Methods for Inverse Problems: IV. Newton type methods

Barbara Kaltenbacher, University of Klagenfurt, Austria

overview

- Newton's method
- 2 Levenberg-Marquardt
 - Monotonicity of the errors
 - Convergence
 - Convergence rates
- 3 Iteratively regularized Gauss-Newton method (IRGNM)
 - Convergence and convergence rates

Newton's method

$$F'(x_k^{\delta})(x_{k+1}^{\delta} - x_k^{\delta}) = y^{\delta} - F(x_k^{\delta}). \tag{1}$$

formulation as least squares problem

$$\min_{x \in \mathcal{D}(F)} \|y^{\delta} - F(x_k^{\delta}) - F'(x_k^{\delta})(x - x_k^{\delta})\|^2$$

→ ill-posedness → apply Tikhonov regularization: Levenberg-Marquardt method:

$$\min_{x \in \mathcal{D}(F)} \| y^{\delta} - F(x_k^{\delta}) - F'(x_k^{\delta})(x - x_k^{\delta}) \|^2 + \alpha_k \| x - x_k^{\delta} \|^2, \quad (2)$$

Iteratively regularized Gauss-Newton method (IRGNM)

$$\min_{x \in \mathcal{D}(F)} \| y^{\delta} - F(x_k^{\delta}) - F'(x_k^{\delta})(x - x_k^{\delta}) \|^2 + \alpha_k \| x - x_0 \|^2$$
 (3)

choice of sequence α_k and convergence analysis different for both methods.

Levenberg-Marquardt

$$x_{k+1}^{\delta} = x_k^{\delta} + (F'(x_k^{\delta})^* F'(x_k^{\delta}) + \alpha_k I)^{-1} F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta})), \quad (4)$$

Choice of α_k :

$$\|y^{\delta} - F(x_k^{\delta}) - F'(x_k^{\delta})(x_{k+1}^{\delta}(\alpha_k) - x_k^{\delta})\| = q\|y^{\delta} - F(x_k^{\delta})\|$$
 (5)

for some $q \in (0,1) \rightsquigarrow$ inexact Newton method.

(5) has a unique solution $lpha_{m{k}}$ provided that for some $\gamma>1$

$$\|y^{\delta} - F(x_k^{\delta}) - F'(x_k^{\delta})(x^{\dagger} - x_k^{\delta})\| \le \frac{q}{\gamma} \|y^{\delta} - F(x_k^{\delta})\|$$
 (6)

which can be guaranteed by a condition on $F: \forall x, \tilde{x} \in \mathcal{B}_{2\rho}(x_0) \subseteq \mathcal{D}(F)$

$$||F(x) - F(\tilde{x}) - F'(x)(x - \tilde{x})|| \le c ||x - \tilde{x}|| ||F(x) - F(\tilde{x})||, (7)$$

Choice of stopping index k_* : discrepancy principle:

$$\|y^{\delta} - F(x_{k_*}^{\delta})\| \le \tau \delta < \|y^{\delta} - F(x_k^{\delta})\|, \qquad 0 \le k < k_*,$$
 (8)

[Hanke 1996]

Levenberg-Marquardt: Monotonicity of the errors

Theorem

Let $0 < q < 1 < \gamma$ and assume that F(x) = y has a solution and that (6) holds so that α_k can be defined via (5). Then, the following estimates hold:

$$\|x_k^{\delta} - x^{\dagger}\|^2 - \|x_{k+1}^{\delta} - x^{\dagger}\|^2 \ge \|x_{k+1}^{\delta} - x_k^{\delta}\|^2,$$
 (9)

$$||x_{k}^{\delta} - x^{\dagger}||^{2} - ||x_{k+1}^{\delta} - x^{\dagger}||^{2}$$

$$\geq \frac{2(\gamma - 1)}{\gamma \alpha_{k}} ||y^{\delta} - F(x_{k}^{\delta}) - F'(x_{k}^{\delta})(x_{k+1}^{\delta} - x_{k}^{\delta})||^{2} (10)$$

$$\geq \frac{2(\gamma - 1)(1 - q)q}{\gamma ||F'(x_{k}^{\delta})||^{2}} ||y^{\delta} - F(x_{k}^{\delta})||^{2}.$$
(11)

Levenberg-Marquardt: Monotonicity proof

 $x_{k+1}^{\delta} - x_{k}^{\delta} = K_{k}^{*} (K_{k} K_{k}^{*} + \alpha_{k} I)^{-1} (y^{\delta} - F(x_{k}^{\delta}))$

 $K_k := F'(x_{\nu}^{\delta})$

$$\alpha_{k}(K_{k}K_{k}^{*} + \alpha_{k}I)^{-1}(y^{\delta} - F(x_{k}^{\delta})) = y^{\delta} - F(x_{k}^{\delta}) - K_{k}(x_{k+1}^{\delta} - x_{k}^{\delta}),$$

$$\|x_{k+1}^{\delta} - x^{\dagger}\|^{2} - \|x_{k}^{\delta} - x^{\dagger}\|^{2}$$

$$= 2\langle x_{k+1}^{\delta} - x_{k}^{\delta}, x_{k}^{\delta} - x^{\dagger} \rangle + \|x_{k+1}^{\delta} - x_{k}^{\delta}\|^{2}$$

$$= \langle (K_{k}K_{k}^{*} + \alpha_{k}I)^{-1}(y^{\delta} - F(x_{k}^{\delta})),$$

$$2K_{k}(x_{k}^{\delta} - x^{\dagger}) + (K_{k}K_{k}^{*} + \alpha_{k}I)^{-1}K_{k}K_{k}^{*}(y^{\delta} - F(x_{k}^{\delta}))\rangle$$

$$= -2\alpha_{k}\|(K_{k}K_{k}^{*} + \alpha_{k}I)^{-1}(y^{\delta} - F(x_{k}^{\delta}))\|^{2}$$

$$- \|(K_{k}^{*}K_{k} + \alpha_{k}I)^{-1}K_{k}^{*}(y^{\delta} - F(x_{k}^{\delta}))\|^{2}$$

$$+ 2\langle (K_{k}K_{k}^{*} + \alpha_{k}I)^{-1}(y^{\delta} - F(x_{k}^{\delta})), y^{\delta} - F(x_{k}^{\delta}) - K_{k}(x^{\dagger} - x_{k}^{\delta})\rangle$$

$$\leq - \|x_{k+1}^{\delta} - x_{k}^{\delta}\|^{2} - 2\alpha_{k}^{-1}\|y^{\delta} - F(x_{k}^{\delta}) - K_{k}(x_{k+1}^{\delta} - x_{k}^{\delta})\| \cdot$$

$$\left(\|y^{\delta} - F(x_{k}^{\delta}) - K_{k}(x_{k+1}^{\delta} - x_{k}^{\delta})\| - \|y^{\delta} - F(x_{k}^{\delta}) - K_{k}(x^{\dagger} - x_{k}^{\delta})\|\right).$$

$$\|y^{\delta} - F(x_{k}^{\delta}) - K_{k}(x^{\dagger} - x_{k}^{\delta})\| \leq \gamma^{-1}\|y^{\delta} - F(x_{k}^{\delta}) - K_{k}(x_{k+1}^{\delta} - x_{k}^{\delta})\|.$$

Levenberg-Marquardt method: Convergence

Theorem

Let 0 < q < 1 and assume that F(x) = y is solvable in $\mathcal{B}_{\rho}(x_0)$, that F' is uniformly bounded in $\mathcal{B}_{\rho}(x^{\dagger})$, and that the Taylor remainder of F satisfies (7) for some c > 0. Then the Levenberg-Marquardt method with exact data $y^{\delta} = y$, $\|x_0 - x^{\dagger}\| < q/c$ and α_k determined from (5), converges to a solution of F(x) = y as $k \to \infty$.

$\mathsf{Theorem}$

Let the assumptions of Theorem 2 hold. Additionally let $k_* = k_*(\delta, y^\delta)$ be chosen according to the stopping rule (8) with $\tau > 1/q$ and let $\|x_0 - x^\dagger\|$ be sufficiently small. Then for some solution x_* of F(x) = y

$$k_*(\delta, y^\delta) = O(1 + |\ln \delta|)$$
 and $||x_{k_*}^\delta - x_*|| \to 0$ as $\delta \to 0$

Levenberg-Marquardt method: Convergence rates

$\mathsf{Theorem}$

Let a solution x^{\dagger} of F(x) = y exist and let

$$F'(x) = R_x F'(x^{\dagger}) \text{ and } ||I - R_x|| \le c_R ||x - x^{\dagger}||, \ x \in \mathcal{B}_{\rho}(x_0) \subseteq \mathcal{D}(F),$$

$$\tag{12}$$

$$x^{\dagger} - x_0 = (F'(x^{\dagger})^* F'(x^{\dagger}))^{\mu} v, \quad v \in \mathcal{N}(F'(x^{\dagger}))^{\perp}$$
 (13)

hold with some $0 < \mu \le 1/2$ and $\|v\|$ sufficiently small. Moreover, let α_k and k_* be chosen according to (5) and (8), respectively with $\tau > 2$ and $1 > q > 1/\tau$. Then the Levenberg-Marquardt iterates defined by (4) remain in $\mathcal{B}_{\rho}(x_0)$ and converge with the rate

$$\|x_{k_*}^{\delta}-x^{\dagger}\|=O\left(\delta^{\frac{2\mu}{2\mu+1}}\right).$$

[Hanke 2009]

Remarks

• rates with a priori α_k , k_* :

$$\begin{split} \alpha_k &= \alpha_0 q^k \,, \qquad \text{for some} \quad \alpha_0 > 0 \,, \quad q \in (0,1) \,, \\ c(k_*+1)^{-(1+\varepsilon)} \alpha_{k_*}^{\mu+\frac{1}{2}} &\leq \delta < c(k+1)^{-(1+\varepsilon)} \alpha_k^{\mu+\frac{1}{2}} \,, \qquad 0 \leq k < k_* \,, \\ k_* &= \mathit{O}\big(1+|\ln \delta|\big) \,, \quad \|x_{k_*}^\delta - x^\dagger\| = \mathit{O}\Big(\big(\delta \, \big(1+|\ln \delta|\big)^{(1+\varepsilon)}\big)^{\frac{2\mu}{2\mu+1}} \Big) \,. \end{split}$$

[BK&Neubauer&Scherzer 2008]

 generalization to other regularization methods (e.g., CG) in place of Tikhonov [Hanke 1997], [Rieder 1999, 2001, 2005]

Iteratively regularized Gauss-Newton method (IRGNM)

$$x_{k+1}^{\delta} = x_k^{\delta} + (F'(x_k^{\delta})^* F'(x_k^{\delta}) + \alpha_k I)^{-1} (F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta})) + \alpha_k (x_0 - x_k^{\delta})).$$
(14)

a-priori choice of α_k :

$$\alpha_k > 0$$
, $1 \le \frac{\alpha_k}{\alpha_{k+1}} \le r$, $\lim_{k \to \infty} \alpha_k = 0$, (15)

for some r > 1.

a-priori or a posteriori choice of k_*

$$||y^{\delta} - F(x_{k_*}^{\delta})|| \le \tau \delta < ||y^{\delta} - F(x_k^{\delta})||, \qquad 0 \le k < k_*,$$
 (16)

[Bakushinski 1992], see also the book [Bakushinski&Kokurin 2004]; [BK&Neubauer&Scherzer 1997], see also the book [BK& Neubauer&Scherzer 2008]

IRGNM: Convergence and convergence rates: idea of proof I

key idea:

 $\|x_{k+1}^{\delta} - x^{\dagger}\| \approx \alpha_k^{\mu} w_k(\mu)$ with $w_k(s)$ as in the following lemma.

Lemma

Let $K \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, $s \in [0, 1]$, and let $\{\alpha_k\}$ be a sequence satisfying $\alpha_k > 0$ and $\alpha_k \to 0$ as $k \to \infty$. Then it holds that

$$w_k(s) := \alpha_k^{1-s} \| (K^*K + \alpha_k I)^{-1} (K^*K)^s v \| \le s^s (1-s)^{1-s} \| v \| \le \| v \|$$
(17)

and that

$$\lim_{k \to \infty} w_k(s) = \left\{ egin{array}{ll} 0\,, & 0 \le s < 1\,, \\ \|v\|\,, & s = 1\,, \end{array}
ight.$$

for any $v \in \mathcal{N}(A)^{\perp}$.

IRGNM: Convergence and convergence rates: idea of proof I

Indeed, in the linear and noiseless case (F(x) = Kx, $\delta = 0$) we get from (14) using $Kx^{\dagger} = y$ and (13)

$$x_{k+1} - x^{\dagger}$$
= $x_k - x^{\dagger} + (K^*K + \alpha_k I)^{-1}(K^*K(x^{\dagger} - x_k) + \alpha_k(x_0 - x^{\dagger} + x^{\dagger} - x_k))$
= $-\alpha_k(K^*K + \alpha_k I)^{-1}(K^*K)^{\mu}v$

To take into account noisy data and nonlinearity, we rewrite (14) as

$$x_{k+1}^{\delta} - x^{\dagger} = -\alpha_{k} (K^{*}K + \alpha_{k}I)^{-1} (K^{*}K)^{\mu} v$$

$$-\alpha_{k} (K_{k}^{*}K_{k} + \alpha_{k}I)^{-1} (K^{*}K - K_{k}^{*}K_{k}) \qquad (18)$$

$$(K^{*}K + \alpha_{k}I)^{-1} (K^{*}K)^{\mu} v$$

$$+ (K_{k}^{*}K_{k} + \alpha_{k}I)^{-1} K_{k}^{*} (y^{\delta} - F(x_{k}^{\delta}) + K_{k}(x_{k}^{\delta} - x^{\dagger})).$$

where we set $K_k := F'(x_k^{\delta})$, $K := F'(x^{\dagger})$.

IRGNM: Convergence and convergence rates

Theorem

Let $\mathcal{B}_{2\rho}(x_0) \subseteq \mathcal{D}(F)$ for some $\rho > 0$, (15),

$$F'(\tilde{x}) = R(\tilde{x}, x)F'(x) + Q(\tilde{x}, x)$$

$$\|I - R(\tilde{x}, x)\| \le c_R, \quad \|Q(\tilde{x}, x)\| \le c_Q \|F'(x^{\dagger})(\tilde{x} - x)\|$$

and

$$x^{\dagger} - x_0 = (F'(x^{\dagger})^* F'(x^{\dagger}))^{\mu} v$$
, $v \in \mathcal{N}(F'(x^{\dagger}))^{\perp}$

for some $0 \le \mu \le 1/2$, and let $k_* = k_*(\delta)$ be chosen according to the discrepancy principle (16) with $\tau > 1$. Moreover, we assume that $\|x_0 - x^\dagger\|$, $\|v\|$, $1/\tau$, ρ , and c_R are sufficiently small. Then we obtain the rates

$$\|x_{k_*}^{\delta} - x^{\dagger}\| = \left\{ egin{array}{ll} o\left(\delta^{rac{2\mu}{2\mu+1}}
ight), & 0 \leq \mu < rac{1}{2}, \ O(\sqrt{\delta}), & \mu = rac{1}{2}. \end{array}
ight.$$

For convergence (without rates) the tangential cone condition suffices.

Remarks

 The same convergence rates result can be shown with the a priori stopping rule

$$k_* \to \infty$$
 and $\eta \ge \delta \alpha_{k_*}^{-\frac{1}{2}} \to 0$ as $\delta \to 0$. (19)

for $\mu = 0$ and

$$\eta \alpha_{k_*}^{\mu + \frac{1}{2}} \le \delta < \eta \alpha_k^{\mu + \frac{1}{2}}, \qquad 0 \le k < k_*,$$
 (20)

even for $0 < \mu \le 1$.

 The a priori result remains valid under the alternative weak nonlinearity condition

$$F'(\tilde{x}) = F'(x)R(\tilde{x},x)$$
 and $||I - R(\tilde{x},x)|| \le c_R ||\tilde{x} - x||$

$$(21)$$

for $x, \tilde{x} \in \mathcal{B}_{2\rho}(x_0)$ and some positive constant c_R .

Further remarks

- logarithmic rates: [Hohage 1997]
- generalization to regularization methods $R_{\alpha}(F'(x)) \approx F'(x)^{\dagger}$ in place of Tikhonov [BK 1997]

$$x_{k+1}^{\delta} = x_0 + R_{\alpha_k}(F'(x_k^{\delta}))(y^{\delta} - F(x_k^{\delta}) - F'(x_k^{\delta})(x_0 - x_k^{\delta})).$$
 (22)

- continuous version [BK&Neubauer&Ramm 2002]
- projected version for constrained problems [BK&Neubauer 2006]
- analysis with stochastic noise [Bauer&Hohage&Munk 2009]
- analysis in Banach space [Bakushinski&Konkurin 2004], [BK& Schöpfer&Schuster 2009], [BK& Hofmann 2010]
- preconditioning [Egger 2007], [Langer 2007]
- quasi Newton methods [BK 1998]