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Outline

@ modeling:

e models of nonlinear acoustics
e fractional damping models in ultrasonics

@ analysis

e parameter asymptotics
e multiharmonic expansion

@ inverse problems

e nonlinearity parameter imaging




Nonlinear Acoustic Wave Propagation

nonlinear wave propagation:




Nonlinear Acoustic Wave Propagation

nonlinear wave propagation:

sound speed depends on (signed) amplitude = sawtooth profile
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models of nonlinear acoustics




Physical Principles

main physical quantities:

@ acoustic particle velocity v; @ absolute temperature ;
@ acoustic pressure p; @ heat flux q;
@ mass density o; @ entropy 7);

decomposition into mean and fluctuating part:

V=vg+v.=uv, p=po+ p~, 0= 00+ 0~




Physical Principles

@ acoustic particle velocity v; @ absolute temperature ;
@ acoustic pressure p; @ heat flux g;
@ mass density o; @ entropy 7);

governing equations:
@ momentum conservation = Navier Stokes equation (with V x v = 0):

g(vt + V(v- v)) +Vp = (i% + CV)AV

@ mass conservation = equation of continuity:
ot +V-(ov)=0

@ entropy equation: ol +v-Vy)=-V-q
@ equation of state: P exp <ﬂ>
Po Cy
, 1
@ Gibbs equation: vdn = e, di — p—do
Y

v = 2...adiabatic index;

Cp / ¢, ...specific heat at constant pressure / volume; ey ey a= =




Physical Principles

So far, 5 equations for 6 unknowns v, p, o, ¥, g, 7.
Still need a constitutive relation between temperature and heat flux.
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Physical Principles

So far, 5 equations for 6 unknowns v, p, o, ¥, g, 7.
Still need a constitutive relation between temperature and heat flux.

Classically: Fourier's law q=—KVv
K...thermal conductivity

leads to infinite speed of propagation paradox.

Maxwell-Cattaneo law Tqr +q=—KVU

7. ..relaxation time

allows for “thermal waves” (second sound phenomenon)




Classical Models of Nonlinear Acoustics

o Kuznetsov's equation [Lesser & Seebass 1968, Kuznetsov 1971]

Py — CCAP — 6Ape, = (W%Pi + QO|V|2>tt

where gov; = —Vp ~ 00t = p
for the particle velocity v and the pressure p, i.e.,

Yo — 2B — 500 = (3 ()2 + V)

since V x v =0 hence v= —V1 for a velocity potential v
= r(Pr(% + ;%) +~ —1) ...diffusivity of sound;

= 4 — 1 ...nonlinearity parameter (in liquids / gases)




Classical Models of Nonlinear Acoustics

o Kuznetsov's equation [Lesser & Seebass 1968, Kuznetsov 1971]

Pt — CQApN —0Ap.; = (w%l?i + QO|V|2)tt

where gov; = —Vp ~ oot = p
for the particle velocity v and the pressure p

o Westervelt equation [Westervelt 1963]  via gg|v|? ~ Qo—lcz(pw)2

1
2 B 2
Prte — CTAp — 0Ap., = 00C2 (1 + 2A>p~tt

= K(Pr(§ + ££) + v —1) .. diffusivity of sound;

= 4 — 1 ...nonlinearity parameter (in liquids / gases)




Advanced Models of Nonlinear Acoustics (Examples)

e Jordan-Moore-Gibson-Thompson equation [Jordan 2009, 2014],
[Christov 2009], [Straughan 2010]

TVeet + Ve — C2A¢ —(0+ TCZ)ATpt = (ﬁB@(QﬁtV + ‘sz)t

T...relaxation time




Advanced Models of Nonlinear Acoustics (Examples)

e Jordan-Moore-Gibson-Thompson equation [Jordan 2009, 2014],
[Christov 2009], [Straughan 2010]

TVt + Yee — C2A¢ - ((5 + TC2)A¢t = (%(thf + ‘quz)t

T...relaxation time

2 .
z =1t + 55 solves weakly damped wave equation

zy — EAz + vz = r(z,9))

Shox_ 2,6 o _1_ _c?
with ¢ = ¢ +7_.’}’—7_ m>0
~~ second sound phenomenon




Advanced Models of Nonlinear Acoustics (Examples)

e Blackstock-Crighton equation [Brunnhuber & Jordan 2016],
[Blackstock 1963], [Crighton 1979]

(00 — ah) (Ve — CPAY — 51,) — ralsre = (52 (7) + Vo)

tt

a= PLr .. thermal conductivity




Advanced versus Classical Models of Nonlinear Acoustics

o Blackstock-Crighton equation [Brunnhuber & Jordan 2016],
[Blackstock 1963], [Crighton 1979]

(00 — aB) (e — A — 5Ap0) — radsihe = (32 (V) + V)

tt

a= ﬁ .. thermal conductivity

e Jordan-Moore-Gibson-Thompson equation [Jordan 2009, 2014],
[Christov 2009], [Straughan 2010]

Tue + e — DY — (6 + 7C)Arpy = (WBCz(V)tY + ‘Vw|2)t

T...relaxation time

o cf. Kuznetsov:

Vet — PO — 089 = (5E7(43) + Ve,

CO> <F>r «E> (=




@ further models:[Angel & Aristegui 2014], [Christov & Christov & Jordan 2007],
[Kudryashov & Sinelshchikov 2010], [Ockendon & Tayler 1983], [Makarov &
Ochmann 1996], [Rendén & Ezeta &Pérez-Lépez 2013], [Rasmussen & Sgrensen &
Christiansen 2008], [Soderholm 2006], ...

@ resonances, shock waves:[Ockendon & Ockendon & Peake & Chester 1993],
[Ockendon & Ockendon 2001, 2004, 2016],. ..

@ traveling waves solutions:[Jordan 2004], [Chen & Torres & Walsh 2009], [Keiffer &
McNorton & Jordan & Christov, 2014], [Gaididei & Rasmussen & Christiansen &
Sgrensen, 2016],. ..

@ well-posendness and asymptotic behaviour:
for KZK: [Rozanova-Pierrat 2007, 2008, 2009, 2010]
for Westervelt, Kuznetsov, Blackstock-Crighton, JMGT on bounded domain Q:
based on semigroup theory and energy estimates:[BK & Lasiecka 2009, 2012], [BK &
Lasiecka & Veljovi¢ 2011], [BK & Lasiecka & Marchand 2012], [BK & Lasiecka &
Pospiezalska 2012], [Lasiecka & Wang 2015], [Liu & Triggiani 2013], [Marchand &
McDevitt & Triggiani 2012], [Nikoli¢ 2015], [Nikoli¢ & BK 2016], [Pellicer &
Sold-Morales 2019], , [Dell’Oro&Lasiecka&Pata 2020]
based on maximal L, regularity:[Meyer & Wilke 2011, 2013], [Meyer & Simonett
2016], [Brunnhuber & Meyer 2016], [BK 2016]
Cauchy problem (on Q = R*)
for Kuznetsov: [Dekkers & Rozanova-Pierrat 2019]
for JMGT: [Pellicer & Said-Houari 2017], [Nikoli¢ & Said-Houari 2021]

@ control of JMGT [Bucci&Lasiecka 2020], [Bucci&Pandolfi 2020]

«<O» «Fr «E>» «=r» = DA




Analysis of initial-boundary value problems

consider:

Westervelt / Kuznetsov / Jordan-Moore-Gibson-Thompson /
Blackstock-Crighton equation on some domain Q C R
+boundary conditions on 92

+initial conditions at t =0

e.g.,
U — Au — bAuy = 5(u?)e in Q
ou
o g on 900
u(t=0)=up, u(t=0)=u in Q

where u ... pressure




Degeneracy

e.g., for Westervelt (u ... pressure)

Uty — C2AU — bAUt = %(Uz)tt
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e.g., for Westervelt (u ... pressure)
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= degeneracy for u > -
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1
= degeneracy for u > -
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Degeneracy

e.g., for Westervelt (u ... pressure)
U — 2Au — bAuy = %(uz)tt = KU U + /f(u,g)2
(1 — ku)ug — 2Au — bAuy = k(ug)?
= degeneracy for u > %

similarly for Kuznetsov, Jordan-Moore-Gibson-Thompson,
Blackstock-Crighton.

~+ employ energy estimates to obtain bound on u in
C(0, T; H3(Q))

~~ use smallness of v in C(0, T; H3(Q)) and H2(Q) — Lo(Q)
embedding to guarantee 1 — ku > a >0




Degeneracy

e.g., for Westervelt (u ... pressure)

U — 2Au — bAuy = %(uz)tt = KU U + /f(u,g)2

(1 — ku)ug — 2Au — bAuy = k(ug)?
= degeneracy for u > %

similarly for Kuznetsov, Jordan-Moore-Gibson-Thompson,
Blackstock-Crighton.
~ employ energy estimates to obtain bound on v in
C(0, T; H3(Q))
~~ use smallness of v in C(0, T; H3(Q)) and H2(Q) — Lo(Q)
embedding to guarantee 1 — ku > a >0

~~ fixed point argument




Degeneracy — State dependent wave speed

e.g., for Westervelt (u ... pressure)
2 _m(2Y. 2
Uty — ¢“Au — bAuy = 5(U%) e = KU Uge + K(ur)

(1 — kt)ug — 2Au — bAuy = r(u)?

1
= degeneracy for u > -

similarly for Kuznetsov, Jordan-Moore-Gibson-Thompson,
Blackstock-Crighton.




Degeneracy — State dependent wave speed

e.g., for Westervelt (u ... pressure)
Uy — 2Au — bAuy = %(uz)tt = KU Uy + /‘i(ut)2

(1 — kt)ug — 2Au — bAuy = r(u)?
= degeneracy for u > %

similarly for Kuznetsov, Jordan-Moore-Gibson-Thompson,
Blackstock-Crighton.

This also illustrates state dependence of the effective wave speed:

e — E2Au — b(u)Au; = f(u)

with &(u) = m b(u) = Hu, f(u) = 1 w as long as
1 — ku > 0 (otherwise the modeI loses its validity)

CO> <F>r «E> (=




parameter asymptotics




Vanishing relaxation time

Jordan-Moore-Gibson-Thompson equation (b = d + 7¢?)

TPhe + Uh — AT — bAYT = (555 (47)* + [VT[?),

Kuznetsov's equation:

Ve = A = 600 = (522(0) + V9
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Vanishing relaxation time

Jordan-Moore-Gibson-Thompson equation (b = d + 7¢?)

TPhe + Uh — AT — bAYT = (555 (47)* + [VT[?),

Kuznetsov's equation:

Ve = A = 600 = (522(0) + V9

Existence of a limit 0 of 4™ as 7\, 0?
Does 19 solve Kuznetsov's equation?

@ As 7 — 0 the PDE changes from hyperbolic (group) to
parabolic (analytic semigroup, maximal parabolic regularity)

[Bongarti&Charoenphon&Lasiecka; BK& Nikoli¢, 2019-21]
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equation; without and with the gradient nonlinearity |V1)|?
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@ For 7 = 0 (classical Westervelt and Kuznetsov equation) the
reformulation of the linearization as a first order system leads to an
analytic semigroup and maximal parabolic regularity.

These properties get lost with 7 > 0; the equation loses its “parabolic
nature”.
This is consistent with physics: infinite — finite propagation speed.
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nature”.
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Remarks

o We will consider the “Westervelt type” and the “Kuznetsov type”
equation; without and with the gradient nonlinearity |V1)|?

@ For 7 = 0 (classical Westervelt and Kuznetsov equation) the
reformulation of the linearization as a first order system leads to an
analytic semigroup and maximal parabolic regularity.

These properties get lost with 7 > 0; the equation loses its “parabolic
nature”.

This is consistent with physics: infinite — finite propagation speed.
@ As in the classical models, potential degeneracy can be an issue

T+ U — CPAYT — bAYT = (SWI +[VYT).

=k o], + [V |3
= YL+ (1— r])p — CAYT — bAY] = [V |3




Plan of the analysis

Establish well-posedness of the linearized equation along with
energy estimates.

Use these results to prove well-posedness of the Westervelt
type JMGT equation for 7 > 0 by a fixed point argument.
Establish additional higher order energy estimates.

Use these results to prove well-posedness of the Kuznetsov
type JMGT equation for 7 > 0 (sufficiently small) by a fixed
point argument.

Take limits as 7 — 0



Plan of the analysis

o Establish well-posedness of the linearized equation along with
energy estimates.

@ Use these results to prove well-posedness of the Westervelt
type JMGT equation for 7 > 0 by a fixed point argument.

@ Establish additional higher order energy estimates.

@ Use these results to prove well-posedness of the Kuznetsov
type JMGT equation for 7 > 0 (sufficiently small) by a fixed
point argument.

o Take limitsas 7 — 0
BK & Vanja Nikoli¢. On the Jordan-Moore-Gibson-Thompson equation:

well-posedness with quadratic gradient nonlinearity and singular limit for vanishing
relaxation time. Math. Meth. Mod. Appl. Sci. (M3AS), 29:2523-2556, 20109.

BK & Vanja Nikoli¢. Vanishing relaxation time limit of the
Jordan—Moore—Gibson—Thompson wave equation with Neumann and absorbing
boundary conditions. Pure and Applied Functional Analysis, 5:1-26, 2020.

< > < P AEDP» =




The linearized problem

thtt + O((X, t)¢tf - C2Aw — bA’d)t =f in Q x (O, T),
=0 ondQx(0,7),
(¢7wtawtt) = (¢07w17¢2) in Q x {0}7

under the assumptions

a(x,t)>a>0 onQ ae inQ2x(0,T). (1)

a € L0, T; L(Q)) N L0, T; W3(Q)),
f e HY(0, T; L3(Q)).
(Yo, P1,92) € Hg(Q) N H*(Q) x Hz(Q) N H*(Q) x Hy(Q).  (3)




The linearized problem
Tee + (X, b — A — bAY: = f  in Qx (0, T),
=0 ondQx(0,T), (4)

(1, e, Y1) = (Yo, ¥1,¢2)  in Q x {0},

Theorem (lin)

Let c®, b, 7 >0, and let T > 0. Let the assumptions (1), (2), (3) hold.
Then there exists a unique solution

Y e XW = Whe°(0,T; HY(Q)NH?(Q)NW?2(0,T; HY(Q)NH3(0,T; L*(Q)).
The solution fullfils the estimate
V.- =721 0eel T2 + TIWeel Toopn + NWeel T2 + 191 yrope
<C(a, T,7) (W)Oﬁ-p + Y113 + 7220 4 1 Pser2 + 1l 22p2) -

If additionally || Vo peo 3 < zo— ho/ds then C(«, T,7) is independent of 7.




Well-posedness of the Westervelt type JMGT equation
e + (1 — ktpe)iher — 2O — bApy =0 in Q x (0, T),
=0 ondQx(0,T),

(11&7 wta ¢tt) = (wOa ¢1’¢2) in  x {0}?

Theorem

Let 2, b>0, k€ R and let T > 0. There exist p,po > 0 such that for all
(v00, 1, 92) € H(}(Q) N H?(Q) x H&(Q) N H?(Q) x H&(Q) satisfying

oty + 1¥1litey + Tllv2ltng) < A5,

there exists a unique solution 1) € X" and ||¢H‘2/VT < p?.

Banach's Contraction Principle for 7 : ¢ — 1 solution ¢ of (4) with o =1 — k¢¢, f = 0:
self-mapping on B;(W: energy estimate from Theorem (lin).
contractivity: ||7(¢1) — T(#2)llw,» < qll¢1 — ¢2|lw,r by estimate from Theorem (lin):

) =1p1 — hs = T(¢1) — T(¢2) solves (4) with a =1 — k¢ and
f= éﬂbz «t Where qAb = ¢1— ¢2.




Limits for vanishing relaxation time
Consider the 7-independent part of the norms

Il - =

T el fope + 70t oo + 19t 2 + 191100 e

namely

1l %w = IeellZp + 191 yr.ce e

since these norms will be uniformly bounded, independently of 7.




Limits for vanishing relaxation time

Consider the T-independent part of the norms

1915w = I¥eelfopn + 101100 2
and impose smallness of initial data in the space

X3V = HE(Q) N H?(Q) x H(Q) N H3(Q) x H3(Q).

Theorem (BK&Nikoli¢ M3AS 2019)

Let c?, b, T >0, and k € R. Then there exist T, pg > 0 such that

w
for all (1o, 1, 42) € By , the family (47) (0.7 of solutions to
the Westervelt type JMGT equation converges weakly* in X" to a
solution 1) € X" of the Westervelt equation with initial conditions

$(0) = o, ¥:(0) = ¢1.




Numerical Experiments

@ comparison of Westervelt-JMGT and Westervelt solutions

@ numerical experiments for water in a 1-d channel geometry

c=1500m/s, 6 =6-10"°m?/s, p = 1000 kg/m>, B/A = 5;

@ space discretization with B-splines (Isogeometric Analysis):
quadratic basis functions, globally C?; 251 dofs on
Q = [0,0.2m]

@ time discretization by Newmark scheme, adapted to 3rd order
equation; 800 time steps on [0, T] = [0, 45us]

e initial conditions (v, ¥1,12) = (0 Aexp( M) , 0)
with 4 =8-10*m?/s? and ¢ = 0.01,




Snapshots of pressure p = p1); for fixed relaxation time
T=0.1pus

T=0.1pus
| [—t=0s
—t=16.85pus
100} —t=3371ps |
—t=45pus
— 80 1
o
=
g 60 1
2
5_40, -
20r 1
0

0 4107 8107 012 016 02




Pressure wave for different relaxation parameters 7 at final
time t = 45 pus.

t=45us
70 T

—7=1pus
601 —7=05pus||
—T17=0pus

pressure [MPa]

0014 0.16 0.18 0.2




Relative errors as 7 — 0

Error in C([O, T]% HI(Q)) Error in XW
0.12F 07l
0.10f 0.6f
0.08F 0.5
T >
S Rl L
g‘ 0.06| g 04
0.3f
0.04
0.2}
0.02F 01
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
8] 1077 8] 1077
in C([0, T]; HY(Q in XW = H2(0, T; HY(Q
in C([0, T]; H*(2)) in = H%(0, T; HY(Q))




Recap: Vanishing relaxation time

Jordan-Moore-Gibson-Thompson equation
T + U — YT — (84 7)AY] = (g (VD)7 + [VUT?),

versus Kuznetsov's equation:

b — P00 — 680 = (55 ((0e)) + [VYI),

Existence of a limit 1% of 7 as 7\, 0? Ves
Does 19 solve Kuznetsov's equation? Yes

[Bongarti&Charoenphon&Lasiecka; BK& Nikoli¢, 2019-21]




limit in JMGT /Kuznetsov/Westervelt

for vanishing diffusivity of sound o




Vanishing diffusivity of sound

Kuznetsov's equation (likewise for Jordan-Moore-Gibson-Thompson):
2
wi—«¥A¢5—5Awf=(}ﬁ;w€f+¢V¢ﬂ:)
t
undamped quasilinear wave equation:

Yo = 0y = (B2 (00 + Vo)

Existence of a limit 1% of 1% as 6 \, 0?
Does ° solve the respective inviscid (§ = 0) equation?

Challenge: § > 0 is crucial for global in time well-posedness and
exponential decay in d € {2,3} space dimensions.




Vanishing diffusivity of sound

Kuznetsov's equation (likewise for Jordan-Moore-Gibson-Thompson):
2
wi—«¥A¢5—5Awﬂ=(z%ﬂwbz+\vw1)
t
undamped quasilinear wave equation:

Yo = 0y = (B2 (00 + Vo)

Existence of a limit 1% of 1% as 6 \, 0?
Does ° solve the respective inviscid (§ = 0) equation?

Challenge: § > 0 is crucial for global in time well-posedness and
exponential decay in d € {2,3} space dimensions.

[BK& Nikoli¢, SIAP 2021]
recover results (in particular on required regularity of initial data) from
[Dorfler Gerner Schnaubelt 2016] for § = 0 .

< > < > AE>r =




limit in Blackstock-Crighton

for vanishing thermal conductivity a




Vanishing thermal conductivity

Blackstock-Crighton equation

(90 — 28) (v — B0° — 3007) —ral = (522 () + Vo)
Kuznetsov's equation:

Ve — 0 — 30 = (B2 (v3) + Vo)

Existence of a limit 40 of 1) as a \, 0?
Does 19 solve Kuznetsov's equation?

Integrate once wrt time: Consistency of initial data needed:
Yo — Ay — A1 = 31t + 2V - Vi




Vanishing thermal conductivity
Blackstock-Crighton equation
(9 — 2B) (¥}, — 2D — 687 —rahyi = (525 (v3) + Vvl
Kuznetsov's equation:

Ve — 0 — 30 = (B2 (v3) + Vo)

Existence of a limit 40 of 1) as a \, 0?
Does 19 solve Kuznetsov's equation?

Integrate once wrt time: Consistency of initial data needed:
Yo — Ay — A1 = 31t + 2V - Vi

[BK& Thalhammer, M3AS 2018]




limit in time fractional JMGT

for differentiation order o "1




Fractional to integer damping

fractional Jordan-Moore-Gibson-Thompson equation
TODZT Y g — P AP — (647" P)AD; Y = (525 (V) + [V ),

Jordan-Moore-Gibson-Thompson equation

Theer + P — AP — (0 + TC2)A¢t = (%(wt)z + |V¢|2)t
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constitutive laws




Fractional to integer damping

fractional Jordan-Moore-Gibson-Thompson equation
TODZT Y g — P AP — (647" P)AD; Y = (525 (V) + [V ),
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Fractional to integer damping

fractional Jordan-Moore-Gibson-Thompson equation
TODZT Y g — P AP — (647" P)AD; Y = (525 (V) + [V ),
Jordan-Moore-Gibson-Thompson equation

Theer + P — AP — (0 + TC2)A¢t = (%(’%)2 + |V¢|2)t

Existence of a limit ¢! of ¢)® as o * 17
Does v solve the respective integer order equation?

@ Derivation of proper models from physical balance and
constitutive laws

@ Leading derivative order in PDE changes with «.
[BK& Nikoli¢, M3AS 2022]




fractional damping models in ultrasonics
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Figure 2.6 in [Chan&Perlas, Basics of Ultrasound Imaging, 2011]

~~ constitutive modeling of

@ pressure — density relation

e temperature — heat flux relation




Fractional Models of (Linear) Viscoelasticity

@ equation of motion (resulting from balance of forces)
OU¢ = dive + f

@ strain as symmetric gradient of displacements:
1 T
€= E(Vu +(Vu)").

@ constitutive model: stress-strain relation

... displacements
... stress tensor
.. strain tensor
... mass density

u
o
€.
0




Fractional Models of (Linear) Viscoelasticity 1-d setting
@ equation of motion (resulting from balance of forces)
oupt = 0x + f
@ strain as symmetric gradient of displacements:
€ = Uy.
@ constitutive model: stress-strain relation:

Hooke's law (pure elasticity): o = bge
Newton model: o = bie;
Kelvin-Voigt model: o = bge + bie;

Maxwell model: o + ajo: = bge

Zener model: o + ajo; = bpe + bres




Fractional Models of (Linear) Viscoelasticity 1-d setting
@ equation of motion (resulting from balance of forces)
oupt = ox + f
@ strain as symmetric gradient of displacements:
€ = Uy.
@ constitutive model: stress-strain relation:
fractional Newton model: o = blafe
fractional Kelvin-Voigt model: o = bpe + blatﬁe

fractional Maxwell model: o + a;07c = bpe

fractional Zener model: o + a10{'0c = bpe + blatﬁe
N M
general model class: Zanﬁf”a = Z bmatﬁ’"e
n=0 m=0

[Caputo 1967, Atanackovic, Pilipovié, Stankovié, Zorica 2014]




Fractional Models of (Linear) Acoustics via p — o

balance of momentum
oove = —Vp+f

balance of mass
oV v =—p;

equation of state O~ _ P~

Qo Po
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insert constitutive equatlons into comblnatlon of balance laws
~ fractional acoustic wave equations [Holm 2019, Szabo 2004]:
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Fractional Models of (Linear) Acoustics via p — o

balance of momentum
oove = —Vp+f

balance of mass
oV -v= —Q

Zb 0= o~ ZanaanPN

insert constitutive equatlons into comblnatlon of balance laws
~ fractional acoustic wave equations [Holm 2019, Szabo 2004]:

equation of state

@ Caputo-Wismer-Kelvin wave equation (fractional Kelvin-Voigt):
— boAp — b8P Ap=F,
@ modified Szabo wave equation (fractional Maxwell):
Pttt — a1é)f-mp — boAp = Fv
@ fractional Zener wave equation:
o0 — 31027 p — boAp + b0 Ap =

@ general fractional model:
N M - z
2 n=0 ana?-i_%P — om0 bma? Ap=f.




Fractional Models of (Linear) Acoustics via J — q

recall:
Classically: Fourier's law q=—KV

leads to infinite speed of propagation paradox.

Maxwell-Cattaneo law Tq: +q=—KVU

allows for “thermal waves” (second sound phenomenon)
can lead to violation of the 2nd law of thermodynamics




Fractional Models of (Linear) Acoustics via J — q

recall:
Classically: Fourier's law q=—KV

leads to infinite speed of propagation paradox.

Maxwell-Cattaneo law Tq: +q=—KVU

allows for “thermal waves” (second sound phenomenon)
can lead to violation of the 2nd law of thermodynamics

“interpolate” by using fractional derivatives
[Compte & Metzler 1997, Povstenko 2011]:

(GFE 1) (14 7°D)q(t) = —K1y *Dy “V;
(GFE 11) (14 79D q(t) = —Kry D v,

(GFE 1l (14 70:)q(t) =Kty *Dy *V;
(GFE) (1+7°DY)q(t) = —K V.




Fractional derivatives
Abel fractional integral operator

YE() — 1 £ f(s) .
B0 =1y ) e

Then a fractional (time) derivative can be defined by either

d
Rpef = EI‘_}*O‘f Riemann-Liouville derivative

df
$Dof = I‘;_QE Djrbashian-Caputo derivative

or
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or df
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@ R-L is defined on a larger function space, but derivative of
constant is nonzero; singularity at initial time a

@ D-C maps constants to zero ~~ appropriate for prescribing
initial values




Fractional derivatives
Abel fractional integral operator

N 1 [ f(s)
B0 = | e

Then a fractional (time) derivative can be defined by either

d
Rpef = Elal*o‘f Riemann-Liouville derivative

or df
Cpaf = Ial_ag Djrbashian-Caputo derivative

@ R-L is defined on a larger function space, but derivative of
constant is nonzero; singularity at initial time a
@ D-C maps constants to zero ~~ appropriate for prescribing
initial values
some recent books on fractional PDEs: [Kubica & Ryszewska &
2020], [Jin 2021], [BK & Rundell 2022]

DQC

Yamamoto




Fractional derivatives
Abel fractional integral operator

N 1 [ f(s)
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Nonlocal and causal character of these derivatives provides them
with a “memory”




Fractional derivatives
Abel fractional integral operator

N 1 [ f(s)
0= | e

Then a fractional (time) derivative can be defined by either

d
Rpaf = —11=%f  Riemann-Liouville derivative

dt
f
Cpof = Ial_o‘% Djrbashian-Caputo derivative

or

@ R-L is defined on a larger function space, but derivative of
constant is nonzero; singularity at initial time a
@ D-C maps constants to zero ~» appropriate for prescribing
initial values
Nonlocal and causal character of these derivatives provides them
with a “memory”
~> initial values are tied to later values and can therefore be better
reconstructed backwards in time. COr B (> (2>



inverse problems




Nonlinearity parameter imaging

e B/A parameter is sensitive to differences in tissue properties,
thus appropriate for characterization of biological tissues

@ viewing Kk = #(% + 1) as a spatially varying coefficient in
the Westervelt equation, it can be used for medical imaging

@ ~- acoustic nonlinearity parameter tomography [Bjgrng 1986;
Burov, Gurinovich, Rudenko, Tagunov 1994; Cain 1986;
Ichida, Sato, Linzer 1983; Varray, Basset, Tortoli, Cachard
2011; Zhang, Gong et al 1996, 2001]. ..




The inverse problem of nonlinearity parameter imaging
Identify x(x) in
(u— /i(x)uz)tt —@Au+Du=r inQx(0,T)
Oyu+yu=00n02x(0,T), u(0)=0, uw(0)=0 in Q
(with excitation r) from observations
g=u onXxXx(0,T)

¥ C Q... transducer array (surface or collection of discrete points)




The inverse problem of nonlinearity parameter imaging
Identify x(x) in
(u— /i(x)uz)tt —@Au+Du=r inQx(0,T)
Oyu+yu=00n02x(0,T), u(0)=0, uw(0)=0 in Q
(with excitation r) from observations
g=u onXxXx(0,T)
¥ C Q... transducer array (surface or collection of discrete points)
fractional damping

Caputo-Wismer-Kelvin:
D=—bAd? withBe[0,1], b>0

fractional Zener:
D = ad?™® — bAOY  witha>0, b>ac®, 1>8>a>0,

space fractional Chen-Holm:
D = b(—A)?d; with 3 €[0,1], b>0,

< > < P AEDP» =




Chances and Challenges

@ model equation is nonlinear;
nonlinearity occurs in highest order term;

e unknown coefficient x(x) appears in this nonlinear term

@ k is spatially varying whereas the data g(t) is in the
“orthogonal” time direction;
This is well known to lead to severe ill-conditioning of the
inversion of the map F from data to unknown.
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Chances and Challenges

@ model equation is nonlinear;
nonlinearity occurs in highest order term;
e unknown coefficient x(x) appears in this nonlinear term
@ k is spatially varying whereas the data g(t) is in the
“orthogonal” time direction;

This is well known to lead to severe ill-conditioning of the
inversion of the map F from data to unknown.

@ nonlinearity helps by “adding information”:
linear case: double excitation = double observation
linear case: exitation at freq. w = observation at freq. w
nonlinear case: higher harmonics  ~~ information multiplies




[Acosta & Uhlmann & Zhai 2022] Westervelt equation:

e uniqueness from Neumann-Dirichlet map

[Eptaminitakis & Stefanov 2022] Westervelt equation:
e geometric optics solutions

[BK&Rundell IPI 2021, Math.Comp. 2022, Inv.Prob. 2023,
IPI1 2023] Westervelt eq.; [BK EECT 2023] JMGT eq.
o Well-definedness and Fréchet differentiability of forward
operator F : k — uly
e uniqueness for linearised problem from a single boundary
observation
e reconstructions by Newton's method
o convergence of frozen Newton via range invariance of
linearised forward operator
e uniqueness of k(x) from a single boundary observation
(for unknown co(x))
o linearised uniqueness of x(x) and cy(x) from two boundary
observations

[Yamamoto &BK 2021] BCBJ eq. (a higher order model)

e linearised uniqueness and conditional stability via Carleman
estimates




[Acosta & Uhlmann & Zhai 2022] Westervelt equation:

e uniqueness from Neumann-Dirichlet map

[Eptaminitakis & Stefanov 2022] Westervelt equation:
e geometric optics solutions

[BK&Rundell IPI 2021, Math.Comp. 2022, Inv.Prob. 2023,
IPI1 2023] Westervelt eq.; [BK EECT 2023] JMGT eq.
o Well-definedness and Fréchet differentiability of forward
operator F : k — uly
e uniqueness for linearised problem from a single boundary
observation
e reconstructions by Newton's method
o convergence of frozen Newton via range invariance of
linearised forward operator
e uniqueness of k(x) from a single boundary observation
(for unknown co(x))
o linearised uniqueness of x(x) and cy(x) from two boundary
observations

[Yamamoto &BK 2021] BCBJ eq. (a higher order model)

e linearised uniqueness and conditional stability via Carleman
estimates




multiharmonic expansion




Multiharmonics in nonlinear acoustics
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time signal from excitation at several amplitudes;

(taken from Master thesis by Teresa Rauscher, University of Klagenfurt,
2021)
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Modeling wave propagation in frequency domain

linear wave equation

U — CQAU =r
Using a harmonic excitation r(x, t) = R(F(x)e™?)
and a harmonic ansatz for u
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Modeling wave propagation in frequency domain

linear wave equation
U — CZAU =r

Using a harmonic excitation r(x, t) = R(F(x)e™?)
and a harmonic ansatz for u

u(x,t) =R (a(x)e™")

leads to the Helmholtz equation

—w?h — AL =P




Modeling nonlinear wave propagation in frequency domain
Westervelt equation:

Ut — 2Au — bAuy = k(x)(U?) e + 1




Modeling nonlinear wave propagation in frequency domain
Westervelt equation:
Ut — 2Au — bAuy = k(x)(U?) e + 1
zwt)

Using a harmonic excitation r(x, t) = R(F(x)e
and a multiharmonic expansion of u

u(x,t) =R (Z ﬁk(x)e”“"t)

k=1




Modeling nonlinear wave propagation in frequency domain
Westervelt equation:

Ut — 2Au — bAuy = k(x)(U?) e + 1

Using a harmonic excitation r(x, t) = R(#(x)e™?)
and a multiharmonic expansion of u

u(x,t) =R (Z ak(x)ezkw)

k=1
leads to the coupled system

(o)
m=1: — w2y — (c? —l—zwb)Aul—r—g 220%0%
k=3:2
m—1
m=23...: —wmi,—(c®+wmb)Ad, = R 2m? Oplim—g




Modeling nonlinear wave propagation in frequency domain

Theorem (time periodic solutions; [BK, EECT 2021])

For b,c?, 3,7, T >0, k € L>(Q), there exists p > 0 such that for
all r € L2(0, T; L2(Q) with ||rli20,7:12(0)) < p there exists a
unique solution

ue X :=H0, T; L3(Q)) n H(0; T; H¥2(Q)) N L3(0; T; H*(Q))

f
° U — ?Au — bAu; = k(x)(u?)ee + g in Qx (0, T),

Bus +~yu+d,u=0 ondQ x(0,T),
u(0) =u(T), u(0)=u(T) inQ,

and the solution fulfills the estimate

lullx < Cligllz, 75129




Back to the inverse problem

@ model equation is nonlinear;
nonlinearity occurs in highest order term;

@ unknown coefficient x(x) appears in this nonlinear term

@ « is spatially varying whereas the data g(t) is in the
“orthogonal” time direction;
This is well known to lead to severe ill-conditioning of the
inversion of the map F from data to unknown.

@ nonlinearity helps by “adding information”:
linear case: double excitation = double observation
linear case: exitation at freq. w = observation at freq. w
nonlinear case: higher harmonics  ~ information multiplies




Back to the inverse problem

@ model equation is nonlinear;
nonlinearity occurs in highest order term;

@ unknown coefficient x(x) appears in this nonlinear term

@ « is spatially varying whereas the data g(t) is in the
“orthogonal” time direction;
This is well known to lead to severe ill-conditioning of the
inversion of the map F from data to unknown.

@ nonlinearity helps by “adding information”:
linear case: double excitation = double observation
linear case: exitation at freq. w = observation at freq. w
nonlinear case: higher harmonics  ~- information multiplies

=- enhanced uniqueness results for the inverse problem:
linear case: piecewise constant coefficients
nonlinear case: general spatially variable coefficients
from a single observation




linearised uniqueness




The inverse problem in frequency domain

model: U — c?Au — bAu; = K(x) (Uz)tt +r

observation: u(xg) =g(x) x €X




The inverse problem in frequency domain

model: U — c?Au — bAu; = K(x) (Uz)tt +r

observation: u(xg) =g(x) x €X

r(x,t) = R(P(x)e™t) ~ u(x,t) =R (352 de(x)e )




The inverse problem in frequency domain

model: U — c?Au — bAu; = K(x) (Uz)tt +r

observation: u(xg) =g(x) x €X
r(x, t) = R(F(x)e™r) ~ ulx,t) =R (32 du(x)e’™)

- m—1 ~ A ~ ~
0= (8))jen  Bm(8) = 3 207 Qelm—o+ 3 252 m2:2 Ulom Ui

2




The inverse problem in frequency domain

model: U — c?Au — bAu; = K(x) (Uz)tt +r

observation: u(xg) =g(x) x €X
r(x, t) = R(F(x)e™r) ~ ulx,t) =R (32 du(x)e’™)

i=(0)jen  Bm(d) =3 205" om0 + 3 D hmi2:2 ﬁk%"’ LAMT'"

~ —(wWZm? + (2 + wmb)A) iy, + w?m? k B (i
o) = (7 (€ ) @)

y __<Fifm:1/0ifm22)
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The inverse problem in frequency domain

model: U — c?Au — bAu; = K(x) (Uz)tt +r

observation: u(xg) =g(x) x €X
r(x, t) = R(F(x)e™r) ~ ulx,t) =R (32 du(x)e’™)

i=(0)jen  Bm(d) =3 205" om0 + 3 D hmi2:2 ﬁk%"’ LAMT'"

~ —(wWZm? + (2 + wmb)A) iy, + w?m? k B (i
o) = (7 (€ ) @)

Fifm=1/0ifm>2
ym:: g_m

F(r, @) =




The linearised inverse problem

I:_'(/s, u)=y

. ( —(w?m? + (2 + 1wmb)A) iy + w?m? i Byn(l) )

trs




The linearised inverse problem

I:_'(/{, 0=y

where

trs

—(w?m? 2 i 2.2 —
Fon(s, ) ::( (w m*+ (c +zwmb)A)um+w m? i By (i) )

linearisation:
F'(k, 0)(dr, dd) ~ F(k,d) — y

where

F(s, 0)(dk, did) =
( —(w?m? + (2 + wmb)A)dii,, + w?m? k B}, (d)dd + w?m? dr By() )

tredi,,




The linearised inverse problem

F(r,0) =y

where

(2,2 2 ~ 2 2 -
Fo(i, ) = ( (“j m? + (c? + wmb)A) i, + w?m? k By (i) )

trsy um
linearisation: .

F'(x, 0)(dk, did) = F(k, @) — y

where

Fin(0, 0)(ds, dif) =
< —(w?m? + (c? + wmb)A) di,, + w?*m? dk Bm(i) )

trZ@m




Linearised uniqueness

Show that
F'(k,d)(dr,dd) =0 = drx=0anddid=0

where

Fn(0, 0)(dr, did) =
< —(w?m? + (c® + wmb)A)di,, + w?m? dr By(d) )

tredd,




(mod) — (wzm2 + (2 + wmb)A)di,, + wWwm? dr By(if) =0 meN
(obs) trydi,, =0 meN




(mod)  — (w?m? + (c® + wmb)A)di,, + w?*m? di Bp(d) =0 meN
(obs) trydi,, =0 meN

Choose m(x) := ¢(X)Ym, Ym €R, ¢ € H*(Q,R), ¢ #0a.e. inQ
Expand wrt. eigensystem (goj’-‘,)\j)-eNkeKj of —A (with impedance b.c.)

J




(mod) — (w?m?+ (c® + wmb)A)da,, + w?m’ dr Byn(d) =0 meN
(obs) tredi,, =0 meN

Choose im(x) := ¢(X)Ym, Ym €R, ¢ € H*(Q,R), ¢ #0a.e. inQ

Expand wrt. eigensystem (@f,)\j)jeN,keKJ’ of —A (with impedance b.c.)

0= (¢, (mod))

= —(Wm? — (& + wmb)\)) (pf. di,,) + w*m® Bu(¥)) (pf, ¢°dr)
~— ~—

—.pk —. ok

= . =:a
m,j 2 92 e J
. w m* B
= by, = Mpjaf with Mp, j := (V)

w?m? — (c? + wmb)\;

(obs) = 0=try di,, = Z Z b,k,,ljtr):goj-‘ = Z M Z ajl-‘ trzgoj’-‘

JEN keKi jEN keKi




(mod) — (w’m?+ (c® + wmb)A)dd,, + w’m’ dk Bn(d) =0 meN
(obs) tredi,, =0 meN

Choose Om(x) := ¢(X)¥m, Vm €R, ¢ € H*(Q,R), ¢ #0a.e. in Q

Expand wrt. eigensystem (SOJI-(,)\j)jeN’keKj of —A (with impedance b.c.)

<g01k7@m> = brI;“j? <@f7¢2@> = aj-(

212 B (4y
by = Mugaf  with My = — ™ Bnl®)

~ w?m? — (2 + wmb)\;

0=> Mpnj Y aftrspf meN
JjEN keKi




(mod) — (w?m® + (¢ +wmb)A)dd,, +w’m’ dr Bm(d) =0 meN
(obs) trsdid,, =0 meN

Choose fim(x) := ¢(X)m, Ym ER, ¢ € H*(Q,R), ¢ #0ae. inQ
Expand wrt. eigensystem (goj’-‘,)\j)jeNkeKj of —A (with impedance b.c.)
<@f’@m> = brﬁq,j’ <(10Jka¢2@> = ajlf o

w?m? By,(v)
w?m? — (c? + wmb)A;

OZZMm,j Z aj-(tr):wjk meN
JEN keKi

by = Mmjaf with My, ; :=

Lemma: The infinite matrix M is nonsingular.

= 0= ) aftrspf jEN
keKi




(mod) — (wzm2 (P + wmb)A)di,, + W?m? di Bp(@) =0 meN
(obs) trydd, =0 meN

Choose fim(x) := ¢(X)m, Ym ER, ¢ € H*(Q,R), ¢ #0ae. inQ
Expand wrt. eigensystem (goj’-‘,)\j)jeNkeKj of —A (with impedance b.c.)
(O dil,) =:bE ;,  (pk ¢?dr) =: af

w?m? Bm(¥)
w?m? — (c? + wmb);

OZZMm,j Zajftr):(pjk meN

JEN keKJ

by = Mmjaf with My, j :=

Lemma: The infinite matrix M is nonsingular.

= 0= aftrzpf jEN = 0=trzProjg[¢’ds]
ker T
Y




(mod) — (u.)zm2 + (62 +wwmb)A)di,, + w2m2d7nB,,,(LT) =0 meN

(obs) trydid, =0 meN
Choose m(x) := ¢(X)Ym, Ym €R, ¢ € H*(Q,R), ¢ #0a.e. inQ
Expand wrt. eigensystem (@f,)\j)jeN,keKj of —A (with impedance b.c.)
(of  dii) =2 b, 1, (9, $°dr) =: af

mj>

w?m? Bm(’&)
w?m? — (c? + wmb)A;

k k
JjeN keKi

by j = Mmjaf with Mp, j :=

Lemma: The infinite matrix M is nonsingular.
= 0= atrzpf jEN = 0=trzProj[¢’ds]
keKi —
Unique Continuation: -
—Avi=M\yvjand d,vj+yv;=0and trsv; =0 = v;=0




(mod) — (L,.)Zm2 + (c +wwmb)A)di,, + w2m2d71<;B,-,,(lT) =0 meN

(obs) trydid, =0 meN

Choose fi(x) := ¢(x)m, Ym ER, ¢ € H*(Q,R), ¢ #0ae. inQ
Expand wrt. eigensystem (goj’-‘,)\j) e keki Of —A (with impedance b.c.)

J
(CPJ ,di,) = b,’;d, <90JI-(’¢2@> =: ajl-‘ ) -

P . ) . m Bm(d})
b j = Mma; with Mp, j = w?m? — (c? + wmb)A;

OZZMm,j Zajftr):(pj-‘ meN

JEN keKJ

Lemma: The infinite matrix M is nonsingular.
= 0= atrzpf jEN = 0=trzProj[¢’ds]
keKi —
Unique Continuation: -
—Avi=\yvjand ,vi+yvi=0and trsv; =0 = v;=0

= 0=a keK,jeN = b =Mpnjaf=0 kek/, jeN




(mod) — (L,.)Zm2 + (c +wwmb)A)di,, + w2m2d71<;B,-,,(lT) =0 meN

(obs) trydid, =0 meN

Choose fi(x) := ¢(x)m, Ym ER, ¢ € H*(Q,R), ¢ #0ae. inQ
Expand wrt. eigensystem (goj’-‘,)\j) e keki Of —A (with impedance b.c.)

J
(CPJ ,di,) = b,’;d, <90JI-(’¢2@> =: ajl-‘ ) -

P . ) . m Bm(d})
b j = Mma; with Mp, j = w?m? — (c? + wmb)A;

OZZMm,j Zajftr):(pj-‘ meN

JEN keKJ

Lemma: The infinite matrix M is nonsingular.
= 0= atrzpf jEN = 0=trzProj[¢’ds]
keKi —
Unique Continuation: -
—Avi=\yvjand ,vi+yvi=0and trsv; =0 = v;=0

= 0=a keK,jeN = b =Mpnjaf=0 kek/ jeN
= de=0and dd =0




Linearised uniqueness

Theorem (BK&Rundell, IPI 2023)

The homogeneous linearised

(at k =0, T = ¢(x) with Bp(1p) #£0, m e N)

inverse problem of nonlinearity coefficient imaging in frequency
domain only has the trivial solution.

» shortcut to the end




reconstructions from two harmonics




Reconstruction of three inclusions from partial data

synthetic measurements with 1% noise

measurements taken on the green part of the boundary;
«. .. observation angle

reconstruction by regularized Newton iterations

[BK& Rundell, IP1 2023]

@) &=1 (b)) &£ =075 () 2=05 (d)2=04 (e)&=03




Reconstruction of two inclusions at different distances

synthetic measurements with 1%noise




Reconstruction of one inclusion at different distances from
the boundary

synthetic measurements with 1%noise




Outlook: Some further inverse problems




Reconstruct differentiation order(s)

@ Determine fractional differentiation orders a,, 8, in wave type eq.

N M
Z a,,@f%‘”p — Z bmﬁfmAp =f.

n=0 m=0

[BK& Rundell 2022];
for subdiffusion, see [Hatano& Nakagawa& Wang& Yamamoto 2013]
... [Jin& Kian 2022]




Reconstruct nonlinearity

@ Determine nonlinearity f in generalized Westervelt equation

U — CZAU — bAUt = —K'/(f(u))tt

[BK& Rundell 2021]




Reconstruct general memory kernels

@ Determine kernels k., kirc in viscoelastic model

pug — div[Ce(u) + ke * Ac(uy) + kere * tre(ug)l] = f

[BK & Khristenko & Nikoli¢ & Rajendran & Wohlmuth 2022]




Thank you for your attention!




