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Nonlinear Acoustic Wave Propagation

nonlinear wave propagation:

sound speed depends on (signed) amplitude ⇒ sawtooth profile
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models of nonlinear acoustics
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Physical Principles

main physical quantities:

acoustic particle velocity v;

acoustic pressure p;

mass density %;

absolute temperature ϑ;

heat flux q;

entropy η;

decomposition into mean and fluctuating part:

v = v0 + v∼ = v , p = p0 + p∼ , % = %0 + %∼
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Physical Principles
acoustic particle velocity v;

acoustic pressure p;

mass density %;

absolute temperature ϑ;

heat flux q;

entropy η;

governing equations:

momentum conservation = Navier Stokes equation (with ∇× v = 0):

%
(
vt +∇(v · v)

)
+∇p =

(
4µV

3 + ζV

)
∆v

mass conservation = equation of continuity:

%t +∇ · (%v) = 0

entropy equation: %ϑ(ηt + v · ∇η) = −∇ · q

equation of state:
p

p0
= %γ exp

(
η − η0

cv

)
Gibbs equation: ϑdη = cvdϑ− p

1

%2
d%

γ =
cp
cv

. . . adiabatic index;

cp / cv . . . specific heat at constant pressure / volume;

ζV / µV . . . bulk / shear viscosity 6



Physical Principles

So far, 5 equations for 6 unknowns v, p, %, ϑ, q, η.
Still need a constitutive relation between temperature and heat flux.

Classically: Fourier’s law q = −K∇ϑ
K . . . thermal conductivity

leads to infinite speed of propagation paradox.

Maxwell-Cattaneo law τqt + q = −K∇ϑ
τ . . . relaxation time

allows for “thermal waves” (second sound phenomenon)
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Classical Models of Nonlinear Acoustics

Kuznetsov’s equation [Lesser & Seebass 1968, Kuznetsov 1971]

p∼tt − c2∆p∼ − δ∆p∼t =
(

B
2A%0c2 p

2
∼ + %0|v|2

)
tt

where %0vt = −∇p  %0ψt = p
for the particle velocity v and the pressure p, i.e.,

ψtt − c2∆ψ − δ∆ψt =
(

B
2Ac2 (ψt)

2 + |∇ψ|2
)
t

since ∇× v = 0 hence v = −∇ψ for a velocity potential ψ

δ = κ(Pr( 4
3

+ ζV
µV

) + γ − 1) . . . diffusivity of sound;
B
A

=̂ γ − 1 . . . nonlinearity parameter (in liquids / gases)
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p∼tt − c2∆p∼ − δ∆p∼t =
(

B
2A%0c2 p

2
∼ + %0|v|2

)
tt

where %0vt = −∇p  %0ψt = p
for the particle velocity v and the pressure p

Westervelt equation [Westervelt 1963] via %0|v|2 ≈ 1
%0c2 (p∼)2

p∼tt − c2∆p∼ − δ∆p∼t =
1

%0c2

(
1 + B

2A

)
p2
∼tt

δ = κ(Pr( 4
3

+ ζV
µV

) + γ − 1) . . . diffusivity of sound;
B
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=̂ γ − 1 . . . nonlinearity parameter (in liquids / gases)
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Advanced Models of Nonlinear Acoustics (Examples)

Jordan-Moore-Gibson-Thompson equation [Jordan 2009, 2014],
[Christov 2009], [Straughan 2010]

τψttt + ψtt − c2∆ψ − (δ + τc2)∆ψt =
(

B
2Ac2 (ψt)

2 + |∇ψ|2
)
t

τ . . . relaxation time

z := ψt + c2

δ+τc2ψ solves weakly damped wave equation

ztt − c̃∆z + γzt = r(z , ψ)

with c̃ = c2 + δ
τ , γ = 1

τ −
c2

δ+τc2 > 0
 second sound phenomenon
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Advanced Models of Nonlinear Acoustics (Examples)

Blackstock-Crighton equation [Brunnhuber & Jordan 2016],
[Blackstock 1963], [Crighton 1979]

(∂t − a∆)
(
ψtt − c2∆ψ − δ∆ψt

)
− ra∆ψt =

(
B

2Ac2 (ψ2
t ) + |∇ψ|2

)
tt

a = ν
Pr. . . thermal conductivity
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Advanced versus Classical Models of Nonlinear Acoustics

Blackstock-Crighton equation [Brunnhuber & Jordan 2016],
[Blackstock 1963], [Crighton 1979]

(∂t − a∆)
(
ψtt − c2∆ψ − δ∆ψt

)
− ra∆ψt =

(
B

2Ac2 (ψ2
t ) + |∇ψ|2

)
tt

a = ν
Pr. . . thermal conductivity

Jordan-Moore-Gibson-Thompson equation [Jordan 2009, 2014],
[Christov 2009], [Straughan 2010]

τψttt + ψtt − c2∆ψ − (δ + τc2)∆ψt =
(

B
2Ac2 (ψt)

2 + |∇ψ|2
)
t

τ . . . relaxation time

cf. Kuznetsov:

ψtt − c2∆ψ − δ∆ψt =
(

B
2Ac2 (ψ2

t ) + |∇ψ|2
)
t
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further models:[Angel & Aristegui 2014], [Christov & Christov & Jordan 2007],
[Kudryashov & Sinelshchikov 2010], [Ockendon & Tayler 1983], [Makarov &
Ochmann 1996], [Rendón & Ezeta &Pérez-López 2013], [Rasmussen & Sørensen &
Christiansen 2008], [Soderholm 2006], . . .

resonances, shock waves:[Ockendon & Ockendon & Peake & Chester 1993],
[Ockendon & Ockendon 2001, 2004, 2016],. . .

traveling waves solutions:[Jordan 2004], [Chen & Torres & Walsh 2009], [Keiffer &
McNorton & Jordan & Christov, 2014], [Gaididei & Rasmussen & Christiansen &
Sørensen, 2016],. . .

well-posendness and asymptotic behaviour:
for KZK: [Rozanova-Pierrat 2007, 2008, 2009, 2010]
for Westervelt, Kuznetsov, Blackstock-Crighton, JMGT on bounded domain Ω:
based on semigroup theory and energy estimates:[BK & Lasiecka 2009, 2012], [BK &
Lasiecka & Veljović 2011], [BK & Lasiecka & Marchand 2012], [BK & Lasiecka &
Pospiezalska 2012], [Lasiecka & Wang 2015], [Liu & Triggiani 2013], [Marchand &
McDevitt & Triggiani 2012], [Nikolić 2015], [Nikolić & BK 2016], [Pellicer &
Solá-Morales 2019], , [Dell’Oro&Lasiecka&Pata 2020]
based on maximal Lp regularity:[Meyer & Wilke 2011, 2013], [Meyer & Simonett
2016], [Brunnhuber & Meyer 2016], [BK 2016]
Cauchy problem (on Ω = Rn)
for Kuznetsov: [Dekkers & Rozanova-Pierrat 2019]
for JMGT: [Pellicer & Said-Houari 2017], [Nikolić & Said-Houari 2021]

control of JMGT [Bucci&Lasiecka 2020], [Bucci&Pandolfi 2020]
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Analysis of initial-boundary value problems

consider:
Westervelt / Kuznetsov / Jordan-Moore-Gibson-Thompson /
Blackstock-Crighton equation on some domain Ω ⊆ Rd

+boundary conditions on ∂Ω
+initial conditions at t = 0

e.g.,

utt − c2∆u − b∆ut = κ
2 (u2)tt in Ω

∂u

∂n
= g on ∂Ω

u(t = 0) = u0 , ut(t = 0) = u1 in Ω

where u . . . pressure

14



Degeneracy

e.g., for Westervelt (u . . . pressure)

utt − c2∆u − b∆ut = κ
2 (u2)tt

= κu utt + κ(ut)
2

(1− κu)utt − c2∆u − b∆ut = κ(ut)
2

⇒ degeneracy for u ≥ 1
κ

similarly for Kuznetsov, Jordan-Moore-Gibson-Thompson,
Blackstock-Crighton.

 employ energy estimates to obtain bound on u in
C (0,T ;H2(Ω))

 use smallness of u in C (0,T ;H2(Ω)) and H2(Ω)→ L∞(Ω)
embedding to guarantee 1− κu ≥ α > 0

 fixed point argument
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Degeneracy – State dependent wave speed

e.g., for Westervelt (u . . . pressure)

utt − c2∆u − b∆ut = κ
2 (u2)tt = κu utt + κ(ut)

2

(1− κu)utt − c2∆u − b∆ut = κ(ut)
2

⇒ degeneracy for u ≥ 1
κ

similarly for Kuznetsov, Jordan-Moore-Gibson-Thompson,
Blackstock-Crighton.

This also illustrates state dependence of the effective wave speed:

utt − c̃2∆u − b̃(u)∆ut = f (u)

with c̃(u) = c√
1−κu , b̃(u) = b

1−κu , f (u) = κ(ut)2

1−κu as long as

1− κu > 0 (otherwise the model loses its validity)
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parameter asymptotics
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Vanishing relaxation time

Jordan-Moore-Gibson-Thompson equation (b = δ + τc2)

τψτttt + ψτtt − c2∆ψτ − b∆ψτt =
(

B
2Ac2 (ψτt )2 + |∇ψτ |2

)
t

Kuznetsov’s equation:

ψtt − c2∆ψ − δ∆ψt =
(

B
2Ac2 (ψ2

t ) + |∇ψ|2
)
t

Existence of a limit ψ0 of ψτ as τ ↘ 0?
Does ψ0 solve Kuznetsov’s equation?

As τ → 0 the PDE changes from hyperbolic (group) to
parabolic (analytic semigroup, maximal parabolic regularity)

[Bongarti&Charoenphon&Lasiecka; BK& Nikolić, 2019-21]
shortcut to limit result
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Remarks

We will consider the “Westervelt type” and the “Kuznetsov type”
equation; without and with the gradient nonlinearity |∇ψ|2t

For τ = 0 (classical Westervelt and Kuznetsov equation) the
reformulation of the linearization as a first order system leads to an
analytic semigroup and maximal parabolic regularity.
These properties get lost with τ > 0; the equation loses its “parabolic
nature”.
This is consistent with physics: infinite → finite propagation speed.

As in the classical models, potential degeneracy can be an issue

τψτttt + ψτtt − c2∆ψτ − b∆ψτt =
(κ

2
(ψτt )2 + |∇ψτ |2

)
t

=κψτt ψ
τ
tt + |∇ψτ |2t

⇐⇒ τψτttt + (1− κψτt )ψτtt − c2∆ψτ − b∆ψτt = |∇ψτ |2t
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Plan of the analysis

Establish well-posedness of the linearized equation along with
energy estimates.

Use these results to prove well-posedness of the Westervelt
type JMGT equation for τ > 0 by a fixed point argument.

Establish additional higher order energy estimates.

Use these results to prove well-posedness of the Kuznetsov
type JMGT equation for τ > 0 (sufficiently small) by a fixed
point argument.

Take limits as τ → 0

BK & Vanja Nikolić. On the Jordan-Moore-Gibson-Thompson equation:
well-posedness with quadratic gradient nonlinearity and singular limit for vanishing
relaxation time. Math. Meth. Mod. Appl. Sci. (M3AS), 29:2523–2556, 2019.

BK & Vanja Nikolić. Vanishing relaxation time limit of the
Jordan–Moore–Gibson–Thompson wave equation with Neumann and absorbing
boundary conditions. Pure and Applied Functional Analysis, 5:1–26, 2020.
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The linearized problem


τψttt + α(x , t)ψtt − c2∆ψ − b∆ψt = f in Ω× (0,T ),

ψ = 0 on ∂Ω× (0,T ),

(ψ,ψt , ψtt) = (ψ0, ψ1, ψ2) in Ω× {0},

under the assumptions

α(x , t) ≥ α > 0 on Ω a.e. in Ω× (0,T ). (1)

α ∈ L∞(0,T ; L∞(Ω)) ∩ L∞(0,T ;W 1,3(Ω)),

f ∈ H1(0,T ; L2(Ω)).
(2)

(ψ0, ψ1, ψ2) ∈ H1
0 (Ω) ∩ H2(Ω)× H1

0 (Ω) ∩ H2(Ω)× H1
0 (Ω). (3)

21



The linearized problem
τψttt + α(x , t)ψtt − c2∆ψ − b∆ψt = f in Ω× (0,T ),

ψ = 0 on ∂Ω× (0,T ),

(ψ,ψt , ψtt) = (ψ0, ψ1, ψ2) in Ω× {0},

(4)

Theorem (lin)

Let c2, b, τ > 0, and let T > 0. Let the assumptions (1), (2), (3) hold.
Then there exists a unique solution

ψ ∈ XW := W 1,∞(0,T ;H1
0 (Ω)∩H2(Ω))∩W 2,∞(0,T ;H1

0 (Ω))∩H3(0,T ; L2(Ω)).

The solution fullfils the estimate

‖ψ‖2
W ,τ :=τ2‖ψttt‖2

L2L2 + τ‖ψtt‖2
L∞H1 + ‖ψtt‖2

L2H1 + ‖ψ‖2
W 1,∞H2

≤C (α,T , τ)
(
|ψ0|2H2 + |ψ1|2H2 + τ |ψ2|2H1 + ‖f ‖2

L∞L2 + ‖ft‖2
L2L2

)
.

If additionally ‖∇α‖L∞L3 < α

CΩ
H1,L6

holds, then C (α,T , τ) is independent of τ .
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Well-posedness of the Westervelt type JMGT equation
τψttt + (1− kψt)ψtt − c2∆ψ − b∆ψt = 0 in Ω× (0,T ),

ψ = 0 on ∂Ω× (0,T ),

(ψ,ψt , ψtt) = (ψ0, ψ1, ψ2) in Ω× {0},

Theorem

Let c2, b > 0, k ∈ R and let T > 0. There exist ρ,ρ0 > 0 such that for all
(ψ0, ψ1, ψ2) ∈ H1

0 (Ω) ∩ H2(Ω)× H1
0 (Ω) ∩ H2(Ω)× H1

0 (Ω) satisfying

‖ψ0‖2
H2(Ω) + ‖ψ1‖2

H2(Ω) + τ‖ψ2‖2
H1(Ω) ≤ ρ

2
0 ,

there exists a unique solution ψ ∈ XW and ‖ψ‖2
W ,τ ≤ ρ2.

Banach’s Contraction Principle for T : φ 7→ ψ solution ψ of (4) with α = 1 − kφt , f = 0:

self-mapping on BXW

ρ : energy estimate from Theorem (lin).

contractivity: ‖T (φ1)− T (φ2)‖W ,τ ≤ q‖φ1 − φ2‖W ,τ by estimate from Theorem (lin):

ψ̂ = ψ1 − ψ2 = T (φ1)− T (φ2) solves (4) with α = 1− kφ1 t and

f = kφ̂tψ2 tt where φ̂ = φ1 − φ2.
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Limits for vanishing relaxation time
Consider the τ -independent part of the norms

‖ψ‖2
W ,τ :=

τ2‖ψttt‖2
L2L2 + τ‖ψtt‖2

L∞H1 + ‖ψtt‖2
L2H1 + ‖ψ‖2

W 1,∞H2

namely
‖ψ‖2

X̄W := ‖ψtt‖2
L2H1 + ‖ψ‖2

W 1,∞H2 ,

since these norms will be uniformly bounded, independently of τ .
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Limits for vanishing relaxation time

Consider the τ -independent part of the norms

‖ψ‖2
X̄W := ‖ψtt‖2

L2H1 + ‖ψ‖2
W 1,∞H2 ,

and impose smallness of initial data in the space

XW
0 := H1

0 (Ω) ∩ H2(Ω)× H1
0 (Ω) ∩ H2(Ω)× H1

0 (Ω).

Theorem (BK&Nikolić M3AS 2019)

Let c2, b, T > 0, and k ∈ R. Then there exist τ̄ , ρ0 > 0 such that

for all (ψ0, ψ1, ψ2) ∈ B
XW

0
ρ0 , the family (ψτ )τ∈(0,τ̄) of solutions to

the Westervelt type JMGT equation converges weakly* in X̄W to a
solution ψ̄ ∈ X̄W of the Westervelt equation with initial conditions
ψ̄(0) = ψ0, ψ̄t(0) = ψ1.
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Numerical Experiments

comparison of Westervelt-JMGT and Westervelt solutions

numerical experiments for water in a 1-d channel geometry

c = 1500 m/s, δ = 6 · 10−9 m2/s, ρ = 1000 kg/m3, B/A = 5;

space discretization with B-splines (Isogeometric Analysis):
quadratic basis functions, globally C 2; 251 dofs on
Ω = [0, 0.2m]

time discretization by Newmark scheme, adapted to 3rd order
equation; 800 time steps on [0,T ] = [0, 45µs]

initial conditions (ψ0, ψ1, ψ2) =
(

0, A exp
(
− (x−0.1)2

2σ2

)
, 0
)

with A = 8 · 104 m2/s2 and σ = 0.01,
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Snapshots of pressure p = %ψt for fixed relaxation time
τ = 0.1µs
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Pressure wave for different relaxation parameters τ at final
time t = 45µs.
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Relative errors as τ → 0
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Recap: Vanishing relaxation time

Jordan-Moore-Gibson-Thompson equation

τψτttt + ψτtt − c2∆ψτ − (δ + τc2)∆ψτt =
(

B
2Ac2 (ψτt )2 + |∇ψτ |2

)
t

versus Kuznetsov’s equation:

ψtt − c2∆ψ − δ∆ψt =
(

B
2Ac2 ((ψt)

2) + |∇ψ|2
)
t

Existence of a limit ψ0 of ψτ as τ ↘ 0? Yes
Does ψ0 solve Kuznetsov’s equation? Yes

[Bongarti&Charoenphon&Lasiecka; BK& Nikolić, 2019-21]
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limit in JMGT/Kuznetsov/Westervelt

for vanishing diffusivity of sound δ
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Vanishing diffusivity of sound
Kuznetsov’s equation (likewise for Jordan-Moore-Gibson-Thompson):

ψδtt − c2∆ψδ − δ∆ψδt =

(
B

2Ac2 (ψδt )2 +
∣∣∣∇ψδ∣∣∣2)

t

undamped quasilinear wave equation:

ψtt − c2∆ψ =
(

B
2Ac2 (ψt)

2 + |∇ψ|2
)
t

Existence of a limit ψ0 of ψδ as δ ↘ 0?
Does ψ0 solve the respective inviscid (δ = 0) equation?

Challenge: δ > 0 is crucial for global in time well-posedness and
exponential decay in d ∈ {2, 3} space dimensions.

[BK& Nikolić, SIAP 2021]
recover results (in particular on required regularity of initial data) from
[Dörfler Gerner Schnaubelt 2016] for δ = 0
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limit in Blackstock-Crighton

for vanishing thermal conductivity a
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Vanishing thermal conductivity

Blackstock-Crighton equation

(∂t − a∆)
(
ψa
tt − c2∆ψa − δ∆ψa

t

)
−ra∆ψa

t =
(

B
2Ac2 (ψa

t
2) + |∇ψa|2

)
tt

Kuznetsov’s equation:

ψtt − c2∆ψ − δ∆ψt =
(

B
2Ac2 (ψ2

t ) + |∇ψ|2
)
t

Existence of a limit ψ0 of ψa as a↘ 0?
Does ψ0 solve Kuznetsov’s equation?

Integrate once wrt time: Consistency of initial data needed:
ψ2 − c2∆ψ0 − δ∆ψ1 = B

Ac2ψ1ψ2 + 2∇ψ0 · ∇ψ1

[BK& Thalhammer, M3AS 2018]
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limit in time fractional JMGT

for differentiation order α↗ 1
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Fractional to integer damping

fractional Jordan-Moore-Gibson-Thompson equation

ταD2+α
t ψα+ψαtt−c2∆ψα−(δ+ταc2)∆Dα

t ψ
α =

(
B

2Ac2 (ψαt )2 + |∇ψα|2
)
t

Jordan-Moore-Gibson-Thompson equation

τψttt + ψtt − c2∆ψ − (δ + τc2)∆ψt =
(

B
2Ac2 (ψt)

2 + |∇ψ|2
)
t

Existence of a limit ψ1 of ψα as α↗ 1?
Does ψ solve the respective integer order equation?

Derivation of proper models from physical balance and
constitutive laws

Leading derivative order in PDE changes with α.

[BK& Nikolić, M3AS 2022]
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fractional damping models in ultrasonics
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Figure 2.6 in [Chan&Perlas, Basics of Ultrasound Imaging, 2011]

 constitutive modeling of

pressure – density relation

temperature – heat flux relation shortcut
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Figure 2.6 in [Chan&Perlas, Basics of Ultrasound Imaging, 2011]

 constitutive modeling of

pressure – density relation

temperature – heat flux relation shortcut
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Fractional Models of (Linear) Viscoelasticity

equation of motion (resulting from balance of forces)

%utt = divσ + f

strain as symmetric gradient of displacements:

ε =
1

2
(∇u + (∇u)T ).

constitutive model: stress-strain relation

u. . . displacements
σ. . . stress tensor
ε. . . strain tensor
%. . . mass density
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Fractional Models of (Linear) Viscoelasticity 1-d setting

equation of motion (resulting from balance of forces)

%utt = σx + f

strain as symmetric gradient of displacements:

ε = ux .

constitutive model: stress-strain relation:

Hooke’s law (pure elasticity): σ = b0ε

Newton model: σ = b1εt

Kelvin-Voigt model: σ = b0ε+ b1εt

Maxwell model: σ + a1σt = b0ε

Zener model: σ + a1σt = b0ε+ b1εt
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Fractional Models of (Linear) Viscoelasticity 1-d setting

equation of motion (resulting from balance of forces)

%utt = σx + f

strain as symmetric gradient of displacements:

ε = ux .

constitutive model: stress-strain relation:

fractional Newton model: σ = b1∂
β
t ε

fractional Kelvin-Voigt model: σ = b0ε+ b1∂
β
t ε

fractional Maxwell model: σ + a1∂
α
t σ = b0ε

fractional Zener model: σ + a1∂
α
t σ = b0ε+ b1∂

β
t ε

general model class:
N∑

n=0

an∂
αn
t σ =

M∑
m=0

bm∂
βm
t ε

[Caputo 1967, Atanackovic, Pilipović, Stanković, Zorica 2014]
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Fractional Models of (Linear) Acoustics via p − %
balance of momentum

%0vt = −∇p + f

balance of mass
%∇ · v = −%t

equation of state %∼
%0

=
p∼
p0
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Fractional Models of (Linear) Acoustics via p − %
balance of momentum

%0vt = −∇p + f

balance of mass
%∇ · v = −%t

equation of state M∑
m=0

bm∂
βm
t

%∼
%0

=
N∑

n=0

an∂
αn
t

p∼
p0

insert constitutive equations into combination of balance laws
 fractional acoustic wave equations [Holm 2019, Szabo 2004]:

Caputo-Wismer-Kelvin wave equation (fractional Kelvin-Voigt):

ptt − b0∆p − b1∂
β
t ∆p = f̃ ,

modified Szabo wave equation (fractional Maxwell):

ptt − a1∂
2+α
t p − b0∆p = f̃ ,

fractional Zener wave equation:

ptt − a1∂
2+α
t p − b0∆p + b1∂

β
t ∆p = f̃ ,

general fractional model:∑N
n=0 an∂

2+αn
t p −

∑M
m=0 bm∂

βm
t ∆p = f̃ .
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Fractional Models of (Linear) Acoustics via ϑ − q
recall:
Classically: Fourier’s law q = −K∇ϑ
leads to infinite speed of propagation paradox.

Maxwell-Cattaneo law τqt + q = −K∇ϑ
allows for “thermal waves” (second sound phenomenon)
can lead to violation of the 2nd law of thermodynamics

“interpolate” by using fractional derivatives
[Compte & Metzler 1997, Povstenko 2011]:

(GFE I) (1 + ταDα
t )q(t) =−Kτ1−α

ϑ D1−α
t ∇ϑ;

(GFE II) (1 + ταDα
t )q(t) =−Kτα−1

ϑ Dα−1
t ∇ϑ;

(GFE III) (1 + τ∂t)q(t) =−Kτ1−α
ϑ D1−α

t ∇ϑ;

(GFE) (1 + ταDα
t )q(t) =−K∇ϑ.

44



Fractional Models of (Linear) Acoustics via ϑ − q
recall:
Classically: Fourier’s law q = −K∇ϑ
leads to infinite speed of propagation paradox.

Maxwell-Cattaneo law τqt + q = −K∇ϑ
allows for “thermal waves” (second sound phenomenon)
can lead to violation of the 2nd law of thermodynamics

“interpolate” by using fractional derivatives
[Compte & Metzler 1997, Povstenko 2011]:

(GFE I) (1 + ταDα
t )q(t) =−Kτ1−α

ϑ D1−α
t ∇ϑ;

(GFE II) (1 + ταDα
t )q(t) =−Kτα−1

ϑ Dα−1
t ∇ϑ;

(GFE III) (1 + τ∂t)q(t) =−Kτ1−α
ϑ D1−α

t ∇ϑ;

(GFE) (1 + ταDα
t )q(t) =−K∇ϑ.

44



Fractional derivatives
Abel fractional integral operator

I γa f (x) =
1

Γ(γ)

∫ t

a

f (s)

(t − s)1−γ ds

Then a fractional (time) derivative can be defined by either

R
a D

α
t f =

d

dt
I 1−α
a f Riemann-Liouville derivative

or
C
a D

α
t f = I 1−α

a

df

ds
Djrbashian-Caputo derivative

R-L is defined on a larger function space, but derivative of
constant is nonzero; singularity at initial time a

D-C maps constants to zero  appropriate for prescribing
initial values

some recent books on fractional PDEs: [Kubica & Ryszewska &
Yamamoto 2020], [Jin 2021], [BK & Rundell 2022]
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Fractional derivatives
Abel fractional integral operator
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R-L is defined on a larger function space, but derivative of
constant is nonzero; singularity at initial time a

D-C maps constants to zero  appropriate for prescribing
initial values

Nonlocal and causal character of these derivatives provides them
with a “memory”

 initial values are tied to later values and can therefore be better
reconstructed backwards in time.
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inverse problems
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Nonlinearity parameter imaging

B/A parameter is sensitive to differences in tissue properties,
thus appropriate for characterization of biological tissues

viewing κ = 1
%c2 ( B

2A + 1) as a spatially varying coefficient in
the Westervelt equation, it can be used for medical imaging

 acoustic nonlinearity parameter tomography [Bjørnø 1986;
Burov, Gurinovich, Rudenko, Tagunov 1994; Cain 1986;
Ichida, Sato, Linzer 1983; Varray, Basset, Tortoli, Cachard
2011; Zhang, Gong et al 1996, 2001]. . .
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The inverse problem of nonlinearity parameter imaging
Identify κ(x) in(

u − κ(x)u2
)
tt
− c2

0 ∆u + Du = r in Ω× (0,T )

∂νu + γu = 0 on ∂Ω× (0,T ), u(0) = 0, ut(0) = 0 in Ω

(with excitation r) from observations

g = u on Σ× (0,T )

Σ ⊂ Ω. . . transducer array (surface or collection of discrete points)

fractional damping

Caputo-Wismer-Kelvin:
D = −b∆∂βt with β ∈ [0, 1], b ≥ 0

fractional Zener:

D = a∂2+α
t − b∆∂βt with a > 0, b ≥ ac2, 1 ≥ β ≥ α > 0,

space fractional Chen-Holm:

D = b(−∆)β̃∂t with β̃ ∈ [0, 1], b ≥ 0,
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Chances and Challenges

model equation is nonlinear;
nonlinearity occurs in highest order term;

unknown coefficient κ(x) appears in this nonlinear term

κ is spatially varying whereas the data g(t) is in the
“orthogonal” time direction;
This is well known to lead to severe ill-conditioning of the
inversion of the map F from data to unknown.

nonlinearity helps by “adding information”:
linear case: double excitation ⇒ double observation
linear case: exitation at freq. ω ⇒ observation at freq. ω
nonlinear case: higher harmonics  information multiplies
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[Acosta & Uhlmann & Zhai 2022] Westervelt equation:
uniqueness from Neumann-Dirichlet map

[Eptaminitakis & Stefanov 2022] Westervelt equation:
geometric optics solutions

[BK&Rundell IPI 2021, Math.Comp. 2022, Inv.Prob. 2023,
IPI 2023] Westervelt eq.; [BK EECT 2023] JMGT eq.

Well-definedness and Fréchet differentiability of forward
operator F : κ 7→ u|Σ
uniqueness for linearised problem from a single boundary
observation
reconstructions by Newton’s method
convergence of frozen Newton via range invariance of
linearised forward operator
uniqueness of κ(x) from a single boundary observation
(for unknown c0(x))
linearised uniqueness of κ(x) and c0(x) from two boundary
observations

[Yamamoto &BK 2021] BCBJ eq. (a higher order model)
linearised uniqueness and conditional stability via Carleman
estimates
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multiharmonic expansion
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Multiharmonics in nonlinear acoustics

time signal from excitation at several amplitudes;

(taken from Master thesis by Teresa Rauscher, University of Klagenfurt,

2021)
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Modeling wave propagation in frequency domain

linear wave equation
utt − c2∆u = r

Using a harmonic excitation r(x , t) = <(r̂(x)eıωt)
and a harmonic ansatz for u

u(x , t) = <
(
û(x)eıωt

)
leads to the Helmholtz equation

−ω2û − c2∆û = r̂ .
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Modeling nonlinear wave propagation in frequency domain
Westervelt equation:

utt − c2∆u − b∆ut = κ(x)(u2)tt + r

Using a harmonic excitation r(x , t) = <(r̂(x)eıωt)
and a multiharmonic expansion of u

u(x , t) = <

( ∞∑
k=1

ûk(x)eıkωt

)
leads to the coupled system

m = 1 : − ω2û1 − (c2 + ıωb)∆û1 = r̂ −κ
2
ω2

∞∑
k=3:2

û k−1
2
û k+1

2

m = 2, 3 . . . : − ω2m2ûm − (c2 + ıωmb)∆ûm = −κ
4
ω2m2

m−1∑
`=1

û`ûm−`

−κ
2
ω2m2

∞∑
k=m+2:2

û k−m
2
û k+m

2
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4
ω2m2

m−1∑
`=1
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û`ûm−`

−κ
2
ω2m2

∞∑
k=m+2:2
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Modeling nonlinear wave propagation in frequency domain

Theorem (time periodic solutions; [BK, EECT 2021])

For b, c2, β, γ,T > 0, κ ∈ L∞(Ω), there exists ρ > 0 such that for
all r ∈ L2(0,T ; L2(Ω) with ‖r‖L2(0,T ;L2(Ω)) ≤ ρ there exists a
unique solution

u ∈ X := H2(0,T ; L2(Ω)) ∩ H1(0;T ;H3/2(Ω)) ∩ L2(0;T ;H2(Ω))

of 
utt − c2∆u − b∆ut = κ(x)(u2)tt + g in Ω× (0,T ),

βut + γu + ∂νu = 0 on ∂Ω× (0,T ),

u(0) = u(T ) , ut(0) = ut(T ) in Ω,

and the solution fulfills the estimate

‖u‖X ≤ C̃‖g‖L2(0,T ;L2(Ω))

57



Back to the inverse problem

model equation is nonlinear;
nonlinearity occurs in highest order term;

unknown coefficient κ(x) appears in this nonlinear term

κ is spatially varying whereas the data g(t) is in the
“orthogonal” time direction;
This is well known to lead to severe ill-conditioning of the
inversion of the map F from data to unknown.

nonlinearity helps by “adding information”:
linear case: double excitation ⇒ double observation
linear case: exitation at freq. ω ⇒ observation at freq. ω
nonlinear case: higher harmonics  information multiplies

⇒ enhanced uniqueness results for the inverse problem:
linear case: piecewise constant coefficients
nonlinear case: general spatially variable coefficients
from a single observation
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linearised uniqueness
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The inverse problem in frequency domain

model: utt − c2∆u − b∆ut = κ(x) (u2)tt + r

observation: u(x0) = g(x) x0 ∈ Σ

r(x , t) = <(r̂(x)eıωt)  u(x , t) = <
(∑∞

k=1 ûk(x)eıkωt
)

~u = (ûj)j∈N Bm(~u) = 1
4

∑m−1
`=1 û`ûm−` + 1

2

∑∞
k=m+2:2 û k−m

2
û k+m

2

Fm(κ, ~u) :=

(
−
(
ω2m2 + (c2 + ıωmb)∆

)
ûm + ω2m2 κBm(~u)

trΣûm

)

ym :=

(
r̂ if m = 1 / 0 if m ≥ 2
ĝm

)
~F (κ, ~u) = y
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ĝm

)
~F (κ, ~u) = y

60



The linearised inverse problem

~F (κ, ~u) = y

where

Fm(κ, ~u) :=

(
−
(
ω2m2 + (c2 + ıωmb)∆

)
ûm + ω2m2 κBm(~u)

trΣûm

)

linearisation:
~F ′(κ, ~u)(dκ, d~u) ≈ F (κ, ~u)− y

where

F ′m(κ, ~u)(dκ, d~u) =(
−
(
ω2m2 + (c2 + ıωmb)∆

)
dûm + ω2m2 κB ′m(~u)d~u + ω2m2 dκBm(~u)

trΣdûm

)
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The linearised inverse problem

~F (κ, ~u) = y

where

Fm(κ, ~u) :=

(
−
(
ω2m2 + (c2 + ıωmb)∆

)
ûm + ω2m2 κBm(~u)

trΣûm

)
linearisation:

~F ′(κ, ~u)(dκ, d~u) ≈ F (κ, ~u)− y

where

F ′m(0, ~u)(dκ, d~u) =(
−
(
ω2m2 + (c2 + ıωmb)∆

)
dûm + ω2m2 dκBm(~u)

trΣdûm

)
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Linearised uniqueness

Show that

~F ′(κ, ~u)(dκ, d~u) = 0 ⇒ dκ = 0 and d~u = 0

where

F ′m(0, ~u)(dκ, d~u) =(
−
(
ω2m2 + (c2 + ıωmb)∆

)
dûm + ω2m2 dκBm(~u)

trΣdûm

)
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(mod) −
(
ω2m2 + (c2 + ıωmb)∆

)
dûm + ω2m2 dκBm(~u) = 0 m ∈ N

(obs) trΣdûm = 0 m ∈ N

dκ = 0 and d~u = 0

64



(mod) −
(
ω2m2 + (c2 + ıωmb)∆

)
dûm + ω2m2 dκBm(~u) = 0 m ∈ N

(obs) trΣdûm = 0 m ∈ N
Choose ûm(x) := φ(x)ψm, ψm ∈ R, φ ∈ H2(Ω,R), φ 6= 0 a.e. in Ω
Expand wrt. eigensystem (ϕk

j , λj)j∈N,k∈K j of −∆ (with impedance b.c.)

dκ = 0 and d~u = 0
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(mod) −
(
ω2m2 + (c2 + ıωmb)∆

)
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(obs) trΣdûm = 0 m ∈ N

Choose ûm(x) := φ(x)ψm, ψm ∈ R, φ ∈ H2(Ω,R), φ 6= 0 a.e. in Ω
Expand wrt. eigensystem (ϕk

j , λj)j∈N,k∈K j of −∆ (with impedance b.c.)

0 = 〈ϕk
j , (mod)〉

= −
(
ω2m2 − (c2 + ıωmb)λj

)
〈ϕk

j , dûm〉︸ ︷︷ ︸
=:bkm,j

+ ω2m2 Bm(~ψ) 〈ϕk
j , φ

2dκ〉︸ ︷︷ ︸
=:akj

⇒ bkm,j = Mm,ja
k
j with Mm,j :=

ω2m2 Bm(~ψ)

ω2m2 − (c2 + ıωmb)λj

(obs) ⇒ 0 = trΣ dûm =
∑
j∈N

∑
k∈K j

bkm,j trΣϕ
k
j =

∑
j∈N

Mm,j

∑
k∈K j

akj trΣϕ
k
j

dκ = 0 and d~u = 0
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(mod) −
(
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(obs) trΣdûm = 0 m ∈ N

Choose ûm(x) := φ(x)ψm, ψm ∈ R, φ ∈ H2(Ω,R), φ 6= 0 a.e. in Ω
Expand wrt. eigensystem (ϕk

j , λj)j∈N,k∈K j of −∆ (with impedance b.c.)

〈ϕk
j , dûm〉 =: bkm,j , 〈ϕk

j , φ
2dκ〉 =: akj

bkm,j = Mm,ja
k
j with Mm,j :=

ω2m2 Bm(~ψ)

ω2m2 − (c2 + ıωmb)λj

0 =
∑
j∈N

Mm,j

∑
k∈K j

akj trΣϕ
k
j m ∈ N

dκ = 0 and d~u = 0
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(
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Expand wrt. eigensystem (ϕk

j , λj)j∈N,k∈K j of −∆ (with impedance b.c.)

〈ϕk
j , dûm〉 =: bkm,j , 〈ϕk

j , φ
2dκ〉 =: akj

bkm,j = Mm,ja
k
j with Mm,j :=

ω2m2 Bm(~ψ)

ω2m2 − (c2 + ıωmb)λj

0 =
∑
j∈N

Mm,j

∑
k∈K j

akj trΣϕ
k
j m ∈ N

Lemma: The infinite matrix M is nonsingular.

⇒ 0 =
∑
k∈K j

akj trΣϕ
k
j j ∈ N

dκ = 0 and d~u = 0
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(mod) −
(
ω

2m2 + (c2 + ıωmb)∆
)
dûm + ω

2m2 dκ Bm(~u) = 0 m ∈ N

(obs) trΣdûm = 0 m ∈ N

Choose ûm(x) := φ(x)ψm, ψm ∈ R, φ ∈ H2(Ω,R), φ 6= 0 a.e. in Ω
Expand wrt. eigensystem (ϕk

j , λj)j∈N,k∈K j of −∆ (with impedance b.c.)

〈ϕk
j , dûm〉 =: bkm,j , 〈ϕk

j , φ
2dκ〉 =: akj

bkm,j = Mm,ja
k
j with Mm,j :=

ω2m2 Bm(~ψ)

ω2m2 − (c2 + ıωmb)λj

0 =
∑
j∈N

Mm,j

∑
k∈K j

akj trΣϕ
k
j m ∈ N

Lemma: The infinite matrix M is nonsingular.

⇒ 0 =
∑
k∈K j

akj trΣϕ
k
j j ∈ N ⇒ 0 = trΣ ProjEj

[φ2dκ]︸ ︷︷ ︸
=:vj

dκ = 0 and d~u = 0
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(mod) −
(
ω

2m2 + (c2 + ıωmb)∆
)
dûm + ω

2m2 dκ Bm(~u) = 0 m ∈ N

(obs) trΣdûm = 0 m ∈ N

Choose ûm(x) := φ(x)ψm, ψm ∈ R, φ ∈ H2(Ω,R), φ 6= 0 a.e. in Ω
Expand wrt. eigensystem (ϕk

j , λj)j∈N,k∈K j of −∆ (with impedance b.c.)

〈ϕk
j , dûm〉 =: bkm,j , 〈ϕk

j , φ
2dκ〉 =: akj

bkm,j = Mm,ja
k
j with Mm,j :=

ω2m2 Bm(~ψ)

ω2m2 − (c2 + ıωmb)λj

0 =
∑
j∈N

Mm,j

∑
k∈K j

akj trΣϕ
k
j m ∈ N

Lemma: The infinite matrix M is nonsingular.

⇒ 0 =
∑
k∈K j

akj trΣϕ
k
j j ∈ N ⇒ 0 = trΣ ProjEj

[φ2dκ]︸ ︷︷ ︸
=:vj

Unique Continuation:
−∆vj = λjvj and ∂νvj + γvj = 0 and trΣvj = 0 ⇒ vj = 0

dκ = 0 and d~u = 0
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Choose ûm(x) := φ(x)ψm, ψm ∈ R, φ ∈ H2(Ω,R), φ 6= 0 a.e. in Ω
Expand wrt. eigensystem (ϕk

j , λj)j∈N,k∈K j of −∆ (with impedance b.c.)

〈ϕk
j , dûm〉 =: bkm,j , 〈ϕk

j , φ
2dκ〉 =: akj

bkm,j = Mm,ja
k
j with Mm,j :=

ω2m2 Bm(~ψ)

ω2m2 − (c2 + ıωmb)λj

0 =
∑
j∈N

Mm,j

∑
k∈K j

akj trΣϕ
k
j m ∈ N

Lemma: The infinite matrix M is nonsingular.

⇒ 0 =
∑
k∈K j

akj trΣϕ
k
j j ∈ N ⇒ 0 = trΣ ProjEj

[φ2dκ]︸ ︷︷ ︸
=:vj

Unique Continuation:
−∆vj = λjvj and ∂νvj + γvj = 0 and trΣvj = 0 ⇒ vj = 0

⇒ 0 = akj k ∈ K j , j ∈ N ⇒ bkm,j = Mm,ja
k
j = 0 k ∈ K j , j ∈ N

⇒ dκ = 0 and d~u = 0
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Linearised uniqueness

Theorem (BK&Rundell, IPI 2023)

The homogeneous linearised
(at κ = 0, ~u = φ(x)~ψ with Bm(~ψ) 6= 0, m ∈ N)
inverse problem of nonlinearity coefficient imaging in frequency
domain only has the trivial solution.

shortcut to the end
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reconstructions from two harmonics
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Reconstruction of three inclusions from partial data

synthetic measurements with 1% noise
measurements taken on the green part of the boundary;
α. . . observation angle
reconstruction by regularized Newton iterations

[BK& Rundell, IPI 2023]

(a) α
2π = 1 (b) α

2π = 0.75 (c) α
2π = 0.5 (d) α

2π = 0.4 (e) α
2π = 0.3
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Reconstruction of two inclusions at different distances

synthetic measurements with 1%noise

(a) θ
2π = 0.3 (b) θ

2π = 0.2 (c) θ
2π = 0.1 (d) θ

2π = 0.09
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Reconstruction of one inclusion at different distances from
the boundary

synthetic measurements with 1%noise
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Outlook: Some further inverse problems
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Reconstruct differentiation order(s)

Determine fractional differentiation orders αn, βm in wave type eq.

N∑
n=0

an∂
2+αn
t p −

M∑
m=0

bm∂
βm
t ∆p = f̃ .

[BK& Rundell 2022];

for subdiffusion, see [Hatano& Nakagawa& Wang& Yamamoto 2013]

. . . [Jin& Kian 2022]
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Reconstruct nonlinearity

Determine nonlinearity f in generalized Westervelt equation

utt − c2∆u − b∆ut = −κ(f (u))tt

[BK& Rundell 2021]
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Reconstruct general memory kernels

Determine kernels kε, ktr ε in viscoelastic model

ρutt − div[Cε(u) + kε ∗ Aε(ut) + ktr ε ∗ trε(ut)I] = f

[BK & Khristenko & Nikolić & Rajendran & Wohlmuth 2022]
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Thank you for your attention!
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