Andrei Asinowski
Email address:
[my first name].[my family name] @ aau.at,
[my family name] @ gmail.com.
Academic appointments:
2005–2006: Bielefeld University — Universität Bielefeld,
Department of Mathematics.
Research associate in
Information Theory and Complexity working group.
2006–2008: University of Haifa.
Postdoctoral researcher at
CRI — Caesarea Rothschild Institute for Interdisciplinary
Applications of Computer Sciences.
2008–2010: Israel Institute of Technology (Haifa, Israel),
Department of Mathematics.
Postdoctoral/teaching fellowship.
2010–2011: Technion — Israel Institute of Technology (Haifa, Israel).
Research staff member at
CGGC — The Center for Graphics and Geometric Computing.
2012–2015:
Free University of Berlin — Freie Universität Berlin,
Institut of Computer Science,
Theoretical Computer Science working group.
Research associate in the
Collaborative Research Programme
Graphs in Geometry and Algorithms (EuroGIGA),
project Combinatorics of Point Sets and Arrangements of Objects (ComPoSe).
2015–2018:
Vienna University of Technology — Technische Universität Wien,
Institute of Discrete Mathematics and Geometry,
Combinatorics and Algorithms working group.
Research associate at
in
Special Research Programme Algorithmic and Enumerative Combinatorics (SFB F50),
project Combinatorics of TreeLike Structures and Enriched Trees.
2018–2021:
University of Klagenfurt — AlpenAdriaUniversität Klagenfurt,
Institute of Mathematics,
Discrete Mathematics working group.
Research associate in project Analytic Combinatorics: Digits, Automata and Trees.
Since 2020: University of Klagenfurt — AlpenAdriaUniversität Klagenfurt,
Principal investigator in project Generic Rectangulations: Enumerative and Structural Aspects (funded by FWF, grant 32731).
M. Sc. Thesis:
A. Asinowski. Geometric permutations for planar families of disjoint
translates of a
convex set.
Supervisor M. Katchalski.
Technion 
Israel Institute of Technology,
1999. [pdf]
Ph. D. Thesis:
A. Asinowski. Geometric permutations in the plane and in Euclidean
spaces of higher dimension.
Supervisor M. Katchalski.
Technion  Israel
Institute of
Technology,
2005. [pdf]
Publications:
 A. Asinowski, A. Holmsen, and M. Katchalski.
The triples of geometric permutations for families of disjoint translates.
Discrete Mathematics,
241 (2001), 23–32.
 A. Asinowski, A. Holmsen, M. Katchalski, and H. Tverberg.
Geometric permutations of large families of translates.
In: Discrete and
Computational Geometry: The GoodmanPollack Festschrift, B. Aronov, S.
Basu, J. Pach, M. Sharir (eds.), vol. 25 of Algorithms and
Combinatorics,
SpringerVerlag, Germany, 2003, 157–176.
 A. Asinowski and M. Katchalski.
Forbidden families of geometric permutations in R^{ d}.
Discrete and Computational Geometry,
34 (2005), 1–10.
 A. Asinowski and M. Katchalski.
The maximal number of geometric permutations for n disjoint translates of a convex set in
R^{ 3} is Ω(n).
Discrete and Computational Geometry,
35 (2006), 473–480.
 A. Asinowski and T. Mansour.
Dyck paths with coloured ascents.
European Journal of Combinatorics,
29 (2008), 1262–1279.
 A. Asinowski.
Suballowable sequences and geometric permutations.
Discrete Mathematics,
308 (2008), 4745–4762.
 A. Asinowski and A. H. Suk.
Edge intersection graphs of a system of paths in a grid.
Discrete Applied Mathematics,
157 (2009), 3174–3180.
 A. Asinowski and T. Mansour.
Separable dpermutations and guillotine partitions.
Annals of Combinatorics,
14 (2010) 17–43.
 A. Asinowski and B. Ries.
Some properties of edge intersection graphs of singlebend paths on a grid.
Discrete Mathematics,
212 (2012), 427–440.
 G. Aleksandrowicz, A. Asinowski, and G. Barequet.
A polyominoespermutations
injection and counting treelike convex polyominoes.
Journal of Combinatorial Theory (Series A),
119 (2012), 503–520.
 A. Asinowski, E. Cohen, M. C. Golumbic, V. Limouzy,
M. Lipshteyn, and M. Stern.
Vertex Intersection Graphs of Paths on a Grid.
Journal of Graph Algorithms and Applications,
16:2 (2012), 129–150.
 A. Asinowski, G. Barequet, R. Barequet, and G. Rote.
Proper ncell polycubes in n3 dimensions.
Journal of Integer Sequences,
15:8 (2012), Article 12.8.4.
 G. Aleksandrowicz, A. Asinowski, and G. Barequet.
Permutations with forbidden patterns and polyominoes on a twisted cylinder of width 3.
Discrete Mathematics,
313:10 (2013), 1078–1086.
 A. Asinowski, G. Barequet, M. BousquetMélou, T. Mansour, and R. Y. Pinter.
Orders
induced by segments in floorplan partitions and (2143, 3412)avoiding
permutations.
Electronic Journal of Combinatorics,
20:2 (2013), Paper P35.
 A. Asinowski, J. Cardinal, N. Cohen, S. Collette, T. Hackl, M. Hoffmann, K. Knauer, S. Langerman, M. Lasoń, P. Micek, G. Rote, and T. Ueckerdt.
Coloring hypergraphs induced by dynamic point sets and bottomless rectangles.
In Proc. Workshop on Algorithms and Data Structures (WADS),
Lecture Notes in Computer Science (LNCS), Vol. 8037 (2013), 73–84.
 A. Asinowski, G. Barequet, T. Mansour, and R. Y. Pinter.
Cut equivalence of ddimensional guillotine partitions.
Discrete Mathematics,
331 (2014), 165–174.
 O. Aichholzer, A. Asinowski, and T. Miltzow.
Disjoint
compatibility graph of noncrossing matchings of points in convex position.
Electronic Journal of Combinatorics,
22:1 (2015), #P1.65.
 A. Asinowski, T. Miltzow, and G. Rote.
Quasiparallel segments and characterization of unique bichromatic matchings.
Journal of Computational Geometry,
6:1 (2015).

A. Asinowski and A. Regev.
Triangulations with few ears: Symmetry classes and disjointness.
Integers,
6 (2016), Paper A5.

A. Asinowski, B. Keszegh, and T. Miltzow.
Counting houses of Pareto optimal matchings in the house allocation problem.
Discrete Mathematics,
339:12 (2016), 2919–2932.
 A. Asinowski, C. Krattenthaler, and T. Mansour.
Counting triangulations of some classes of subdivided convex polygons.
European Journal of Combinatorics,
62 (2017), 92–114.
 G. Aleksandrowicz, A. Asinowski, G. Barequet, and R. Barequet.
Recovering highlycomplex linear recurrences of integer
sequences.
Information Processing Letters,
127 (2017), 62–66.
 A. Asinowski and G. Rote.
Point sets with many noncrossing perfect
matchings.
Computational Geometry: Theory and Applications,
68 (2018), 7–33.
 A. Asinowski, A. Bacher, C. Banderier, and B. Gittenberger.
Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata.
Algorithmica, 82:3 (2020) (special issue on Analysis of Algorithms), 386–428.
 A. Asinowski, C. Banderier, and B. Hackl.
Flipsort and combinatorial aspects of popstack sorting.
Discrete Mathematics and Theoretical Computer Science, vol. 22 no. 2 (2021), special issue Permutation Patterns 2019.
Submitted / conferences / proceedings / arXiv preprints / in preparation / manuscripts / etc.:
 G. Aleksandrowicz, A. Asinowski, G. Barequet, and R. Barequet.
Formulae for polyominoes on twisted cylinders.
In Proc. 8th International Conference on Language and Automata Theory and Applications (LATA),
Lecture Notes in Computer Science (LNCS), Vol. 8370 (2014), 7687.
 A. Asinowski.
The number of noncrossing perfect plane matchings is minimized (almost) only by point sets in convex position.
arXiv:1502.05332, 2015.
 A. Asinowski, G. Barequet, and Y. Zheng.
Enumerating polyominoes with fixed perimeter defect.
In Proc. European Conference on Combinatorics, Graph Theory and Applications (EuroComb),
Electronic Notes in Discrete Mathematics (ENDM), Vol. 61 (2017), 6167.
 A. Asinowski, A. Bacher, C. Banderier, and B. Gittenberger.
Analytic combinatorics of lattice paths with forbidden patterns: Enumerative aspects.
In Proc. 12th International Conference on Language and Automata Theory and Applications (LATA),
Lecture Notes in Computer Science (LNCS), Vol. 10792, 195206.
2018.
 A. Asinowski, A. Bacher, C. Banderier, and B. Gittenberger.
Analytic combinatorics of lattice paths with forbidden patterns: Asymptotic aspects and Borges's Theorem.
In Proc.
29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA), 2018.
 A. Asinowski, C. Banderier, and B. Hackl.
Flipsort and extremal cases of popstack sorting.
Permutation Patterns 2019, Zürich, Switzerland,
June 2019.
 A. Asinowski, C. Banderier, S. Billey, B. Hackl, and S. Linusson.
Popstack sorting and its image: Permutations with overlapping runs.
European Conference on Combinatorics, Graph Theory and Applications
(EuroComb) 2019,
Bratislava, Slovakia, August 2019.
 A. Asinowski, B. Hackl, and S. J. Selkirk.
Downstep statistics in generalized Dyck paths.
arXiv:2007.15562, 2020; submitted.