Forward and Inverse Problems in Nonlinear Acoustics

Barbara Kaltenbacher

Alpen-Adria-Universität Klagenfurt

ECM, Sevilla, July 2024

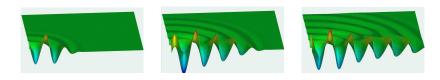
joint work with

Vanja Nikolić, Radboud University William Rundell, Texas A&M University Teresa Rauscher, University of Klagenfurt Benjamin Rainer, University of Klagenfurt

Outline

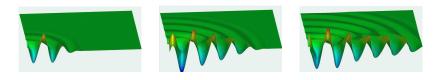
- modeling:
 - models of nonlinear acoustics
 - fractional damping models in ultrasonics
- analysis
 - parameter asymptotics
 - multiharmonic expansion
- inverse problems
 - nonlinearity parameter imaging

Nonlinear Acoustic Wave Propagation



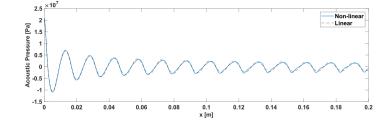
nonlinear wave propagation:

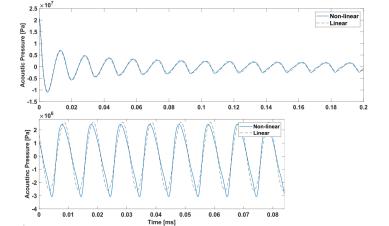
Nonlinear Acoustic Wave Propagation



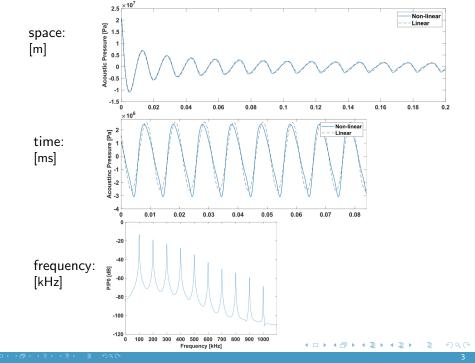
nonlinear wave propagation: sound speed depends on (signed) amplitude \Rightarrow sawtooth profile

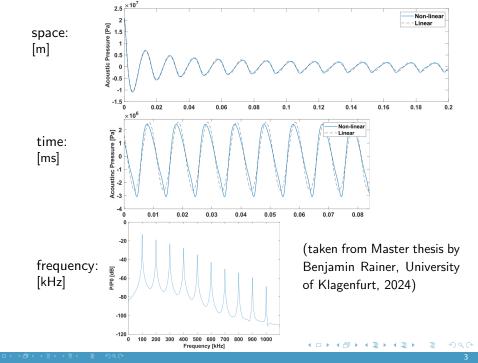
space: [m]





time: [ms]





models of nonlinear acoustics

main physical quantities:

- acoustic particle velocity v;
- acoustic pressure p;
- mass density ϱ ;

- absolute temperature ϑ ;
- heat flux q;
- entropy η;

decomposition into mean and fluctuating part:

$$\mathbf{v} = \mathbf{v}_0 + \mathbf{v}_{\sim} = \mathbf{v}$$
, $p = p_0 + p_{\sim}$, $\varrho = \varrho_0 + \varrho_{\sim}$

- acoustic particle velocity v;
- acoustic pressure p;
- mass density *ρ*;

- absolute temperature ϑ ;
- heat flux q;
- entropy η ;

governing equations:

• momentum conservation = Navier Stokes equation (with $\nabla \times \mathbf{v} = 0$):

$$\varrho\left(\mathbf{v}_{t} + \nabla(\mathbf{v} \cdot \mathbf{v})\right) + \nabla_{\mathbf{p}} = \left(\frac{4\mu_{V}}{3} + \zeta_{V}\right)\Delta\mathbf{v}$$

mass conservation = equation of continuity:

$$\varrho_t + \nabla \cdot (\varrho \mathbf{v}) = 0$$

• entropy equation: $\varrho \vartheta (\eta_t + \mathbf{v} \cdot \nabla \eta) = -\nabla \cdot \mathbf{q}$

• equation of state: $\frac{p}{p_0} = \varrho^{\gamma} \exp\left(\frac{\eta - \eta_0}{c_v}\right)$

• Gibbs equation: ${\color{red} \vartheta d\eta} = c_{\rm v} d{\color{red} \vartheta} - {\color{red} p} \frac{1}{{\varrho}^2} d{\color{red} \varrho}$

 $\gamma = rac{c_p}{c_v}.$. . adiabatic index;

 c_p / c_v ... specific heat at constant pressure / volume;

So far, 5 equations for 6 unknowns \mathbf{v} , \mathbf{p} , $\mathbf{\varrho}$, $\mathbf{\vartheta}$, \mathbf{q} , η . Still need a constitutive relation between temperature and heat flux.

So far, 5 equations for 6 unknowns \mathbf{v} , \mathbf{p} , $\mathbf{\varrho}$, $\mathbf{\vartheta}$, \mathbf{q} , η . Still need a constitutive relation between temperature and heat flux.

Classically: Fourier's law $\mathbf{q} = -K\nabla \vartheta$

K...thermal conductivity leads to infinite speed of propagation paradox.

So far, 5 equations for 6 unknowns \mathbf{v} , \mathbf{p} , $\mathbf{\varrho}$, $\mathbf{\vartheta}$, \mathbf{q} , η . Still need a constitutive relation between temperature and heat flux.

Classically: Fourier's law
$$\mathbf{q} = -K\nabla \vartheta$$

K...thermal conductivity leads to infinite speed of propagation paradox.

Maxwell-Cattaneo law
$$\tau \mathbf{q}_t + \mathbf{q} = -K\nabla \vartheta$$

au... relaxation time allows for "thermal waves" (second sound phenomenon)

Classical Models of Nonlinear Acoustics

• Kuznetsov's equation [Lesser & Seebass 1968, Kuznetsov 1971]

$$p_{\sim tt} - c^2 \Delta p_{\sim} - \delta \Delta p_{\sim t} = \left(\frac{B}{2A\varrho_0 c^2} p_{\sim}^2 + \varrho_0 |\mathbf{v}|^2\right)_{tt}$$

where $\varrho_0 \mathbf{v}_t = -\nabla p$

$$\rightsquigarrow \varrho_0 \psi_t = p$$

for the particle velocity v and the pressure p, i.e.,

$$\psi_{tt} - c^2 \Delta \psi - \delta \Delta \psi_t = \left(\frac{B}{2Ac^2}(\psi_t)^2 + |\nabla \psi|^2\right)_t$$

since $abla imes \mathbf{v} = \mathbf{0}$ hence $\mathbf{v} = -
abla \psi$ for a **velocity potential** ψ

$$\begin{split} \delta &= \kappa (\Pr(\tfrac{4}{3} + \tfrac{\zeta_V}{\mu_V}) + \gamma - 1) \, \dots \text{diffusivity of sound;} \\ \tfrac{B}{A} & \triangleq \gamma - 1 \, \dots \text{nonlinearity parameter (in liquids / gases)} \end{split}$$

(D) (B) (E) (E) E 900

Classical Models of Nonlinear Acoustics

• Kuznetsov's equation [Lesser & Seebass 1968, Kuznetsov 1971]

$$p_{\sim\,tt}-c^2\Delta p_{\sim}-\delta\Delta p_{\sim\,t}=\left(rac{B}{2Aarrho_0c^2}p_{\sim}^2+arrho_0|\mathbf{v}|^2
ight)_{tt}$$
 where $arrho_0\mathbf{v}_t=-
abla p$ $ightarrow arrho_0\psi_t=p$ for the particle velocity \mathbf{v} and the pressure \mathbf{p}

for the particle velocity v and the pressure p

• Westervelt equation [Westervelt 1963] via $\varrho_0 |\mathbf{v}|^2 \approx \frac{1}{20C^2} (p_{\sim})^2$

$$p_{\sim tt} - c^2 \Delta p_{\sim} - \delta \Delta p_{\sim t} = \frac{1}{\varrho_0 c^2} \left(1 + \frac{B}{2A} \right) p_{\sim tt}^2$$

$$\begin{split} \delta &= \kappa \big(\Pr \big(\tfrac{4}{3} + \tfrac{\zeta_V}{\mu_V} \big) + \gamma - 1 \big) \, \dots \text{diffusivity of sound;} \\ \tfrac{B}{A} & \triangleq \gamma - 1 \, \dots \text{nonlinearity parameter (in liquids / gases)} \end{split}$$

Advanced Models of Nonlinear Acoustics (Examples)

 Jordan-Moore-Gibson-Thompson equation [Jordan 2009, 2014], [Christov 2009], [Straughan 2010]

$$\tau \psi_{ttt} + \psi_{tt} - c^2 \Delta \psi - (\delta + \tau c^2) \Delta \psi_t = \left(\frac{B}{2Ac^2} (\psi_t)^2 + |\nabla \psi|^2\right)_t$$

au... relaxation time

Advanced Models of Nonlinear Acoustics (Examples)

 Jordan-Moore-Gibson-Thompson equation [Jordan 2009, 2014], [Christov 2009], [Straughan 2010]

$$\tau \psi_{ttt} + \psi_{tt} - c^2 \Delta \psi - (\delta + \tau c^2) \Delta \psi_t = \left(\frac{B}{2Ac^2} (\psi_t)^2 + |\nabla \psi|^2\right)_t$$

au... relaxation time

 $z:=\psi_t+rac{c^2}{\delta+ au c^2}\psi$ solves weakly damped wave equation

$$z_{tt} - \tilde{c}\Delta z + \gamma z_t = r(z, \psi)$$

with $\tilde{c}=c^2+\frac{\delta}{\tau}$, $\gamma=\frac{1}{\tau}-\frac{c^2}{\delta+\tau c^2}>0$ \leadsto second sound phenomenon

Advanced Models of Nonlinear Acoustics (Examples)

 Blackstock-Crighton equation [Brunnhuber & Jordan 2016], [Blackstock 1963], [Crighton 1979]

$$\left(\partial_t - a\Delta\right)\left(\psi_{tt} - c^2\Delta\psi - \delta\Delta\psi_t\right) - ra\Delta\psi_t = \left(\frac{B}{2Ac^2}(\psi_t^2) + |\nabla\psi|^2\right)_{tt}$$

 $a = \frac{\nu}{Pr}$...thermal conductivity

Advanced versus Classical Models of Nonlinear Acoustics

 Blackstock-Crighton equation [Brunnhuber & Jordan 2016], [Blackstock 1963], [Crighton 1979]

$$(\partial_t - a\Delta) \left(\psi_{tt} - c^2\Delta\psi - \delta\Delta\psi_t\right) - ra\Delta\psi_t = \left(\frac{B}{2Ac^2}(\psi_t^2) + |\nabla\psi|^2\right)_{tt}$$

 $a = \frac{\nu}{Pr}$...thermal conductivity

 Jordan-Moore-Gibson-Thompson equation [Jordan 2009, 2014], [Christov 2009], [Straughan 2010]

$$\tau\psi_{ttt} + \psi_{tt} - c^2\Delta\psi - (\delta + \tau c^2)\Delta\psi_t = \left(\frac{B}{2Ac^2}(\psi_t)^2 + |\nabla\psi|^2\right)_t$$

 τ ... relaxation time

of. Kuznetsov:

$$\psi_{tt} - c^2 \Delta \psi - \delta \Delta \psi_t = \left(\frac{B}{2Ac^2} (\psi_t^2) + |\nabla \psi|^2\right)_t$$

◆□▶◆圖▶◆臺▶◆臺▶ 臺 ∽Q⊙

ロト 4回 トイミト 4 ミ ・ りくひ ・

- further models: [Angel & Aristegui 2014], [Christov & Christov & Jordan 2007], [Kudryashov & Sinelshchikov 2010], [Ockendon & Tayler 1983], [Makarov & Ochmann 1996], [Rendón & Ezeta & Pérez-López 2013], [Rasmussen & Sørensen & Christiansen 2008], [Soderholm 2006], ...
- resonances, shock waves:[Ockendon & Ockendon & Peake & Chester 1993], [Ockendon & Ockendon 2001, 2004, 2016],...
- traveling waves solutions: [Jordan 2004], [Chen & Torres & Walsh 2009], [Keiffer & McNorton & Jordan & Christov, 2014], [Gaididei & Rasmussen & Christiansen & Sørensen, 2016],...
- well-posendness and asymptotic behaviour: for KZK: [Rozanova-Pierrat 2007, 2008, 2009, 2010] for Westervelt, Kuznetsov, Blackstock-Crighton, JMGT on bounded domain Ω : based on semigroup theory and energy estimates: [BK & Lasiecka 2009, 2012], [BK & Lasiecka & Veljović 2011], [BK & Lasiecka & Marchand 2012], [BK & Lasiecka & Pospiezalska 2012], [Lasiecka & Wang 2015], [Liu & Triggiani 2013], [Marchand & McDevitt & Triggiani 2012], [Nikolić 2015], [Nikolić & BK 2016], [Pellicer & Solá-Morales 2019], , [Dell'Oro&Lasiecka&Pata 2020] based on maximal L_p regularity: [Meyer & Wilke 2011, 2013], [Meyer & Simonett 2016], [Brunnhuber & Meyer 2016], [BK 2016] Cauchy problem (on $\Omega = \mathbb{R}^{\times}$)
 - for Kuznetsov: [Dekkers & Rozanova-Pierrat 2019] for JMGT: [Pellicer & Said-Houari 2017], [Nikolić & Said-Houari 2021]
- control of JMGT [Bucci&Lasiecka 2020], [Bucci&Pandolfi 2020] > < = > < = >

Analysis of initial-boundary value problems

consider:

Westervelt / Kuznetsov / Jordan-Moore-Gibson-Thompson / Blackstock-Crighton equation on some domain $\Omega\subseteq\mathbb{R}^d$ +boundary conditions on $\partial\Omega$ +initial conditions at t=0

e.g.,

$$u_{tt}-c^2\Delta u-b\Delta u_t=rac{\kappa}{2}(u^2)_{tt}$$
 in Ω
$$rac{\partial u}{\partial n}=g \qquad \qquad \text{on } \partial\Omega$$
 $u(t=0)=u_0\,,\;u_t(t=0)=u_1 \qquad \qquad \text{in } \Omega$

where u . . . pressure

e.g., for Westervelt $(u \dots pressure)$

$$u_{tt} - c^2 \Delta u - b \Delta u_t = \frac{\kappa}{2} (u^2)_{tt}$$

e.g., for Westervelt $(u \dots pressure)$

$$u_{tt} - c^2 \Delta u - b \Delta u_t = \frac{\kappa}{2} (u^2)_{tt} = \kappa u u_{tt} + \kappa (u_t)^2$$

e.g., for Westervelt (u . . . pressure)

$$u_{tt} - c^2 \Delta u - b \Delta u_t = \frac{\kappa}{2} (u^2)_{tt} = \kappa u u_{tt} + \kappa (u_t)^2$$

$$(1 - \kappa u)u_{tt} - c^2 \Delta u - b \Delta u_t = \kappa (u_t)^2$$

e.g., for Westervelt $(u \dots pressure)$

$$u_{tt} - c^2 \Delta u - b \Delta u_t = \frac{\kappa}{2} (u^2)_{tt} = \kappa u u_{tt} + \kappa (u_t)^2$$

$$(1 - \kappa u)u_{tt} - c^2 \Delta u - b \Delta u_t = \kappa (u_t)^2$$

 \Rightarrow degeneracy for $u \ge \frac{1}{\kappa}$

e.g., for Westervelt $(u \dots pressure)$

$$u_{tt} - c^2 \Delta u - b \Delta u_t = \frac{\kappa}{2} (u^2)_{tt} = \kappa u u_{tt} + \kappa (u_t)^2$$

$$(1 - \kappa u)u_{tt} - c^2 \Delta u - b \Delta u_t = \kappa (u_t)^2$$

 \Rightarrow degeneracy for $u \ge \frac{1}{\kappa}$

similarly for Kuznetsov, Jordan-Moore-Gibson-Thompson, Blackstock-Crighton.

e.g., for Westervelt $(u \dots pressure)$

$$u_{tt} - c^2 \Delta u - b \Delta u_t = \frac{\kappa}{2} (u^2)_{tt} = \kappa u u_{tt} + \kappa (u_t)^2$$

$$(1 - \kappa u)u_{tt} - c^2 \Delta u - b \Delta u_t = \kappa (u_t)^2$$

 \Rightarrow degeneracy for $u \ge \frac{1}{\kappa}$

similarly for Kuznetsov, Jordan-Moore-Gibson-Thompson, Blackstock-Crighton.

- \sim employ energy estimates to obtain bound on u in $C(0, T; H^2(\Omega))$
- where smallness of u in $C(0, T; H^2(\Omega))$ and $H^2(\Omega) \to L_{\infty}(\Omega)$ embedding to guarantee $1 \kappa u \ge \underline{\alpha} > 0$

4□▶ 4□▶ 4½▶ 4½▶ ½ 900

e.g., for Westervelt $(u \dots pressure)$

$$u_{tt} - c^2 \Delta u - b \Delta u_t = \frac{\kappa}{2} (u^2)_{tt} = \kappa u u_{tt} + \kappa (u_t)^2$$

$$(1 - \kappa u)u_{tt} - c^2 \Delta u - b \Delta u_t = \kappa (u_t)^2$$

 \Rightarrow degeneracy for $u \geq \frac{1}{\kappa}$

similarly for Kuznetsov, Jordan-Moore-Gibson-Thompson, Blackstock-Crighton.

- employ energy estimates to obtain bound on u in $C(0, T; H^2(\Omega))$
- \hookrightarrow use smallness of u in $C(0, T; H^2(\Omega))$ and $H^2(\Omega) \to L_{\infty}(\Omega)$ embedding to guarantee $1 \kappa u \ge \underline{\alpha} > 0$
- → fixed point argument

Degeneracy – State dependent wave speed

e.g., for Westervelt (*u* . . . pressure)

$$u_{tt} - c^2 \Delta u - b \Delta u_t = \frac{\kappa}{2} (u^2)_{tt} = \kappa u u_{tt} + \kappa (u_t)^2$$
$$(1 - \kappa u) u_{tt} - c^2 \Delta u - b \Delta u_t = \kappa (u_t)^2$$

 \Rightarrow degeneracy for $u \ge \frac{1}{\kappa}$

similarly for Kuznetsov, Jordan-Moore-Gibson-Thompson, Blackstock-Crighton.

Degeneracy – State dependent wave speed

e.g., for Westervelt (*u* . . . pressure)

$$u_{tt} - c^2 \Delta u - b \Delta u_t = \frac{\kappa}{2} (u^2)_{tt} = \kappa u u_{tt} + \kappa (u_t)^2$$

$$(1 - \kappa u) u_{tt} - c^2 \Delta u - b \Delta u_t = \kappa (u_t)^2$$

 \Rightarrow degeneracy for $u \ge \frac{1}{\kappa}$

similarly for Kuznetsov, Jordan-Moore-Gibson-Thompson, Blackstock-Crighton.

This also illustrates state dependence of the effective wave speed:

$$u_{tt} - \tilde{c}^2 \Delta u - \tilde{b}(u) \Delta u_t = f(u)$$

with $\tilde{c}(u) = \frac{c}{\sqrt{1-\kappa u}}$, $\tilde{b}(u) = \frac{b}{1-\kappa u}$, $f(u) = \frac{\kappa (u_t)^2}{1-\kappa u}$ as long as $1-\kappa u>0$ (otherwise the model loses its validity)

4□▶ 4□▶ 4½▶ 4½▶ ½ 900

parameter asymptotics

Jordan-Moore-Gibson-Thompson equation $(b = \delta + \tau c^2)$

$$\tau \psi_{ttt}^{\tau} + \psi_{tt}^{\tau} - c^2 \Delta \psi^{\tau} - b \Delta \psi_{t}^{\tau} = \left(\frac{B}{2Ac^2} (\psi_{t}^{\tau})^2 + |\nabla \psi^{\tau}|^2\right)_{t}$$

Kuznetsov's equation:

$$\psi_{tt} - c^2 \Delta \psi - \delta \Delta \psi_t = \left(\frac{B}{2Ac^2}(\psi_t^2) + |\nabla \psi|^2\right)_t$$

Jordan-Moore-Gibson-Thompson equation $(b = \delta + \tau c^2)$

$$\tau \psi_{ttt}^{\tau} + \psi_{tt}^{\tau} - c^2 \Delta \psi^{\tau} - b \Delta \psi_{t}^{\tau} = \left(\frac{B}{2Ac^2} (\psi_{t}^{\tau})^2 + |\nabla \psi^{\tau}|^2\right)_{t}$$

Kuznetsov's equation:

$$\psi_{tt} - c^2 \Delta \psi - \delta \Delta \psi_t = \left(\frac{B}{2Ac^2}(\psi_t^2) + |\nabla \psi|^2\right)_t$$

Existence of a limit ψ^0 of ψ^τ as $\tau \searrow 0$? Does ψ^0 solve Kuznetsov's equation?

ロトイタトイミト イミト ミ めくで

Jordan-Moore-Gibson-Thompson equation $(b = \delta + \tau c^2)$

$$\tau \psi_{ttt}^{\tau} + \psi_{tt}^{\tau} - c^2 \Delta \psi^{\tau} - b \Delta \psi_t^{\tau} = \left(\frac{B}{2Ac^2} (\psi_t^{\tau})^2 + |\nabla \psi^{\tau}|^2\right)_t$$

Kuznetsov's equation:

$$\psi_{tt} - c^2 \Delta \psi - \delta \Delta \psi_t = \left(\frac{B}{2Ac^2}(\psi_t^2) + |\nabla \psi|^2\right)_t$$

Existence of a limit ψ^0 of ψ^τ as $\tau \searrow 0$? Does ψ^0 solve Kuznetsov's equation?

• As $\tau \to 0$ the PDE changes from hyperbolic (group) to parabolic (analytic semigroup, maximal parabolic regularity)

★□▶★□▶★臺▶★臺▶ 臺 夕♀○

Jordan-Moore-Gibson-Thompson equation $(b = \delta + \tau c^2)$

$$\tau \psi_{ttt}^{\tau} + \psi_{tt}^{\tau} - c^2 \Delta \psi^{\tau} - b \Delta \psi_t^{\tau} = \left(\frac{B}{2Ac^2} (\psi_t^{\tau})^2 + |\nabla \psi^{\tau}|^2\right)_t$$

Kuznetsov's equation:

$$\psi_{tt} - c^2 \Delta \psi - \delta \Delta \psi_t = \left(\frac{B}{2Ac^2}(\psi_t^2) + |\nabla \psi|^2\right)_t$$

Existence of a limit ψ^0 of ψ^τ as $\tau \searrow 0$? Does ψ^0 solve Kuznetsov's equation?

ullet As au o 0 the PDE changes from hyperbolic (group) to parabolic (analytic semigroup, maximal parabolic regularity)

[Bongarti&Charoenphon&Lasiecka; BK& Nikolić, 2019-21]

→ shortcut to limit result

・ロト・1回ト・1里ト・1里ト - 里 - 夕9.00

• We will consider the "Westervelt type" and the "Kuznetsov type" equation; without and with the gradient nonlinearity $|\nabla \psi|_t^2$

- We will consider the "Westervelt type" and the "Kuznetsov type" equation; without and with the gradient nonlinearity $|\nabla \psi|_t^2$
- For $\tau=0$ (classical Westervelt and Kuznetsov equation) the reformulation of the linearization as a first order system leads to an analytic semigroup and maximal parabolic regularity. These properties get lost with $\tau>0$; the equation loses its "parabolic"

nature".

This is consistent with physics: infinite \rightarrow finite propagation speed.

- We will consider the "Westervelt type" and the "Kuznetsov type" equation; without and with the gradient nonlinearity $|\nabla \psi|_t^2$
- For $\tau=0$ (classical Westervelt and Kuznetsov equation) the reformulation of the linearization as a first order system leads to an analytic semigroup and maximal parabolic regularity. These properties get lost with $\tau>0$; the equation loses its "parabolic nature".
- This is consistent with physics: infinite \rightarrow finite propagation speed.
- As in the classical models, potential degeneracy can be an issue

$$\tau \psi_{ttt}^{\tau} + \psi_{tt}^{\tau} - c^2 \Delta \psi^{\tau} - b \Delta \psi_{t}^{\tau} = \left(\frac{\kappa}{2} (\psi_{t}^{\tau})^2 + |\nabla \psi^{\tau}|^2\right)_{t}$$
$$= \kappa \psi_{t}^{\tau} \psi_{tt}^{\tau} + |\nabla \psi^{\tau}|_{t}^2$$

- We will consider the "Westervelt type" and the "Kuznetsov type" equation; without and with the gradient nonlinearity $|\nabla \psi|_t^2$
- For $\tau=0$ (classical Westervelt and Kuznetsov equation) the reformulation of the linearization as a first order system leads to an analytic semigroup and maximal parabolic regularity. These properties get lost with $\tau>0$; the equation loses its "parabolic nature".
- This is consistent with physics: infinite \rightarrow finite propagation speed.
- As in the classical models, potential degeneracy can be an issue

$$\tau \psi_{ttt}^{\tau} + \psi_{tt}^{\tau} - c^{2} \Delta \psi^{\tau} - b \Delta \psi_{t}^{\tau} = \left(\frac{\kappa}{2} (\psi_{t}^{\tau})^{2} + |\nabla \psi^{\tau}|^{2}\right)_{t}$$

$$= \kappa \psi_{t}^{\tau} \psi_{tt}^{\tau} + |\nabla \psi^{\tau}|_{t}^{2}$$

$$\iff \tau \psi_{ttt}^{\tau} + \left(\mathbf{1} - \kappa \psi_{t}^{\tau}\right) \psi_{tt}^{\tau} - c^{2} \Delta \psi^{\tau} - b \Delta \psi_{t}^{\tau} = |\nabla \psi^{\tau}|_{t}^{2}$$

Plan of the analysis

- Establish well-posedness of the linearized equation along with energy estimates.
- Use these results to prove well-posedness of the Westervelt type JMGT equation for $\tau>0$ by a fixed point argument.
- Establish additional higher order energy estimates.
- Use these results to prove well-posedness of the Kuznetsov type JMGT equation for $\tau>0$ (sufficiently small) by a fixed point argument.
- Take limits as au o 0

Plan of the analysis

- Establish well-posedness of the linearized equation along with energy estimates.
- Use these results to prove well-posedness of the Westervelt type JMGT equation for $\tau>0$ by a fixed point argument.
- Establish additional higher order energy estimates.
- Use these results to prove well-posedness of the Kuznetsov type JMGT equation for $\tau>0$ (sufficiently small) by a fixed point argument.
- Take limits as $\tau \to 0$
- BK & Vanja Nikolić. On the Jordan-Moore-Gibson-Thompson equation: well-posedness with quadratic gradient nonlinearity and singular limit for vanishing relaxation time. *Math. Meth. Mod. Appl. Sci. (M3AS)*, 29:2523–2556, 2019.
- BK & Vanja Nikolić. Vanishing relaxation time limit of the Jordan–Moore–Gibson–Thompson wave equation with Neumann and absorbing boundary conditions. *Pure and Applied Functional Analysis*, 5:1–26, 2020.

The linearized problem

$$\begin{cases} \tau \psi_{ttt} + \alpha(x,t)\psi_{tt} - c^2 \Delta \psi - b \Delta \psi_t = f & \text{in } \Omega \times (0,T), \\ \psi = 0 & \text{on } \partial \Omega \times (0,T), \\ (\psi,\psi_t,\psi_{tt}) = (\psi_0,\psi_1,\psi_2) & \text{in } \Omega \times \{0\}, \end{cases}$$

under the assumptions

$$\alpha(x,t) \ge \underline{\alpha} > 0$$
 on Ω a.e. in $\Omega \times (0,T)$. (1)

$$\alpha \in L^{\infty}(0, T; L^{\infty}(\Omega)) \cap L^{\infty}(0, T; W^{1,3}(\Omega)),$$

$$f \in H^{1}(0, T; L^{2}(\Omega)).$$
 (2)

$$(\psi_0, \psi_1, \psi_2) \in H_0^1(\Omega) \cap H^2(\Omega) \times H_0^1(\Omega) \cap H^2(\Omega) \times H_0^1(\Omega). \tag{3}$$

The linearized problem

$$\begin{cases} \tau \psi_{ttt} + \alpha(x,t)\psi_{tt} - c^2 \Delta \psi - b \Delta \psi_t = f & \text{in } \Omega \times (0,T), \\ \psi = 0 & \text{on } \partial \Omega \times (0,T), \\ (\psi, \psi_t, \psi_{tt}) = (\psi_0, \psi_1, \psi_2) & \text{in } \Omega \times \{0\}, \end{cases}$$
(4)

Theorem (lin)

Let c^2 , b, $\tau > 0$, and let T > 0. Let the assumptions (1), (2), (3) hold. Then there exists a unique solution

$$\psi \in X^W := W^{1,\infty}(0,T; H_0^1(\Omega) \cap H^2(\Omega)) \cap W^{2,\infty}(0,T; H_0^1(\Omega)) \cap H^3(0,T; L^2(\Omega)).$$

The solution fullfils the estimate

$$\begin{split} \|\psi\|_{W,\tau}^2 := & \tau^2 \|\psi_{ttt}\|_{L^2L^2}^2 + \tau \|\psi_{tt}\|_{L^{\infty}H^1}^2 + \|\psi_{tt}\|_{L^2H^1}^2 + \|\psi\|_{W^{1,\infty}H^2}^2 \\ & \leq C(\alpha, T, \tau) \left(|\psi_0|_{H^2}^2 + |\psi_1|_{H^2}^2 + \tau |\psi_2|_{H^1}^2 + \|f\|_{L^{\infty}L^2}^2 + \|f_t\|_{L^2L^2}^2 \right). \end{split}$$

If additionally $\|\nabla \alpha\|_{L^{\infty}L^{3}} < \frac{\alpha}{C_{H^{1}I^{6}}^{\Omega}}$ holds, then $C(\alpha, T, \tau)$ is independent of τ .

Well-posedness of the Westervelt type JMGT equation

$$\begin{cases} \tau \psi_{ttt} + (1 - k\psi_t)\psi_{tt} - c^2\Delta\psi - b\Delta\psi_t = 0 & \text{ in } \Omega \times (0, T), \\ \psi = 0 & \text{ on } \partial\Omega \times (0, T), \\ (\psi, \psi_t, \psi_{tt}) = (\psi_0, \psi_1, \psi_2) & \text{ in } \Omega \times \{0\}, \end{cases}$$

Theorem

Let
$$c^2$$
, $b > 0$, $k \in \mathbb{R}$ and let $T > 0$. There exist $\rho, \rho_0 > 0$ such that for all $(\psi_0, \psi_1, \psi_2) \in H_0^1(\Omega) \cap H^2(\Omega) \times H_0^1(\Omega) \cap H^2(\Omega) \times H_0^1(\Omega)$ satisfying
$$\|\psi_0\|_{H^2(\Omega)}^2 + \|\psi_1\|_{H^2(\Omega)}^2 + \tau \|\psi_2\|_{H^1(\Omega)}^2 \leq \rho_0^2,$$

there exists a unique solution $\psi \in X^W$ and $\|\psi\|_{W,\tau}^2 \leq \rho^2$.

Banach's Contraction Principle for $\mathcal{T}:\phi\mapsto\psi$ solution ψ of (4) with $\alpha=1-k\phi_t$, f=0: self-mapping on $B_\rho^{X^W}$: energy estimate from Theorem (lin).

contractivity:
$$\|\mathcal{T}(\phi_1) - \mathcal{T}(\phi_2)\|_{W,\tau} \le q\|\phi_1 - \phi_2\|_{W,\tau}$$
 by estimate from Theorem (lin): $\hat{\psi} = \psi_1 - \psi_2 = \mathcal{T}(\phi_1) - \mathcal{T}(\phi_2)$ solves (4) with $\alpha = 1 - k\phi_{1t}$ and

$$f = k\hat{\phi}_t\psi_{2tt}$$
 where $\hat{\phi} = \phi_1 - \phi_2$.

4□▶ 4□▶ 4½▶ 4½▶ ½ 900

Limits for vanishing relaxation time

Consider the au-independent part of the norms

$$\begin{split} &\|\psi\|_{W,\tau}^2 := \\ &\tau^2 \|\psi_{ttt}\|_{L^2L^2}^2 + \tau \|\psi_{tt}\|_{L^\infty H^1}^2 + \|\psi_{tt}\|_{L^2H^1}^2 + \|\psi\|_{W^{1,\infty}H^2}^2 \end{split}$$

namely

$$\|\psi\|_{\bar{X}^W}^2 := \|\psi_{tt}\|_{L^2H^1}^2 + \|\psi\|_{W^{1,\infty}H^2}^2,$$

since these norms will be uniformly bounded, independently of $\boldsymbol{\tau}.$

Limits for vanishing relaxation time

Consider the τ -independent part of the norms

$$\|\psi\|_{\bar{X}^W}^2 := \|\psi_{tt}\|_{L^2H^1}^2 + \|\psi\|_{W^{1,\infty}H^2}^2\,,$$

and impose smallness of initial data in the space

$$X_0^W := H_0^1(\Omega) \cap H^2(\Omega) \times H_0^1(\Omega) \cap H^2(\Omega) \times H_0^1(\Omega).$$

Theorem (BK&Nikolić M3AS 2019)

Let c^2 , b, T>0, and $k\in\mathbb{R}$. Then there exist $\bar{\tau}$, $\rho_0>0$ such that for all $(\psi_0,\psi_1,\psi_2)\in B^{X_0^W}_{\rho_0}$, the family $(\psi^\tau)_{\tau\in(0,\bar{\tau})}$ of solutions to the Westervelt type JMGT equation converges weakly* in \bar{X}^W to a solution $\bar{\psi}\in\bar{X}^W$ of the Westervelt equation with initial conditions $\bar{\psi}(0)=\psi_0,\,\bar{\psi}_t(0)=\psi_1$.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□
9
0

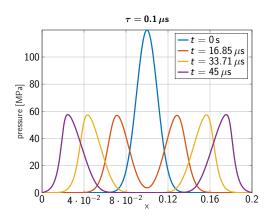
Numerical Experiments

- comparison of Westervelt-JMGT and Westervelt solutions
- numerical experiments for water in a 1-d channel geometry

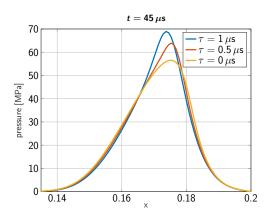
$$c=1500\,{\rm m/s},~\delta=6\cdot 10^{-9}\,{\rm m^2/s},~\rho=1000\,{\rm kg/m^3},~B/A=5;$$

- space discretization with B-splines (Isogeometric Analysis): quadratic basis functions, globally C^2 ; 251 dofs on $\Omega = [0, 0.2m]$
- time discretization by Newmark scheme, adapted to 3rd order equation; 800 time steps on $[0, T] = [0, 45\mu s]$
- initial conditions $(\psi_0,\psi_1,\psi_2)=\left(0,\,\mathcal{A}\exp\left(-\frac{(x-0.1)^2}{2\sigma^2}\right),\,0\right)$ with $\mathcal{A}=8\cdot 10^4\,\text{m}^2/\text{s}^2$ and $\sigma=0.01$,

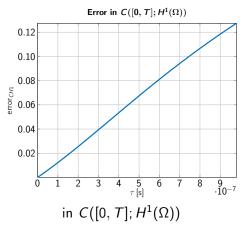
Snapshots of pressure $\emph{p}=\emph{\varrho}\psi_t$ for fixed relaxation time $\emph{\tau}=0.1\,\mu\mathrm{s}$

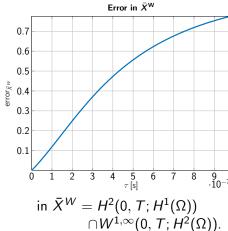


Pressure wave for different relaxation parameters au at final time $t=45\mu\mathrm{s}$.



Relative errors as $\tau \to 0$





Recap: Vanishing relaxation time

Jordan-Moore-Gibson-Thompson equation

$$\tau \psi_{ttt}^{\tau} + \psi_{tt}^{\tau} - c^2 \Delta \psi^{\tau} - (\delta + \tau c^2) \Delta \psi_{t}^{\tau} = \left(\frac{B}{2Ac^2} (\psi_{t}^{\tau})^2 + |\nabla \psi^{\tau}|^2\right)_{t}$$

versus Kuznetsov's equation:

$$\psi_{tt} - c^2 \Delta \psi - \delta \Delta \psi_t = \left(\frac{B}{2Ac^2}((\psi_t)^2) + |\nabla \psi|^2\right)_t$$

Existence of a limit ψ^0 of ψ^τ as $\tau \searrow 0$? Yes Does ψ^0 solve Kuznetsov's equation? Yes

[Bongarti&Charoenphon&Lasiecka; BK& Nikolić, 2019-21]

ロト 4回 トイミト 4 ミト ミー かくで

limit in JMGT/Kuznetsov/Westervelt for vanishing diffusivity of sound δ

Vanishing diffusivity of sound

Kuznetsov's equation (likewise for Jordan-Moore-Gibson-Thompson):

$$\psi_{tt}^{\delta} - c^2 \Delta \psi^{\delta} - \delta \Delta \psi_t^{\delta} = \left(\frac{B}{2Ac^2} (\psi_t^{\delta})^2 + \left| \nabla \psi^{\delta} \right|^2 \right)_t$$

undamped quasilinear wave equation:

$$\psi_{tt} - c^2 \Delta \psi = \left(\frac{B}{2Ac^2} (\psi_t)^2 + |\nabla \psi|^2\right)_t$$

Existence of a limit ψ^0 of ψ^δ as $\delta \searrow 0$? Does ψ^0 solve the respective inviscid ($\delta = 0$) equation?

Challenge: $\delta > 0$ is crucial for global in time well-posedness and exponential decay in $d \in \{2,3\}$ space dimensions.

Vanishing diffusivity of sound

Kuznetsov's equation (likewise for Jordan-Moore-Gibson-Thompson):

$$\psi_{tt}^{\delta} - c^2 \Delta \psi^{\delta} - \delta \Delta \psi_t^{\delta} = \left(\frac{B}{2Ac^2} (\psi_t^{\delta})^2 + \left| \nabla \psi^{\delta} \right|^2 \right)_t$$

undamped quasilinear wave equation:

$$\psi_{tt} - c^2 \Delta \psi = \left(\frac{B}{2Ac^2} (\psi_t)^2 + |\nabla \psi|^2\right)_t$$

Existence of a limit ψ^0 of ψ^δ as $\delta \searrow 0$? Does ψ^0 solve the respective inviscid ($\delta=0$) equation?

Challenge: $\delta > 0$ is crucial for global in time well-posedness and exponential decay in $d \in \{2,3\}$ space dimensions.

[BK& Nikolić, SIAP 2021] recover results (in particular on required regularity of initial data) from [Dörfler Gerner Schnaubelt 2016] for $\delta=0$

limit in Blackstock-Crighton for vanishing thermal conductivity *a*

Vanishing thermal conductivity

Blackstock-Crighton equation

$$\left(\partial_t - a\Delta\right)\left(\psi_{tt}^a - c^2\Delta\psi^a - \delta\Delta\psi_t^a\right) - ra\Delta\psi_t^a = \left(\frac{B}{2Ac^2}(\psi_t^{a2}) + |\nabla\psi^a|^2\right)_{tt}$$

Kuznetsov's equation:

$$\psi_{tt} - c^2 \Delta \psi - \delta \Delta \psi_t = \left(\frac{B}{2Ac^2}(\psi_t^2) + |\nabla \psi|^2\right)_t$$

Existence of a limit ψ^0 of ψ^a as $a \searrow 0$? Does ψ^0 solve Kuznetsov's equation?

Integrate once wrt time: Consistency of initial data needed:

$$\psi_2 - c^2 \Delta \psi_0 - \delta \Delta \psi_1 = \frac{B}{Ac^2} \psi_1 \psi_2 + 2\nabla \psi_0 \cdot \nabla \psi_1$$

◆□▶◆圖▶◆臺▶◆臺▶● のQ®

ロト 4回ト 4 ミト 4 ミト ミー かくで

Vanishing thermal conductivity

Blackstock-Crighton equation

$$\left(\partial_t - a\Delta\right)\left(\psi_{tt}^a - c^2\Delta\psi^a - \delta\Delta\psi_t^a\right) - ra\Delta\psi_t^a = \left(\frac{B}{2Ac^2}(\psi_t^{a2}) + |\nabla\psi^a|^2\right)_{tt}$$

Kuznetsov's equation:

$$\psi_{tt} - c^2 \Delta \psi - \delta \Delta \psi_t = \left(\frac{B}{2Ac^2}(\psi_t^2) + |\nabla \psi|^2\right)_t$$

Existence of a limit ψ^0 of ψ^a as $a \searrow 0$? Does ψ^0 solve Kuznetsov's equation?

Integrate once wrt time: Consistency of initial data needed:

$$\psi_2 - c^2 \Delta \psi_0 - \delta \Delta \psi_1 = \frac{B}{Ac^2} \psi_1 \psi_2 + 2 \nabla \psi_0 \cdot \nabla \psi_1$$

[BK& Thalhammer, M3AS 2018]

limit in time fractional JMGT for differentiation order $\alpha \nearrow 1$

fractional Jordan-Moore-Gibson-Thompson equation

$$\tau^{\alpha}D_{t}^{2+\alpha}\psi^{\alpha}+\psi_{tt}^{\alpha}-c^{2}\Delta\psi^{\alpha}-(\delta+\tau^{\alpha}c^{2})\Delta D_{t}^{\alpha}\psi^{\alpha}=\left(\frac{B}{2Ac^{2}}(\psi_{t}^{\alpha})^{2}+|\nabla\psi^{\alpha}|^{2}\right)_{t}$$

Jordan-Moore-Gibson-Thompson equation

$$\tau \psi_{ttt} + \psi_{tt} - c^2 \Delta \psi - (\delta + \tau c^2) \Delta \psi_t = \left(\frac{B}{2Ac^2} (\psi_t)^2 + |\nabla \psi|^2\right)_t$$

fractional Jordan-Moore-Gibson-Thompson equation

$$\tau^{\alpha}D_{t}^{2+\alpha}\psi^{\alpha}+\psi_{tt}^{\alpha}-c^{2}\Delta\psi^{\alpha}-(\delta+\tau^{\alpha}c^{2})\Delta D_{t}^{\alpha}\psi^{\alpha}=\left(\frac{B}{2Ac^{2}}(\psi_{t}^{\alpha})^{2}+|\nabla\psi^{\alpha}|^{2}\right)_{t}$$

Jordan-Moore-Gibson-Thompson equation

$$\tau \psi_{ttt} + \psi_{tt} - c^2 \Delta \psi - (\delta + \tau c^2) \Delta \psi_t = \left(\frac{B}{2Ac^2} (\psi_t)^2 + |\nabla \psi|^2\right)_t$$

Existence of a limit ψ^1 of ψ^α as $\alpha \nearrow 1$?

Does ψ solve the respective integer order equation?

fractional Jordan-Moore-Gibson-Thompson equation

$$\tau^{\alpha}D_{t}^{2+\alpha}\psi^{\alpha}+\psi_{tt}^{\alpha}-c^{2}\Delta\psi^{\alpha}-(\delta+\tau^{\alpha}c^{2})\Delta D_{t}^{\alpha}\psi^{\alpha}=\left(\frac{B}{2Ac^{2}}(\psi_{t}^{\alpha})^{2}+|\nabla\psi^{\alpha}|^{2}\right)_{t}$$

Jordan-Moore-Gibson-Thompson equation

$$\tau \psi_{ttt} + \psi_{tt} - c^2 \Delta \psi - (\delta + \tau c^2) \Delta \psi_t = \left(\frac{B}{2Ac^2} (\psi_t)^2 + |\nabla \psi|^2\right)_t$$

Existence of a limit ψ^1 of ψ^α as $\alpha \nearrow 1$? Does ψ solve the respective integer order equation?

Derivation of proper models from physical balance and constitutive laws

fractional Jordan-Moore-Gibson-Thompson equation

$$\tau^{\alpha}D_{t}^{2+\alpha}\psi^{\alpha}+\psi_{tt}^{\alpha}-c^{2}\Delta\psi^{\alpha}-(\delta+\tau^{\alpha}c^{2})\Delta D_{t}^{\alpha}\psi^{\alpha}=\left(\frac{B}{2Ac^{2}}(\psi_{t}^{\alpha})^{2}+|\nabla\psi^{\alpha}|^{2}\right)_{t}$$

Jordan-Moore-Gibson-Thompson equation

$$\tau \psi_{ttt} + \psi_{tt} - c^2 \Delta \psi - (\delta + \tau c^2) \Delta \psi_t = \left(\frac{B}{2Ac^2} (\psi_t)^2 + |\nabla \psi|^2\right)_t$$

Existence of a limit ψ^1 of ψ^{α} as $\alpha \nearrow 1$? Does ψ solve the respective integer order equation?

- Derivation of proper models from physical balance and constitutive laws
- ullet Leading derivative order in PDE changes with lpha.

fractional Jordan-Moore-Gibson-Thompson equation

$$\tau^{\alpha}D_{t}^{2+\alpha}\psi^{\alpha}+\psi_{tt}^{\alpha}-c^{2}\Delta\psi^{\alpha}-(\delta+\tau^{\alpha}c^{2})\Delta D_{t}^{\alpha}\psi^{\alpha}=\left(\frac{B}{2Ac^{2}}(\psi_{t}^{\alpha})^{2}+|\nabla\psi^{\alpha}|^{2}\right)_{t}$$

Jordan-Moore-Gibson-Thompson equation

$$\tau \psi_{ttt} + \psi_{tt} - c^2 \Delta \psi - (\delta + \tau c^2) \Delta \psi_t = \left(\frac{B}{2Ac^2} (\psi_t)^2 + |\nabla \psi|^2\right)_t$$

Existence of a limit ψ^1 of ψ^{α} as $\alpha \nearrow 1$?

Does ψ solve the respective integer order equation?

- Derivation of proper models from physical balance and constitutive laws
- ullet Leading derivative order in PDE changes with lpha.

[BK& Nikolić, M3AS 2022]

fractional damping models in ultrasonics

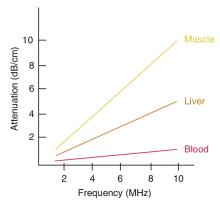


Figure 2.6 in [Chan&Perlas, Basics of Ultrasound Imaging, 2011]

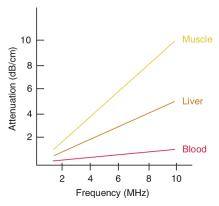


Figure 2.6 in [Chan&Perlas, Basics of Ultrasound Imaging, 2011]

- \leadsto constitutive modeling of
 - pressure density relation
 - temperature heat flux relation * shortcut

Fractional Models of (Linear) Viscoelasticity

equation of motion (resulting from balance of forces)

$$\varrho \mathbf{u}_{tt} = \mathsf{div}\sigma + \mathbf{f}$$

strain as symmetric gradient of displacements:

$$\epsilon = \frac{1}{2} (\nabla \mathbf{u} + (\nabla \mathbf{u})^T).$$

• constitutive model: stress-strain relation

u...displacements

 $\sigma \dots$ stress tensor

 ϵ ...strain tensor

 ρ ... mass density

Fractional Models of (Linear) Viscoelasticity 1-d setting

equation of motion (resulting from balance of forces)

$$\varrho u_{tt} = \sigma_{x} + f$$

• strain as symmetric gradient of displacements:

$$\epsilon = u_{x}$$
.

constitutive model: stress-strain relation:

Hooke's law (pure elasticity): $\sigma = b_0 \epsilon$

Newton model: $\sigma = b_1 \epsilon_t$

Kelvin-Voigt model: $\sigma = b_0 \epsilon + b_1 \epsilon_t$

Maxwell model: $\sigma + a_1 \sigma_t = b_0 \epsilon$

Zener model: $\sigma + a_1 \sigma_t = b_0 \epsilon + b_1 \epsilon_t$

Fractional Models of (Linear) Viscoelasticity 1-d setting

• equation of motion (resulting from balance of forces)

$$\varrho u_{tt} = \sigma_{\mathsf{x}} + \mathsf{f}$$

• strain as symmetric gradient of displacements:

$$\epsilon = u_{x}$$
.

constitutive model: stress-strain relation:

fractional Newton model: $\sigma = b_1 \partial_t^{\beta} \epsilon$

fractional Kelvin-Voigt model: $\sigma = b_0 \epsilon + b_1 \partial_t^{\beta} \epsilon$

fractional Maxwell model: $\sigma + a_1 \partial_t^{\alpha} \sigma = b_0 \epsilon$

fractional Zener model: $\sigma + a_1 \partial_t^{\alpha} \sigma = b_0 \epsilon + b_1 \partial_t^{\beta} \epsilon$

general model class: $\sum_{n=0}^N a_n \partial_t^{\alpha_n} \sigma = \sum_{m=0}^M b_m \partial_t^{\beta_m} \epsilon$

[Caputo 1967, Atanackovic, Pilipović, Stanković, Zorica 2014]

Fractional Models of (Linear) Acoustics via $p-\varrho$

balance of momentum

balance of mass

equation of state

$$\varrho_0 \mathbf{v}_t = -\nabla p + \mathbf{f}$$

$$\varrho\nabla\cdot\mathbf{v}=-\varrho_t$$

$$\frac{\varrho_{\sim}}{\varrho_0} = \frac{p_{\sim}}{p_0}$$

Fractional Models of (Linear) Acoustics via $p - \varrho$

balance of momentum

$$\varrho_0 \mathbf{v}_t = -\nabla p + \mathbf{f}$$

balance of mass

$$\varrho\nabla\cdot\mathbf{v}=-\varrho_t$$

equation of state

$$\sum_{m=0}^{M} b_m \partial_t^{\beta_m} \frac{\varrho_{\sim}}{\varrho_0} = \sum_{n=0}^{N} a_n \partial_t^{\alpha_n} \frac{p_{\sim}}{p_0}$$

Fractional Models of (Linear) Acoustics via $p - \varrho$

balance of momentum

$$\varrho_0 \mathbf{v}_t = -\nabla p + \mathbf{f}$$

balance of mass

$$\varrho \nabla \cdot \mathbf{v} = -\varrho_t$$

equation of state

$$\sum_{m=0}^{M} b_m \partial_t^{\beta_m} \frac{\varrho_{\sim}}{\varrho_0} = \sum_{n=0}^{N} a_n \partial_t^{\alpha_n} \frac{p_{\sim}}{p_0}$$

insert constitutive equations into combination of balance laws → fractional acoustic wave equations [Holm 2019, Szabo 2004]:

Fractional Models of (Linear) Acoustics via $p - \varrho$

balance of momentum

$$\varrho_0 \mathbf{v}_t = -\nabla p + \mathbf{f}$$

balance of mass

$$\varrho\nabla\cdot\mathbf{v}=-\varrho_t$$

equation of state

$$\sum_{m=0}^{M} b_m \partial_t^{\beta_m} \frac{\varrho_{\sim}}{\varrho_0} = \sum_{n=0}^{N} a_n \partial_t^{\alpha_n} \frac{p_{\sim}}{p_0}$$

insert constitutive equations into combination of balance laws → fractional acoustic wave equations [Holm 2019, Szabo 2004]:

• Caputo-Wismer-Kelvin wave equation (fractional Kelvin-Voigt):

$$p_{tt} - b_0 \Delta p - b_1 \partial_t^{\beta} \Delta p = \tilde{f} ,$$

• modified Szabo wave equation (fractional Maxwell):

$$p_{tt} - a_1 \partial_t^{2+\alpha} p - b_0 \Delta p = \tilde{f} ,$$

• fractional Zener wave equation:

$$p_{tt} - a_1 \partial_t^{2+\alpha} p - b_0 \Delta p + b_1 \partial_t^{\beta} \Delta p = \tilde{f},$$

general fractional model:

$$\sum_{n=0}^{N} a_n \partial_t^{2+\alpha_n} p - \sum_{m=0}^{M} b_m \partial_t^{\beta_m} \Delta p = \tilde{f}$$
.

43

Fractional Models of (Linear) Acoustics via $\vartheta - q$

recall:

Classically: Fourier's law $\mathbf{q} = -K\nabla \vartheta$

leads to infinite speed of propagation paradox.

Maxwell-Cattaneo law $\tau \mathbf{q}_t + \mathbf{q} = -K\nabla \vartheta$

allows for "thermal waves" (second sound phenomenon) can lead to violation of the 2nd law of thermodynamics

Fractional Models of (Linear) Acoustics via $\vartheta - q$

recall:

Classically: Fourier's law $q = -K\nabla \theta$

leads to infinite speed of propagation paradox.

Maxwell-Cattaneo law
$$\tau \mathbf{q}_t + \mathbf{q} = -K\nabla \vartheta$$

allows for "thermal waves" (second sound phenomenon) can lead to violation of the 2nd law of thermodynamics

"interpolate" by using fractional derivatives [Compte & Metzler 1997, Povstenko 2011]:

(GFE I)
$$(1 + \tau^{\alpha} \mathsf{D}_{t}^{\alpha}) \mathbf{q}(t) = -K \tau_{\vartheta}^{1-\alpha} \mathsf{D}_{t}^{1-\alpha} \nabla_{\vartheta}^{\vartheta};$$

(GFE II)
$$(1 + \tau^{\alpha} D_{t}^{\alpha}) \mathbf{q}(t) = -K \tau_{\vartheta}^{\alpha - 1} D_{t}^{\alpha - 1} \nabla_{\vartheta}^{\vartheta};$$

(GFE III)
$$(1 + \tau \partial_t) \mathbf{q}(t) = -K \tau_{\vartheta}^{1-\alpha} \mathsf{D}_t^{1-\alpha} \nabla_{\vartheta}^{\vartheta};$$

(GFE)
$$(1 + \tau^{\alpha} \mathsf{D}_{t}^{\alpha}) \mathbf{q}(t) = -K \nabla \vartheta.$$

Abel fractional integral operator

$$I_a^{\gamma} f(x) = \frac{1}{\Gamma(\gamma)} \int_a^t \frac{f(s)}{(t-s)^{1-\gamma}} ds$$

Then a fractional (time) derivative can be defined by either

or
$$\frac{{}^R_a D_t^\alpha f}{{}^C_a D_t^\alpha f} = \frac{d}{dt} I_a^{1-\alpha} f \quad \text{Riemann-Liouville derivative}$$

$$\frac{{}^C_a D_t^\alpha f}{{}^C_a D_t^{1-\alpha} \frac{df}{ds}} \quad \text{Djrbashian-Caputo derivative}$$

Abel fractional integral operator

$$I_a^{\gamma} f(x) = \frac{1}{\Gamma(\gamma)} \int_a^t \frac{f(s)}{(t-s)^{1-\gamma}} ds$$

Then a fractional (time) derivative can be defined by either

or
$$\begin{cases} {}^R_aD_t^\alpha f = \frac{d}{dt}I_a^{1-\alpha}f & \text{Riemann-Liouville derivative} \\ {}^C_aD_t^\alpha f = I_a^{1-\alpha}\frac{df}{ds} & \text{Djrbashian-Caputo derivative} \end{cases}$$

- R-L is defined on a larger function space, but derivative of constant is nonzero; singularity at initial time a

Abel fractional integral operator

$$I_a^{\gamma} f(x) = \frac{1}{\Gamma(\gamma)} \int_a^t \frac{f(s)}{(t-s)^{1-\gamma}} ds$$

Then a fractional (time) derivative can be defined by either

or
$$\begin{cases} {}^R_a D^\alpha_t f = \frac{d}{dt} I_a^{1-\alpha} f & \text{Riemann-Liouville derivative} \\ {}^C_a D^\alpha_t f = I_a^{1-\alpha} \frac{df}{ds} & \text{Djrbashian-Caputo derivative} \end{cases}$$

- R-L is defined on a larger function space, but derivative of constant is nonzero; singularity at initial time a
- D-C maps constants to zero → appropriate for prescribing initial values

some recent books on fractional PDEs: [Kubica & Ryszewska & Yamamoto 2020], [Jin 2021], [BK & Rundell 2022]

Abel fractional integral operator

$$I_a^{\gamma} f(x) = \frac{1}{\Gamma(\gamma)} \int_a^t \frac{f(s)}{(t-s)^{1-\gamma}} ds$$

Then a fractional (time) derivative can be defined by either

or
$$\begin{array}{c} {}^R_aD_t^\alpha f = \frac{d}{dt}I_a^{1-\alpha}f \quad \text{Riemann-Liouville derivative} \\ {}^C_aD_t^\alpha f = I_a^{1-\alpha}\frac{df}{ds} \quad \text{Djrbashian-Caputo derivative} \end{array}$$

- R-L is defined on a larger function space, but derivative of constant is nonzero; singularity at initial time a

Nonlocal and causal character of these derivatives provides them with a "memory"

←□▶←□▶←□▶←□▶ □ ● ● ←□♥

Abel fractional integral operator

$$I_a^{\gamma} f(x) = \frac{1}{\Gamma(\gamma)} \int_a^t \frac{f(s)}{(t-s)^{1-\gamma}} ds$$

Then a fractional (time) derivative can be defined by either

or
$$\begin{cases} {}^R_a D_t^\alpha f = \frac{d}{dt} I_a^{1-\alpha} f & \text{Riemann-Liouville derivative} \\ {}^C_a D_t^\alpha f = I_a^{1-\alpha} \frac{df}{ds} & \text{Djrbashian-Caputo derivative} \end{cases}$$

- R-L is defined on a larger function space, but derivative of constant is nonzero; singularity at initial time a
- D-C maps constants to zero → appropriate for prescribing initial values

Nonlocal and causal character of these derivatives provides them with a "memory"

→ initial values are tied to later values and can therefore be better reconstructed backwards in time.

inverse problems

Nonlinearity parameter imaging

- B/A parameter is sensitive to differences in tissue properties, thus appropriate for characterization of biological tissues
- viewing $\kappa=\frac{1}{\varrho c^2}(\frac{B}{2A}+1)$ as a spatially varying coefficient in the Westervelt equation, it can be used for medical imaging
- ~ acoustic nonlinearity parameter tomography [Bjørnø 1986; Burov, Gurinovich, Rudenko, Tagunov 1994; Cain 1986; Ichida, Sato, Linzer 1983; Varray, Basset, Tortoli, Cachard 2011; Zhang, Gong et al 1996, 2001]...

The inverse problem of nonlinearity parameter imaging Identify $\kappa(x)$ in

$$\begin{split} \left(u - \kappa(\mathbf{x})u^2\right)_{tt} - c_0^2 \Delta u + Du &= r \quad \text{ in } \Omega \times (0, T) \\ \partial_{\nu} u + \gamma u &= 0 \text{ on } \partial\Omega \times (0, T), \quad u(0) &= 0, \quad u_t(0) &= 0 \quad \text{ in } \Omega \end{split}$$

(with excitation r) from observations

$$g = u$$
 on $\Sigma \times (0, T)$

 $\Sigma \subset \overline{\Omega}$...transducer array (surface or collection of discrete points)

The inverse problem of nonlinearity parameter imaging Identify $\kappa(x)$ in

$$\begin{split} \left(u - \kappa(\mathbf{x})u^2\right)_{tt} - c_0^2 \Delta u + Du &= r \quad \text{ in } \Omega \times (0, T) \\ \partial_{\nu} u + \gamma u &= 0 \text{ on } \partial\Omega \times (0, T), \quad u(0) &= 0, \quad u_t(0) &= 0 \quad \text{ in } \Omega \end{split}$$

(with excitation r) from observations

$$g = u$$
 on $\Sigma \times (0, T)$

 $\Sigma \subset \overline{\Omega}$...transducer array (surface or collection of discrete points) fractional damping

Caputo-Wismer-Kelvin:

$$D = -b\Delta \partial_t^{\beta}$$
 with $\beta \in [0, 1], b \ge 0$

fractional Zener:

$$D=a\partial_t^{2+\alpha}-b\Delta\partial_t^\beta \quad \text{ with } a>0, \ b\geq ac^2, \ 1\geq\beta\geq\alpha>0,$$
 space fractional Chen-Holm:

$$D = b(-\Delta)^{\tilde{\beta}} \partial_t$$
 with $\tilde{\beta} \in [0,1], \ b \geq 0$,

▼□▶▼□▶▼≣▶▼≣▶ ■ **♡**90

ロ ト 4 回 ト 4 差 ト 4 差 - め Q (C) - .

- model equation is nonlinear;
 nonlinearity occurs in highest order term;
- unknown coefficient $\kappa(x)$ appears in this nonlinear term
- κ is spatially varying whereas the data g(t) is in the "orthogonal" time direction;
 This is well known to lead to severe ill-conditioning of the inversion of the map F from data to unknown.

- model equation is nonlinear;
 nonlinearity occurs in highest order term;
- unknown coefficient $\kappa(x)$ appears in this nonlinear term
- κ is spatially varying whereas the data g(t) is in the "orthogonal" time direction;
 This is well known to lead to severe ill-conditioning of the inversion of the map F from data to unknown.
- nonlinearity helps by "adding information":

- model equation is nonlinear;
 nonlinearity occurs in highest order term;
- unknown coefficient $\kappa(x)$ appears in this nonlinear term
- κ is spatially varying whereas the data g(t) is in the "orthogonal" time direction;
 This is well known to lead to severe ill-conditioning of the inversion of the map F from data to unknown.
- nonlinearity helps by "adding information": linear case: double excitation \Rightarrow double observation linear case: exitation at freq. ω \Rightarrow observation at freq. ω

- model equation is nonlinear;
 nonlinearity occurs in highest order term;
- unknown coefficient $\kappa(x)$ appears in this nonlinear term
- κ is spatially varying whereas the data g(t) is in the "orthogonal" time direction;
 This is well known to lead to severe ill-conditioning of the inversion of the map F from data to unknown.
- nonlinearity helps by "adding information": linear case: double excitation \Rightarrow double observation linear case: exitation at freq. ω \Rightarrow observation at freq. ω nonlinear case: higher harmonics

- model equation is nonlinear;
 nonlinearity occurs in highest order term;
- unknown coefficient $\kappa(x)$ appears in this nonlinear term
- κ is spatially varying whereas the data g(t) is in the "orthogonal" time direction;
 This is well known to lead to severe ill-conditioning of the inversion of the map F from data to unknown.
- nonlinearity helps by "adding information": linear case: double excitation \Rightarrow double observation linear case: exitation at freq. ω \Rightarrow observation at freq. ω nonlinear case: higher harmonics \Rightarrow information multiplies

[Acosta & Uhlmann & Zhai 2022] Westervelt equation:

uniqueness from Neumann-Dirichlet map

[Eptaminitakis & Stefanov 2022] Westervelt equation:

• geometric optics solutions

[BK&Rundell IPI 2021, Math.Comp. 2022, Inv.Prob. 2023, IPI 2023] Westervelt eq.; [BK EECT 2023] JMGT eq.

- Well-definedness and Fréchet differentiability of forward operator $F: \kappa \mapsto u|_{\Sigma}$
- uniqueness for linearised problem from a single boundary observation
- reconstructions by Newton's method
- convergence of frozen Newton via range invariance of linearised forward operator
- uniqueness of $\kappa(x)$ from a single boundary observation (for unknown $c_0(x)$)
- linearised uniqueness of $\kappa(x)$ and $c_0(x)$ from two boundary observations

[Yamamoto &BK 2021] BCBJ eq. (a higher order model)

linearised uniqueness and conditional stability via Carleman estimates

4□▶ 4□▶ 4□▶ 4□ = ♥ 9

[Acosta & Uhlmann & Zhai 2022] Westervelt equation:

uniqueness from Neumann-Dirichlet map

[Eptaminitakis & Stefanov 2022] Westervelt equation:

geometric optics solutions

[BK&Rundell IPI 2021, Math.Comp. 2022, Inv.Prob. 2023, IPI 2023] Westervelt eq.; [BK EECT 2023] JMGT eq.

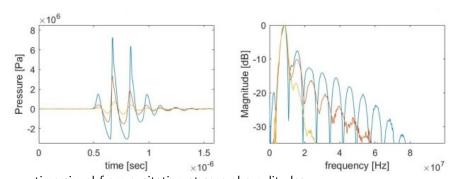
- Well-definedness and Fréchet differentiability of forward operator $F: \kappa \mapsto u|_{\Sigma}$
- uniqueness for linearised problem from a single boundary observation
- reconstructions by Newton's method
- convergence of frozen Newton via range invariance of linearised forward operator
- uniqueness of $\kappa(x)$ from a single boundary observation (for unknown $c_0(x)$)
- linearised uniqueness of $\kappa(x)$ and $c_0(x)$ from two boundary observations

[Yamamoto &BK 2021] BCBJ eq. (a higher order model)

linearised uniqueness and conditional stability via Carleman estimates

multiharmonic expansion

Multiharmonics in nonlinear acoustics



time signal from excitation at several amplitudes; (taken from Master thesis by Teresa Rauscher, University of Klagenfurt, 2021)

Modeling wave propagation in frequency domain

linear wave equation

$$u_{tt} - c^2 \Delta u = r$$

Modeling wave propagation in frequency domain

linear wave equation

$$u_{tt} - c^2 \Delta u = r$$

Using a harmonic excitation $r(x, t) = \Re(\hat{r}(x)e^{i\omega t})$ and a harmonic ansatz for u

$$u(x,t)=\Re\left(\hat{u}(x)e^{i\omega t}\right)$$

Modeling wave propagation in frequency domain

linear wave equation

$$u_{tt} - c^2 \Delta u = r$$

Using a harmonic excitation $r(x, t) = \Re(\hat{r}(x)e^{i\omega t})$ and a harmonic ansatz for u

$$u(x,t)=\Re\left(\hat{u}(x)e^{i\omega t}\right)$$

leads to the Helmholtz equation

$$-\omega^2 \hat{u} - c^2 \Delta \hat{u} = \hat{r}.$$

Modeling nonlinear wave propagation in frequency domain Westervelt equation:

$$u_{tt} - c^2 \Delta u - b \Delta u_t = \kappa(x)(u^2)_{tt} + r$$

Modeling nonlinear wave propagation in frequency domain

Westervelt equation:

$$u_{tt} - c^2 \Delta u - b \Delta u_t = \kappa(x)(u^2)_{tt} + r$$

Using a harmonic excitation $r(x, t) = \Re(\hat{r}(x)e^{i\omega t})$ and a multiharmonic expansion of u

$$u(x,t) = \Re\left(\sum_{k=1}^{\infty} \hat{u}_k(x) e^{ik\omega t}\right)$$

Modeling nonlinear wave propagation in frequency domain

Westervelt equation:

$$u_{tt} - c^2 \Delta u - b \Delta u_t = \kappa(x)(u^2)_{tt} + r$$

Using a harmonic excitation $r(x,t) = \Re(\hat{r}(x)e^{i\omega t})$ and a multiharmonic expansion of u

$$u(x,t) = \Re\left(\sum_{k=1}^{\infty} \hat{u}_k(x) e^{ik\omega t}\right)$$

leads to the coupled system

$$m = 1: \qquad -\omega^2 \hat{u}_1 - (c^2 + \imath \omega b) \Delta \hat{u}_1 = \hat{r} - \frac{\kappa}{2} \omega^2 \sum_{k=3:2}^{\infty} \overline{\hat{u}_{\frac{k-1}{2}}} \hat{u}_{\frac{k+1}{2}}$$

$$m = 2, 3 \dots : -\omega^2 m^2 \hat{u}_m - (c^2 + \imath \omega mb) \Delta \hat{u}_m = -\frac{\kappa}{4} \omega^2 m^2 \sum_{\ell=1}^{m-1} \hat{u}_\ell \hat{u}_{m-\ell}$$

$$-\frac{\kappa}{2}\omega^2 m^2 \sum_{\substack{k=m+2:2\\ \frac{1}{2}}}^{\infty} \frac{\hat{u}_{\underline{k-m}}}{\hat{u}_{\underline{k-m}}} \hat{u}_{\underline{k+m}}$$

Modeling nonlinear wave propagation in frequency domain

Theorem (time periodic solutions; [BK, EECT 2021])

For $b, c^2, \beta, \gamma, T > 0$, $\kappa \in L^{\infty}(\Omega)$, there exists $\rho > 0$ such that for all $r \in L^2(0, T; L^2(\Omega))$ with $\|r\|_{L^2(0,T;L^2(\Omega))} \leq \rho$ there exists a unique solution

$$u \in X := H^2(0, T; L^2(\Omega)) \cap H^1(0; T; H^{3/2}(\Omega)) \cap L^2(0; T; H^2(\Omega))$$

$$\begin{cases} u_{tt} - c^2 \Delta u - b \Delta u_t = \kappa(x) (u^2)_{tt} + g & \text{in } \Omega \times (0, T), \\ \beta u_t + \gamma u + \partial_{\nu} u = 0 & \text{on } \partial \Omega \times (0, T), \\ u(0) = u(T), \ u_t(0) = u_t(T) & \text{in } \Omega, \end{cases}$$

and the solution fulfills the estimate

$$||u||_X \leq \tilde{C}||g||_{L^2(0,T;L^2(\Omega))}$$

Back to the inverse problem

- model equation is nonlinear; nonlinearity occurs in highest order term;
- unknown coefficient $\kappa(x)$ appears in this nonlinear term
- κ is spatially varying whereas the data g(t) is in the "orthogonal" time direction;
 This is well known to lead to severe ill-conditioning of the inversion of the map F from data to unknown.
- nonlinearity helps by "adding information": linear case: double excitation \Rightarrow double observation linear case: exitation at freq. ω \Rightarrow observation at freq. ω nonlinear case: higher harmonics \leadsto information multiplies

Back to the inverse problem

- model equation is nonlinear; nonlinearity occurs in highest order term;
- unknown coefficient $\kappa(x)$ appears in this nonlinear term
- κ is spatially varying whereas the data g(t) is in the "orthogonal" time direction;
 This is well known to lead to severe ill-conditioning of the inversion of the map F from data to unknown.
- nonlinearity helps by "adding information": linear case: double excitation \Rightarrow double observation linear case: exitation at freq. ω \Rightarrow observation at freq. ω nonlinear case: higher harmonics \leadsto information multiplies
- enhanced uniqueness results for the inverse problem: linear case: piecewise constant coefficients nonlinear case: general spatially variable coefficients from a single observation

linearised uniqueness

model: $u_{tt} - c^2 \Delta u - b \Delta u_t = \kappa(x) (u^2)_{tt} + r$ observation: $u(x_0) = g(x)$ $x_0 \in \Sigma$

model:
$$u_{tt} - c^2 \Delta u - b \Delta u_t = \kappa(x) (u^2)_{tt} + r$$

observation: $u(x_0) = g(x)$ $x_0 \in \Sigma$
 $r(x,t) = \Re(\hat{r}(x)e^{\imath \omega t}) \implies u(x,t) = \Re\left(\sum_{k=1}^{\infty} \hat{u}_k(x)e^{\imath k\omega t}\right)$

model:
$$u_{tt} - c^2 \Delta u - b \Delta u_t = \kappa(\mathbf{x}) (u^2)_{tt} + r$$
 observation:
$$u(x_0) = g(\mathbf{x}) \quad x_0 \in \Sigma$$

$$r(\mathbf{x}, t) = \Re(\hat{r}(\mathbf{x}) e^{\imath \omega t}) \quad \rightsquigarrow \quad u(\mathbf{x}, t) = \Re\left(\sum_{k=1}^{\infty} \hat{u}_k(\mathbf{x}) e^{\imath k \omega t}\right)$$

$$\vec{u} = (\hat{u}_j)_{j \in \mathbb{N}} \quad B_m(\vec{u}) = \frac{1}{4} \sum_{\ell=1}^{m-1} \hat{u}_\ell \hat{u}_{m-\ell} + \frac{1}{2} \sum_{k=m+2:2}^{\infty} \overline{\hat{u}_{\frac{k-m}{2}}} \hat{u}_{\frac{k+m}{2}}$$

model:
$$u_{tt} - c^2 \Delta u - b \Delta u_t = \kappa(x) (u^2)_{tt} + r$$
observation:
$$u(x_0) = g(x) \quad x_0 \in \Sigma$$

$$r(x,t) = \Re(\hat{r}(x)e^{\imath \omega t}) \quad \rightsquigarrow \quad u(x,t) = \Re\left(\sum_{k=1}^{\infty} \hat{u}_k(x)e^{\imath k\omega t}\right)$$

$$\vec{u} = (\hat{u}_j)_{j \in \mathbb{N}} \quad B_m(\vec{u}) = \frac{1}{4} \sum_{\ell=1}^{m-1} \hat{u}_\ell \hat{u}_{m-\ell} + \frac{1}{2} \sum_{k=m+2:2}^{\infty} \frac{\hat{u}_{k-m}}{2} \hat{u}_{\frac{k+m}{2}}$$

$$F_m(\kappa, \vec{u}) := \begin{pmatrix} -(\omega^2 m^2 + (c^2 + \imath \omega mb)\Delta) \hat{u}_m + \omega^2 m^2 \kappa B_m(\vec{u}) \\ \operatorname{tr}_{\Sigma} \hat{u}_m \end{pmatrix}$$

$$y_m := \begin{pmatrix} \hat{r} \text{ if } m = 1 / 0 \text{ if } m \geq 2 \\ \hat{g}_m \end{pmatrix}$$

The inverse problem in frequency domain

model:
$$u_{tt} - c^2 \Delta u - b \Delta u_t = \kappa(x) (u^2)_{tt} + r$$
 observation: $u(x_0) = g(x)$ $x_0 \in \Sigma$
$$r(x,t) = \Re(\hat{r}(x)e^{\imath\omega t}) \rightsquigarrow u(x,t) = \Re\left(\sum_{k=1}^{\infty} \hat{u}_k(x)e^{\imath k\omega t}\right)$$

$$\vec{u} = (\hat{u}_j)_{j\in\mathbb{N}} \quad B_m(\vec{u}) = \frac{1}{4}\sum_{\ell=1}^{m-1} \hat{u}_\ell \hat{u}_{m-\ell} + \frac{1}{2}\sum_{k=m+2:2}^{\infty} \frac{\hat{u}_{k-m}}{2} \hat{u}_{\frac{k+m}{2}}$$

$$F_m(\kappa, \vec{u}) := \begin{pmatrix} -(\omega^2 m^2 + (c^2 + \imath \omega mb)\Delta) \hat{u}_m + \omega^2 m^2 \kappa B_m(\vec{u}) \\ \operatorname{tr}_{\Sigma} \hat{u}_m \end{pmatrix}$$

$$y_m := \begin{pmatrix} \hat{r} \text{ if } m = 1 \ / \ 0 \text{ if } m \geq 2 \end{pmatrix}$$

$$\vec{F}(\kappa, \vec{u}) = y$$

The linearised inverse problem

$$\vec{F}(\kappa, \vec{u}) = y$$

where

$$F_{m}(\kappa, \vec{u}) := \begin{pmatrix} -(\omega^{2}m^{2} + (c^{2} + \imath \omega mb)\Delta)\hat{u}_{m} + \omega^{2}m^{2} \kappa B_{m}(\vec{u}) \\ \operatorname{tr}_{\Sigma}\hat{u}_{m} \end{pmatrix}$$

The linearised inverse problem

$$\vec{F}(\kappa, \vec{u}) = y$$

where

$$F_m(\kappa, \vec{u}) := \begin{pmatrix} -(\omega^2 m^2 + (c^2 + \imath \omega mb)\Delta) \hat{u}_m + \omega^2 m^2 \kappa B_m(\vec{u}) \\ \operatorname{tr}_{\Sigma} \hat{u}_m \end{pmatrix}$$

linearisation:

$$\vec{F}'(\kappa, \vec{u})(\underline{d\kappa}, \underline{d\vec{u}}) \approx F(\kappa, \vec{u}) - y$$

where

$$\begin{split} F_m'(\kappa, \vec{u})(\underline{d\kappa}, \underline{d\vec{u}}) &= \\ &\left(-(\omega^2 m^2 + (c^2 + \imath \omega mb)\Delta)\underline{d\hat{u}}_m + \omega^2 m^2 \kappa B_m'(\vec{u})\underline{d\vec{u}} + \omega^2 m^2 \frac{\underline{d\kappa}}{\underline{m}} B_m(\vec{u}) \right. \end{split}$$

4□▶ 4□▶ 4 □ ▶ 4 □ ▶ 3 □ 9 0 0 0

The linearised inverse problem

$$\vec{F}(\kappa, \vec{u}) = y$$

where

$$F_m(\kappa, \vec{u}) := \left(\begin{array}{c} -(\omega^2 m^2 + (c^2 + \imath \omega mb)\Delta) \hat{u}_m + \omega^2 m^2 \kappa B_m(\vec{u}) \\ \operatorname{tr}_{\Sigma} \hat{u}_m \end{array} \right)$$

linearisation:

$$\vec{F}'(\kappa, \vec{u})(\underline{d\kappa}, \underline{d\vec{u}}) \approx F(\kappa, \vec{u}) - y$$

where

$$F'_{m}(0, \vec{u})(\frac{d\kappa}{d\kappa}, \frac{d\vec{u}}) = \left(-(\omega^{2}m^{2} + (c^{2} + \imath\omega mb)\Delta) \frac{d\hat{u}_{m}}{d\kappa} + \omega^{2}m^{2} \frac{d\kappa}{d\kappa} B_{m}(\vec{u}) \right)$$

$$\operatorname{tr}_{\Sigma} \frac{d\hat{u}_{m}}{d\kappa}$$

Linearised uniqueness

Show that

$$\vec{F}'(\kappa, \vec{u})(\underline{d\kappa}, \underline{d\vec{u}}) = 0 \quad \Rightarrow \quad \underline{d\kappa} = 0 \text{ and } \underline{d\vec{u}} = 0$$

where

$$F'_{m}(0, \vec{u})(\frac{d\kappa}{d\kappa}, \frac{d\vec{u}}) = \left(-(\omega^{2}m^{2} + (c^{2} + \imath\omega mb)\Delta) \frac{d\hat{u}_{m}}{d\kappa} + \omega^{2}m^{2} \frac{d\kappa}{d\kappa} B_{m}(\vec{u}) \right)$$

$$\operatorname{tr}_{\Sigma} \frac{d\hat{u}_{m}}{d\kappa}$$

 $(\text{mod}) - (\omega^2 m^2 + (c^2 + \imath \omega m b) \Delta) \underline{d} \hat{u}_m + \omega^2 m^2 \underline{d} \kappa B_m(\vec{u}) = 0 \quad m \in \mathbb{N}$ $(\text{obs}) \operatorname{tr}_{\Sigma} \underline{d} \hat{u}_m = 0 \quad m \in \mathbb{N}$

 $(\text{mod}) - (\omega^2 m^2 + (c^2 + \imath \omega mb)\Delta)\underline{d\hat{u}}_m + \omega^2 m^2 \underline{d\kappa} B_m(\vec{u}) = 0 \qquad m \in \mathbb{N}$ $(\text{obs}) \operatorname{tr}_{\Sigma}\underline{d\hat{u}}_m = 0 \qquad m \in \mathbb{N}$

Choose $\hat{u}_m(x) := \phi(x)\psi_m$, $\psi_m \in \mathbb{R}$, $\phi \in H^2(\Omega, \mathbb{R})$, $\phi \neq 0$ a.e. in Ω Expand wrt. eigensystem $(\varphi_i^k, \lambda_j)_{i \in \mathbb{N}, k \in K^j}$ of $-\Delta$ (with impedance b.c.)

 $d\kappa = 0$ and $d\vec{u} = 0$

$$\begin{array}{ll} (\text{mod}) & -\left(\omega^2 m^2 + (c^2 + \imath \omega m b)\Delta\right) \underline{d} \hat{\underline{u}}_m + \omega^2 m^2 \underline{d} \kappa \ B_m(\vec{u}) = 0 & m \in \mathbb{N} \\ (\text{obs}) & \operatorname{tr}_{\Sigma} \underline{d} \hat{\underline{u}}_m = 0 & m \in \mathbb{N} \end{array}$$

Choose $\hat{u}_m(x) := \phi(x)\psi_m$, $\psi_m \in \mathbb{R}$, $\phi \in H^2(\Omega, \mathbb{R})$, $\phi \neq 0$ a.e. in Ω Expand wrt. eigensystem $(\varphi_i^k, \lambda_j)_{j \in \mathbb{N}, k \in \mathcal{K}^j}$ of $-\Delta$ (with impedance b.c.)

$$0 = \langle \varphi_{j}^{k}, (\mathsf{mod}) \rangle$$

$$= -(\omega^{2} m^{2} - (c^{2} + \imath \omega mb)\lambda_{j}) \underbrace{\langle \varphi_{j}^{k}, \underline{d}\hat{u}_{m} \rangle}_{=:b_{m,j}^{k}} + \omega^{2} m^{2} B_{m}(\vec{\psi}) \underbrace{\langle \varphi_{j}^{k}, \varphi^{2} \underline{d}\kappa \rangle}_{=:a_{j}^{k}}$$

$$\Rightarrow b_{m,j}^{k} = M_{m,j} a_{j}^{k} \qquad \text{with } M_{m,j} := \frac{\omega^{2} m^{2} B_{m}(\vec{\psi})}{\omega^{2} m^{2} - (c^{2} + \imath \omega mb)\lambda_{j}}$$

$$(\mathsf{obs}) \Rightarrow 0 = \mathsf{tr}_{\Sigma} \underline{d}\hat{u}_{m} = \sum_{j \in \mathbb{N}} \sum_{k \in K^{j}} b_{m,j}^{k} \, \mathsf{tr}_{\Sigma} \varphi_{j}^{k} = \sum_{j \in \mathbb{N}} M_{m,j} \sum_{k \in K^{j}} a_{j}^{k} \, \mathsf{tr}_{\Sigma} \varphi_{j}^{k}$$

$$(\text{mod}) \quad - \left(\omega^2 m^2 + (c^2 + \imath \omega m b) \Delta\right) \underline{d} \hat{\underline{u}}_m + \omega^2 m^2 \underline{d} \kappa B_m(\vec{u}) = 0 \qquad m \in \mathbb{N}$$

$$(\text{obs}) \quad \operatorname{tr}_{\Sigma} \underline{d} \hat{\underline{u}}_m = 0 \qquad m \in \mathbb{N}$$

Choose $\hat{u}_m(x) := \phi(x)\psi_m$, $\psi_m \in \mathbb{R}$, $\phi \in H^2(\Omega, \mathbb{R})$, $\phi \neq 0$ a.e. in Ω Expand wrt. eigensystem $(\varphi_j^k, \lambda_j)_{j \in \mathbb{N}, k \in \mathcal{K}^j}$ of $-\Delta$ (with impedance b.c.) $\langle \varphi_j^k, \underline{d}\hat{u}_m \rangle =: b_{m,j}^k, \quad \langle \varphi_j^k, \phi^2 \underline{d}\kappa \rangle =: a_j^k$ $b_{m,j}^k = M_{m,j} a_j^k \qquad \text{with } M_{m,j} := \frac{\omega^2 m^2 B_m(\vec{\psi})}{\omega^2 m^2 - (c^2 + \imath \omega m b)\lambda_j}$ $0 = \sum M_{m,j} \sum a_j^k \operatorname{tr}_{\Sigma} \varphi_j^k \quad m \in \mathbb{N}$

$$\underline{d\kappa} = 0$$
 and $\underline{d\vec{u}} = 0$

$$\begin{array}{ll} \mbox{(mod)} & -\left(\omega^2 m^2 + (c^2 + \imath \omega mb)\Delta\right)\underline{d}\hat{\underline{u}}_m + \omega^2 m^2 \underline{d}\kappa \ B_m(\vec{u}) = 0 & m \in \mathbb{N} \\ \mbox{(obs)} & \mbox{tr}_\Sigma \underline{d}\hat{\underline{u}}_m = 0 & m \in \mathbb{N} \end{array}$$

Choose $\hat{u}_m(x) := \phi(x)\psi_m$, $\psi_m \in \mathbb{R}$, $\phi \in H^2(\Omega, \mathbb{R})$, $\phi \neq 0$ a.e. in Ω Expand wrt. eigensystem $(\varphi_j^k, \lambda_j)_{j \in \mathbb{N}, k \in \mathcal{K}^j}$ of $-\Delta$ (with impedance b.c.) $\langle \varphi_j^k, \underline{d}\hat{u}_m \rangle =: b_{m,j}^k, \quad \langle \varphi_j^k, \phi^2 \underline{d}\kappa \rangle =: a_j^k$ $b_{m,j}^k = M_{m,j} a_j^k \qquad \text{with } M_{m,j} := \frac{\omega^2 m^2 B_m(\vec{\psi})}{\omega^2 m^2 - (c^2 + \imath \omega m b)\lambda_j}$ $0 = \sum M_{m,j} \sum a_j^k \operatorname{tr}_{\Sigma} \varphi_j^k \quad m \in \mathbb{N}$

Lemma: The infinite matrix M is nonsingular.

$$\Rightarrow \quad 0 = \sum_{k \in K^j} \mathbf{a}_j^k \operatorname{tr}_{\Sigma} \varphi_j^k \quad j \in \mathbb{N}$$

 $i \in \mathbb{N}$ $k \in K^j$

$$\begin{array}{ll} (\text{mod}) & -\left(\omega^2 m^2 + (c^2 + \imath \omega m b)\Delta\right) \underline{d}\hat{\underline{u}}_m + \omega^2 m^2 \underline{d\kappa} \, B_m(\vec{u}) = 0 & m \in \mathbb{N} \\ (\text{obs}) & \text{tr}_\Sigma \underline{d}\hat{\underline{u}}_m = 0 & m \in \mathbb{N} \end{array}$$

Choose $\hat{u}_m(x) := \phi(x)\psi_m$, $\psi_m \in \mathbb{R}$, $\phi \in H^2(\Omega, \mathbb{R})$, $\phi \neq 0$ a.e. in Ω Expand wrt. eigensystem $(\varphi_j^k, \lambda_j)_{j \in \mathbb{N}, k \in K^j}$ of $-\Delta$ (with impedance b.c.) $\langle \varphi_j^k, \underline{d}\hat{u}_m \rangle =: b_{m,j}^k, \quad \langle \varphi_j^k, \phi^2 \underline{d}\kappa \rangle =: a_j^k$ $b_{m,j}^k = M_{m,j} a_j^k \qquad \text{with } M_{m,j} := \frac{\omega^2 m^2 B_m(\vec{\psi})}{\omega^2 m^2 - (c^2 + \imath \omega m b) \lambda_i}$

$$0 = \sum_{j \in \mathbb{N}} \mathit{M}_{m,j} \, \sum_{k \in \mathit{K}^j} \mathit{a}^k_j \, \mathsf{tr}_\Sigma arphi^k_j \quad m \in \mathbb{N}$$

Lemma: The infinite matrix M is nonsingular.

$$\Rightarrow \quad 0 = \sum_{k \in \mathcal{K}^j} \mathbf{a}_j^k \operatorname{tr}_{\Sigma} \varphi_j^k \quad j \in \mathbb{N} \quad \Rightarrow \quad 0 = \operatorname{tr}_{\Sigma} \underbrace{\operatorname{Proj}_{E_j} [\phi^2 \underline{d\kappa}]}_{=: v_i}$$

$$(\text{mod}) - (\omega^2 m^2 + (c^2 + \imath \omega mb)\Delta)\underline{d}\underline{\hat{u}}_m + \omega^2 m^2 \underline{d}\underline{\kappa} B_m(\vec{u}) = 0 \qquad m \in \mathbb{N}$$

$$(\text{obs}) \operatorname{tr}_{\Sigma}\underline{d}\underline{\hat{u}}_m = 0 \qquad m \in \mathbb{N}$$

Choose $\hat{u}_m(x) := \phi(x)\psi_m$, $\psi_m \in \mathbb{R}$, $\phi \in H^2(\Omega, \mathbb{R})$, $\phi \neq 0$ a.e. in Ω Expand wrt. eigensystem $(\varphi_j^k, \lambda_j)_{j \in \mathbb{N}, k \in K^j}$ of $-\Delta$ (with impedance b.c.) $\langle \varphi_j^k, \underline{d}\hat{u}_m \rangle =: b_{m,j}^k, \quad \langle \varphi_j^k, \phi^2 \underline{d}\kappa \rangle =: a_j^k$ $b_{m,j}^k = M_{m,j} a_j^k \qquad \text{with } M_{m,j} := \frac{\omega^2 m^2 B_m(\vec{\psi})}{\omega^2 m^2 - (c^2 + \imath \omega mb)\lambda_j}$ $0 = \sum M_{m,j} \sum a_j^k \operatorname{tr}_{\Sigma} \varphi_j^k \quad m \in \mathbb{N}$

Lemma: The infinite matrix M is nonsingular.

$$\Rightarrow \quad 0 = \sum_{k \in \mathcal{K}^j} \mathbf{a}_j^k \operatorname{tr}_{\Sigma} \varphi_j^k \quad j \in \mathbb{N} \quad \Rightarrow \quad 0 = \operatorname{tr}_{\Sigma} \underbrace{\operatorname{Proj}_{E_j} [\phi^2 \underline{d\kappa}]}_{=:v_i}$$

Unique Continuation:

$$-\Delta v_j = \lambda_j v_j$$
 and $\partial_{\nu} v_j + \gamma v_j = 0$ and $\operatorname{tr}_{\Sigma} v_j = 0 \quad \Rightarrow \quad v_j = 0$

$$(\text{mod}) \quad - \left(\omega^2 m^2 + (c^2 + \imath \omega m b) \Delta\right) \underline{d} \hat{u}_m + \omega^2 m^2 \underline{d} \kappa B_m(\vec{u}) = 0 \qquad m \in \mathbb{N}$$

$$(\text{obs}) \quad \operatorname{tr}_{\Sigma} \underline{d} \hat{u}_m = 0 \qquad m \in \mathbb{N}$$

Choose $\hat{u}_m(x) := \phi(x)\psi_m$, $\psi_m \in \mathbb{R}$, $\phi \in H^2(\Omega, \mathbb{R})$, $\phi \neq 0$ a.e. in Ω Expand wrt. eigensystem $(\varphi_j^k, \lambda_j)_{j \in \mathbb{N}, k \in \mathcal{K}^j}$ of $-\Delta$ (with impedance b.c.) $\langle \varphi_j^k, \underline{d}\hat{u}_m \rangle =: b_{m,j}^k, \quad \langle \varphi_j^k, \phi^2 \underline{d}\kappa \rangle =: a_j^k$

$$b_{m,j}^{k} = M_{m,j} a_{j}^{k} \qquad \text{with } M_{m,j} := \frac{\omega^{2} m^{2} B_{m}(\vec{\psi})}{\omega^{2} m^{2} - (c^{2} + \imath \omega mb) \lambda_{j}}$$

$$0 = \sum_{j \in \mathbb{N}} M_{m,j} \sum_{k \in K^j} a_j^k \operatorname{tr}_{\Sigma} \varphi_j^k \quad m \in \mathbb{N}$$

Lemma: The infinite matrix M is nonsingular.

$$\Rightarrow \quad 0 = \sum_{k \in \mathcal{K}^j} \mathbf{a}_j^k \operatorname{tr}_{\Sigma} \varphi_j^k \quad j \in \mathbb{N} \quad \Rightarrow \quad 0 = \operatorname{tr}_{\Sigma} \underbrace{\operatorname{Proj}_{E_j} [\phi^2 \underline{d\kappa}]}_{=: \mathsf{V}_i}$$

Unique Continuation:

$$-\Delta v_j = \lambda_j v_j$$
 and $\partial_{\nu} v_j + \gamma v_j = 0$ and $\operatorname{tr}_{\Sigma} v_j = 0 \quad \Rightarrow \quad v_j = 0$

$$\Rightarrow \quad 0 = a_j^k \quad k \in K^j, \ j \in \mathbb{N} \quad \Rightarrow \quad b_{m,j}^k = M_{m,j} a_j^k = 0 \quad k \in K^j, \ j \in \mathbb{N}$$

←□▶ ←□▶ ←□▶ ←□▶ ←□ ♥ ♥ ♥ ♥

$$(\text{mod}) - (\omega^2 m^2 + (c^2 + \iota \omega m b) \Delta) \underline{d} \underline{\hat{u}}_m + \omega^2 m^2 \underline{d} \underline{\kappa} \, B_m(\vec{u}) = 0 \qquad m \in \mathbb{N}$$

$$(\text{obs}) \operatorname{tr}_{\Sigma} \underline{d} \underline{\hat{u}}_m = 0 \qquad m \in \mathbb{N}$$

Choose $\hat{u}_m(x) := \phi(x)\psi_m$, $\psi_m \in \mathbb{R}$, $\phi \in H^2(\Omega, \mathbb{R})$, $\phi \neq 0$ a.e. in Ω Expand wrt. eigensystem $(\varphi_j^k, \lambda_j)_{j \in \mathbb{N}, k \in K^j}$ of $-\Delta$ (with impedance b.c.) $\langle \varphi_j^k, \underline{d}\hat{u}_m \rangle =: b_{m,j}^k$, $\langle \varphi_j^k, \varphi^2 \underline{d}_K \rangle =: a_j^k$ with $M_{m,j} := \frac{\omega^2 m^2 B_m(\vec{\psi})}{\omega^2 m^2 - (c^2 + \imath \omega m b)\lambda_j}$

$$0 = \sum_{j \in \mathbb{N}} M_{m,j} \sum_{k \in K^j} a_j^k \operatorname{tr}_{\Sigma} \varphi_j^k \quad m \in \mathbb{N}$$

Lemma: The infinite matrix M is nonsingular.

$$\Rightarrow \quad 0 = \sum_{k \in \mathcal{K}^j} \mathbf{a}_j^k \operatorname{tr}_{\Sigma} \varphi_j^k \quad j \in \mathbb{N} \quad \Rightarrow \quad 0 = \operatorname{tr}_{\Sigma} \underbrace{\operatorname{Proj}_{E_j} [\phi^2 \underline{d\kappa}]}_{=: \mathsf{V}_i}$$

Unique Continuation:

$$-\Delta \emph{v}_{\emph{j}} = \lambda_{\emph{j}}\emph{v}_{\emph{j}}$$
 and $\partial_{\nu}\emph{v}_{\emph{j}} + \gamma\emph{v}_{\emph{j}} = 0$ and $\mathrm{tr}_{\Sigma}\emph{v}_{\emph{j}} = 0$ \Rightarrow $\emph{v}_{\emph{j}} = 0$

$$\Rightarrow 0 = \frac{a_j^k}{j} \quad k \in K^j, \ j \in \mathbb{N} \quad \Rightarrow \quad b_{m,j}^k = M_{m,j} \frac{a_j^k}{a_j^k} = 0 \quad k \in K^j, \ j \in \mathbb{N}$$

$$\Rightarrow \quad \frac{d\kappa}{d\kappa} = 0 \text{ and } \frac{d\vec{u}}{d\vec{v}} = 0$$

(B > 4B > 4 글 > 4 글 > - 글 -

Linearised uniqueness

Theorem (BK&Rundell, IPI 2023)

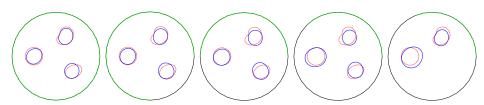
The homogeneous linearised (at $\kappa=0$, $\vec{u}=\phi(x)\vec{\psi}$ with $B_m(\vec{\psi})\neq 0$, $m\in\mathbb{N}$) inverse problem of nonlinearity coefficient imaging in frequency domain only has the trivial solution.

⇒ shortcut to the end

reconstructions from two harmonics

Reconstruction of three inclusions from partial data

synthetic measurements with 1% noise measurements taken on the green part of the boundary; α ... observation angle reconstruction by regularized Newton iterations [BK& Rundell, IPI 2023]



(a)
$$\frac{\alpha}{2\pi} = 1$$

(a)
$$\frac{\alpha}{2\pi} = 1$$
 (b) $\frac{\alpha}{2\pi} = 0.75$ (c) $\frac{\alpha}{2\pi} = 0.5$ (d) $\frac{\alpha}{2\pi} = 0.4$ (e) $\frac{\alpha}{2\pi} = 0.3$

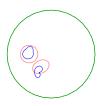
(c)
$$\frac{\alpha}{2\pi} = 0.5$$

(d)
$$\frac{\alpha}{2\pi} = 0.4$$

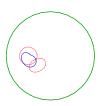
(e)
$$\frac{\alpha}{2\pi} = 0.3$$

Reconstruction of two inclusions at different distances

synthetic measurements with 1%noise

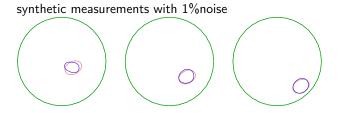


(c)
$$\frac{\theta}{2\pi}=0.1$$



(d)
$$\frac{\theta}{2\pi} = 0.09$$

Reconstruction of one inclusion at different distances from the boundary



Outlook: Some further inverse problems

Reconstruct differentiation order(s)

• Determine fractional differentiation orders α_n , β_m in wave type eq.

$$\sum_{n=0}^{N} a_n \partial_t^{2+\alpha_n} p - \sum_{m=0}^{M} b_m \partial_t^{\beta_m} \Delta p = \tilde{f}.$$

[BK& Rundell 2022]; for subdiffusion, see [Hatano& Nakagawa& Wang& Yamamoto 2013] ...[Jin& Kian 2022]

Reconstruct nonlinearity

• Determine nonlinearity f in generalized Westervelt equation

$$u_{tt} - c^2 \Delta u - b \Delta u_t = -\kappa(f(u))_{tt}$$

[BK& Rundell 2021]

Reconstruct general memory kernels

• Determine kernels k_{ε} , $k_{\text{tr}\,\varepsilon}$ in viscoelastic model

$$\rho \mathbf{u}_{tt} - \mathsf{div}[\mathbb{C}\varepsilon(\mathbf{u}) + k_{\varepsilon} * \mathbb{A}\varepsilon(\mathbf{u}_{t}) + k_{\mathsf{tr}\,\varepsilon} * \mathsf{tr}\varepsilon(\mathbf{u}_{t})\mathbb{I}] = \mathbf{f}$$

[BK & Khristenko & Nikolić & Rajendran & Wohlmuth 2022]

Thank you for your attention!