Monotonicity proof
Ky := F'(x})
Xpp1 — X0 = Ki (KK +and) 7 y® = F(xP))
(KK + aid )71y’ = F(R)) = v° = F(0) = Ki(xg1 = x0) »
Ixesr = xTI1Z =[xk = x|
2(xg41 — Xk X —xT) + xi iy — x|
= (KK + )" = F()),
2Ki(xg = x1) + (KicK + anl) UK (v = F(R)))
= =204 [[(KKi + ) (Y’ = FO))I
— (K Kic + ) K (v = FO))II?
+ 20 (KeKie + ax)7HY’ = FOR)), v = FOxR) — KixT = xR))

5 5 1.8 5 5 5
< =Xk — xp||? — 204k1 lly® — F(xg) — Ki(Xer1 — xi)l -

(Iy® = FOed) = Kicbxan = XD = Iy* = Fxd) = Kilxt = DI

Iy* — F(f) = Kt =)l < vy = FOf) = il — )] -



Levenberg-Marquardt method: Convergence

Theorem

Let 0 < g < 1 and assume that F(x) = y is solvable in B,(xo),
that F' is uniformly bounded in B,(x"), and that the Taylor
remainder of F satisfies (7) for some ¢ > 0. Then the
Levenberg-Marquardt method with exact data y° =y,

X0 — xT|| < g/c and . determined from (5), converges to a
solution of F(x) =y as k — co.
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Theorem

Let the assumptions of Theorem 2 hold. Additionally let

ke = k.(6,y°) be chosen according to the stopping rule (8) with
7> 1/q and let ||xo — x'|| be sufficiently small. Then for some
solution x, of F(x) =y

ke(3,y%) = O(L +|Ind|) and ||x{ —x.|| =+ 0asd—0
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Levenberg-Marquardt method: Convergence rates

(Theorem .

Let a solution x' of F(x) = y exist and let

F'(x) = ReF'(x') and ||[I-Ry|| < cr|x—xT||, x € B,(x0) C D(F),
(12)

XM —xo = (FO)FO)Pv, veNF()):  (13)

hold with some 0 < p < 1/2 and ||v|| sufficiently small. Moreover,
let o and k. be chosen according to (5) and (8), respectively with

T>2and1l>q>1/7. Then the Levenberg-Marquardt iterates
defined by (4) remain in B,(xo) and converge with the rate

I, — Tl = O(s7).

[Hanke 2009]



Remarks

@ rates with a priori oy, ki:

akx = apq”, for some a9 >0, qge€(0,1),
(ke 1)~ (At 2<6<c(k+1) (o) o F P 0<k<k,

ke = O(1+[Ind]), [x0 —x| = o((5(1+| |n5|)(1+s))2;%) .
[BK&Neubauer& Scherzer 2008]

@ generalization to other regularization methods (e.g., CG) in
place of Tikhonov [Hanke 1997], [Rieder 1999, 2001, 2005]



lteratively regularized Gauss-Newton method (IRGNM)

Xep1 = xpH(F O) F O+ aud ) THF ()" (v = F () +a(x0—x4))

(14)
a-priori choice of ay:
ap >0, 1<%k < lim ay =0,  (15)
Qg1 k—00
for some r > 1.
a-priori or a posteriori choice of ki
ly’ = FORIN < 76 < lly” = FORIl,  0<k <k, (16)

[Bakushinski 1992], see also the book [Bakushinski&Kokurin 2004];
[BK&Neubauer&Scherzer 1997], see also the book [BK& Neubauer&Scherzer 2008



IRGNM: Convergence and convergence rates: idea of proof |

key idea:
[x0, 1 — xT|| &~ o wi (1) with w(s) as in the following lemma.

Lemma

Let K € L(X,)Y), s €[0,1], and let {a} be a sequence satisfying
ay >0 and a, — 0 as k — oo. Then it holds that

wie(s) == o I(K* K+oud ) H(K*K)*v|| < s°(1—5)""%|[v]| < ||v]]
(17)
and that

lim wg(s) = 0, Oss<l,
k—00 « ”V||7 s=1,

for any v € N(A)*.




IRGNM: Convergence and convergence rates: idea of proof |

Indeed, in the linear and noiseless case (F(x) = Kx, 0 = 0) we get
from (14) using Kx' = y and (13)

Xk+1 —x!
= xx — xT + (K*K 4+ o) "HK K (xT = xi) + ar(x0 — xT + xT — xi))
= —ap(K*K + o) HK*K)Hv

To take into account noisy data and nonlinearity, we rewrite (14) as
Xpor —x1 = —ap(K*K + i) HK*K )y
— (KK, —i—akl)’l(K*K— K:Kk) (18)

(K*K + a)"HK*K)v
+ (K Ky + o) TR (Y = FO) + Ki(xi = xT)) -

where we set Ky := F'(x?), K := F'(x1).



IRGNM: Convergence and convergence rates
Let By,(x0) € D(F) for some p > 0, (15),
FI(%) = R(Xx)F(x)+ Q(%,x)
I =R& X < cry QE X < collF'(xT)(x =)
and
XM —xo = (F(XF(xXD)rv,  veN(FI(xN)*

for some 0 < 1 < 1/2, and let k. = k.(d) be chosen according to
the discrepancy principle (16) with 7 > 1. Moreover, we assume

that || x v||, 1/7, p, and cg are sufficiently small. Then
we obtain the rates

S i o] (5% 9
[Ixe, ="l =

0
O(\/g)v =

For convergence (without rates) the tangential cone condition suffices.



Remarks

@ The same convergence rates result can be shown with the a
priori stopping rule

N

ke o0 and 7 >day? =0 as § = 0. (19)

for =0 and

1 1
nozf:rz §5<770/,:+2, 0<k<k,, (20)
even for 0 < p < 1.

@ The a priori result remains valid under the alternative weak
nonlinearity condition

F'(%) = F'(x)R(%, x) and ||l — R(%,x)| < crl||X — x|
(21)
for x, X € Boy(x0) and some positive constant cg.



Further remarks

@ logarithmic rates: [Hohage 1997]

o generalization to regularization methods R, (F'(x)) ~ F'(x)f
in place of Tikhonov [BK 1997]

Xes1 = X0+ Ray (F )’ = F(x0) — F'(x0) (0 —x2)) - (22)

@ continuous version [BK&Neubauer&Ramm 2002]

@ projected version for constrained problems [BK&Neubauer 2006]

@ analysis with stochastic noise [Bauer&Hohage&Munk 2009]

@ analysis in Banach space [Bakushinski&Konkurin 2004], [BK&
Schépfer&Schuster 2009], [BK& Hofmann 2010]

@ preconditioning [Egger 2007], [Langer 2007]

@ quasi Newton methods [BK 1998]



	Newton's method
	Levenberg-Marquardt
	Monotonicity of the errors
	Convergence
	Convergence rates

	Iteratively regularized Gauss-Newton method (IRGNM)
	Convergence and convergence rates


